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designing spectral sensitivities for color imaging devices
is therefore desirable.

The first quality factor, q-factor, proposed by
Neugebauer, is limited to the evaluation of single fil-
ter.3 Lately, Vora and Trussell extended the quality fac-
tor to filter sets with an arbitrary number.4 This factor,
µ-factor, describes the difference between the orthonor-
mal subspaces of color matching functions and spectral
sensitivities. These measures can all be related to a
mean-squared error metric in CIEXYZ space. Recently,
Wolski and co-workers7 proposed the use of local linear-
ization of CIELAB space to reduce the computational
complexity with preserving the desirable property of per-
ceptual uniformity. Sharma and Trussell6 presented a
new figure of merit for color scanners, which is also
based on an error metric in linearized CIELAB space
but incorporates a model for measurement noise. It has
high degree of perceptual relevance and also accounts
for noise performance of different filters.

Tajima5 proposed a totally new quality factor (“T-fac-
tor”) without satisfying Luther condition by taking ac-
count of the object color spectral characteristics. His
metric is based on that each object spectral character-
istic can be restored from three sensor signals due to
the fact that almost all object spectral reflectance can
be reconstructed by three or four principal components.
Then accurate tristimulus values (XYZ) are estimated
from the restored object spectral reflectance and known
color-matching functions.

It is still arguable that the spectra of object color can
be satisfactorily restored by only three or four sensor mea-
surements. Because most cameras use only three chan-
nels and colorimetric matching is still the goal of most
imaging devices with tradeoff of cost, we will only dis-
cuss the q-factor and µ-factor in our study. Furthermore,
the approach used in the study is methodically applicable
when we consider some additional practical issues, such
as noise, multi-illuminant color correction etc.
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introduced in order to describe the deviation of SS from their nearest color mixture curves. In this article, a simple method is
presented to implement an evaluation platform for the above two quality factors. A series of hypothetical spectral sensitivities
are constructed with cubic spline functions with shape and peak position of the SS parametrically varied. The evaluation plat-
form is used to optimize these SS parameters to obtain a maximum quality factor. Furthermore, the improvement of quality
factor by adding a fourth SS is proposed and the relationship between quality factor and human perceptual judgement is dis-
cussed in this article.

Journal of Imaging Science and Technology 46: 8–14 (2002)

Introduction
Capturing color images with digital camera is widely
spreading. The principle of such a camera is usually a
charge-coupled device or complementary metal-oxide-
semiconductor (CCD/CMOS) sensor array with a set of
filters before it. Human visual responses to color stimuli
have been determined by psychophysical experiments
and are officially recommended as color matching func-
tions by the Commission Internationale de l’Eclairage
(CIE). It characterizes spectral distributions of object
colors by tristimulus values because the human eye has
three types of cones with different spectral sensitivi-
ties. Most imaging systems are therefore set up with
three channels and the device sensitivities are initially
designed to mimic human visual system.

The spectral sensitivity evaluation and design prob-
lem has been studied before. Ohta started the evalua-
tion and optimization of spectral sensitivities in
subtractive color photography.1,2 The spectral sensitivi-
ties for color imaging devices (digital cameras, color
scanners etc.) should satisfy the Luther condition, that
is, the spectral sensitivities need not be exact duplicates
of the color-matching functions but need be only a
nonsingular transformation of them. In practice, it is
not always possible to manufacture filters that satisfy
Luther condition due to the physical limitations of fab-
ricating process. Measurement noise also plays an im-
portant role and will degrade the color accuracy even
when spectral sensitivities fulfill Luther condition. A
measure of goodness or quality factor for evaluating and
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The higher the µ-factor for the imaging device, the
more accurate color reproduction is expected. One ap-
proach to improve the color accuracy other than satis-
fying Luther condition with three channels is to use an
increased number of color channels. As the number of
color filters is increased, additional information about
the object color is obtained, but cost and fabrication dif-
ficulty is also increased. Hence four-channel is a good
tradeoff. Our study demonstrated a method to compute
the optimal transmittance of a fourth filter by maxi-
mizing the total µ-factor of the system dramatically.

In this article, at first, we addressed the hypothetical
spectral sensitivity to be used. The hypothetical spec-
tral sensitivity function is modeled as smooth cubic
spline functions with single peak, which is proposed first
by Ohta.2 We discussed the meaning of q-factor and µ-
factor through least square approach and evaluated
hypothetical spectral sensitivities by these criteria. We
then optimized a fourth spectral sensitivity with con-
straints to maximize the µ-factor of the color imaging
system.

In this article, we use finite dimensional representa-
tions of all continuous spectral functions. All spectral
distributions are sampled at 10 nm intervals from 400
nm to 700 nm and represented as 31-element column
vectors.

The Hypothetical Spectral Sensitivity
We define the spectral sensitivity of color imaging sys-
tems as the product of the spectral sensitivity of imag-
ing device and the transmittance of the filter. The
hypothetical spectral sensitivities formed by the combi-
nation of cubic spline functions were widely used by
Ohta to simulate the practical spectral sensitivity in
color photography.2 In general, the spectral sensitivity
is assumed to be a smooth single-peaked curve in vis-
ible range with nonnegative value of no more than one.
The peak position and width are two critical parameters
and vary considerably for real spectral sensitivities in
color reproduction, however they can be simulated by a
smooth cubic spline function for instance peak posi-
tioned at λ = λ0 written as in Eq. 1 where 2w is the width
of the cubic spline function. For example, Fig. 1 shows a
spJectral sensitivity function whose peak locates at 550
nm and width 2w is 80 nm.

Q-Factor of Spectral Sensitivity
In measuring colors a light sensitive receiver is required
whose spectral response is equivalent to color match-
ing functions (cmf). But in many cases, this is not usu-
ally fulfilled owing either to imperfections of color filters
used or to other conflicting conditions imposed on the
filters. In particular, it is difficult to construct designed
scanning SS exactly, and any errors in the construction
will change the space spanned by the spectral sensitivi-

ties, resulting in an error in the measurement of the
expected projection. This error will lead to the error in
the reproduction. This error will occur even if the mea-
surements are noise free in all other respects. A com-
promise is required and it would be of great help to have
a method of evaluating the deviation of a SS curve from
the nearest cmf.

Let     x y z( ), ( ), ( )λ λ λ  be the CIE color matching func-
tions, for convenience, we define A=[    x y z( ), ( ), ( )λ λ λ ] as
the human visual subspace (HVSS). In an attempt to
measure the goodness of SS, Neugebauer ’s q-factor for
an SS m can be defined as following:

Assume m can be mostly approximated by the linear
combination of cmfs (Af), where f is a 3 × 1 vector, that
is,

    min Af m F− 2 ,

where the Frobenius norm
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Figure 1. Typical hypothetical spectral sensitivity.
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which is Neugebauer ’s q factor of spectral sensitivity
m.

As an extreme case, for example, when spectral sen-
sitivity m(i) is a δ-function peak at λ0 belonging to (400
nm, 700 nm), that is,

      m i T( ) ( , , , , , )= 0 0 1 0K K ,

where i is the position of 1 in the N-vector. We can ob-
tain the corresponding q-factor as

    diag A A A A iT T( ( ) , )−1 ,

which is the ith diagonal element of the matrix

    A A A AT T( )−1 .

Figure 2 shows the q-factors of a series of spectral
sensitivities m(i) where i changes from 1 to N. The q-
factor curve presents three peaks at about 450 nm, 540
nm and 600 nm with corresponding q-factors 0.2263,
0.1756 and 0.1858. Comparatively, the q-factor of full-
pass spectral sensitivity m(i) = (1,1,…,1,…,1)T is about
0.7224.

Notice that     0 1≤ ≤q m( )  , and the closer the value of
q(m) to unity, the better the color-scanning SS m per-
forms in color reproduction. If the value of q(m) is small
compared with unity, the filter measurement does not
give much information about the measured signal, and
hence the SS is not appropriate for color scanning. The

q-factor is a reasonable quality measure for spectral
sensitivities not in the HVSS, because

    m q m2 1( ( ))−

is the square of the Euclidean distance of m from HVSS
as we derived above.

Now we evaluate the q-factors of the hypothetical spec-
tral sensitivity function. We let the peak position λ0 of
the cubic spline curve changes from 400 nm to 700 nm
by 10 nm (31 different positions), and the half width w
changes from 10 nm to 90 nm by 20 nm (5 different
widths). In each combination, we calculated the corre-
sponding q-factor.

Figure 3 shows how the q-factors change as we change
the peak position λ0 and the width parameter w of the
hypothetical spectral sensitivity. In the figure, when w
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is not so large, for example, w ≤ 70 nm, each curve gives
a series of varying q factors and there are 3 obvious peaks
of q factors. The wavelength positions of SS with maxi-
mal q-factors are almost consistently located at 450 nm,
540 nm and 600 nm.

In these wavelength positions, there exists some op-
timal width that maximizes the q-factor to near one.
We can find the optimal width is about 40 ~ 60 nm. Fig-
ure 4 shows how the maximum q-factor changes with
width. When the width goes to large enough, say 100
nm, the three peaks of q factor disappear and the curve
becomes flat. On the contrary, the q-factor in the middle
part of the curve is not very small but changes slowly
along wavelength, so it is not optimal to choose very
wide spectral sensitivity in color reproduction. In fact,
when the width is small enough, it can be modeled as a
δ-function, while it gets wide enough, it is a full-pass
function. So the curve is very similar to Fig. 2 when
width is small and the curve becomes flat when it is
large. In a limitation condition when w→∞, as SS is like
full-pass spectral sensitivity, the q-factor at any posi-
tion is about 0.7.

µ-Factor of a Set of Spectral Sensitivities
A major disadvantage of the q-factor is that it was

designed to evaluate only single SS. A measure that ex-
tends the idea of the q-factor to evaluate a set of color-
scanning spectral sensitivities would be useful.

Another disadvantage of the q-factor is that it cannot
be used to evaluate set of more than three spectral sen-
sitivities. Current trends show that more than three
spectral sensitivities may be used to improve the qual-
ity of the color reproduction. First, in many cases, three
parameters are not enough to define sufficiently an N-
dimensional visual stimulus for color correction. Sec-
ond, the constraint of feasibility on the spectral
sensitivities might imply that no set of three feasible
spectral sensitivities could span the HVSS, although a
set of four feasible spectral sensitivities could be con-
structed so that the required projection would be ob-
tained. When more than three parameters (four

scanning spectral sensitivities, for example) are neces-
sary, the q-factor is not an effective measure of the good-
ness. For example, suppose that     { , , , }s s s s1 2 3 4  is a set of
scanning spectral sensitivities. It is possible that the
HVSS is contained in the span of the set of four spec-
tral sensitivities, but q(si) < 1 for I = 1,2,3,4. Such a
system could provide perfect color scanning, although
the individual q factor may not be high.

Let S denotes the matrix of r scanning spectral sensi-
tivities, S = [s1 s2 … sr]. Let A = [a1 a2 … as] denote the
human visual space (color matching functions) to be ap-
proximated. When multi-illuminants are involved, we
may define S and A as:
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k

k

⇒ [ ]
⇒ [ ]

1 2

1 2

...

...

where L1, L2, …, Lk are the diagonal matrices of the
power spectrum of the illuminants involved.

An orthonormal basis for A is defined by U = [u1 u2 …
uα]. Such a basis may be obtained by the Gram–Schmidt
orthogonalization procedure. The number of orthonor-
mal vectors, α, is the rank of A and α equals s if A is a
linearly independent set. Similarly, an orthonormal ba-
sis for S is defined by O=[o1 o2 … oβ]. Also notice that β
is the rank of S and that β equals r if S is linearly inde-
pendent set. The orthonormal basis U and O need not
represent realizable spectral sensitivities. It can be de-
rived that S(STS)–1ST = OOT and A(ATA)–1AT = UUT.8

Our purpose is to approximate A by the linear combi-
nation of S, that is, to minimize     ∆ = −A SQ F

2 , where Q
is the variable matrix to be optimized. This is a least-
square issue as well. Similarly, we can obtain Q = (STS)–

1ST A can be obtained through a pseudo inverse operation
and the residue:
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is the goodness measure of a set of spectral sensitivi-
ties S against color matching functions A, and Trace{X}
is the sum of diagonal elements of X. Because quality
factor can be applied to any number of taking
illuminants and viewing illuminants among L1, L2, …,
Lk,  we may name it as M-factor. When only one
illuminant is present and the orthonormal subspace U
of A is used, we have
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Figure 4. The effect of width on maximum q factor.



12  Journal of Imaging Science and Technology®               Quan and Ohta

    

Trace U U Trace I

Trace U S S S S U

Trace U OO U O U U O

Trace O UU O o UU o q o

T

T T T

T T T
F

T
F

T T
i
T T

i
i

i
i

{ } = =

{ }
= { } = =

= { } = ∑ = ∑

−

= =

{ } ,

( )

( )

α

β β

α

1

2 2

1 1

 (4)

so

    
µ

α α
µ

β

U

T T i
i

US
Trace O UU O q o

O( )
( )

( )=
{ }

=
∑

→=1 (5)

which is the definition of µ-factor for a set of SS.2

This equation can be rewritten as:
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In this equation, QS = STUUTS is the q-factor matrix
(diagonal elements are q-factors of original SS, off-di-
agonal elements are inter-product pseudo q-factors), ρ
= STS is the correlation between the original spectral
sensitivities.  The operation ρ–1 = (STS )–1 is a
decorrelation process, that is, it remove the correlation
between the set of spectral sensitivies, and obtain a
“pure” uncorrelated (orthonormal) SS to calculate the
goodness measure. Hence, we see that
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as a measure because spectral sensitivities with high
value of correlation
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for i ≠ j may have high q-factors but poor joint perfor-
mance. Ensuring that the spectral sensitivities O are
orthogonal removes the correlation effect
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for i ≠ j.

Evaluation of a Set of Hypothetical Spectral
Sensitivities with µ-Factor

Now we employ the aforementioned hypothetical spec-
tral sensitivities to evaluate their µ-factor. There are
three spectral sensitivities denoted as R, G and B with
peaks λ0 locating at 600–700 nm, 500–600 nm and 400–
500 nm by 10 nm individually. Considering their mu-
tual combinations, we have totally 113 = 1331 sets of
spectral sensitivities. We also vary their width 2w so as
to check its influence on the measure of goodness. We
let w changes from 10 nm to 100 nm by 10 nm, which
generates totally 10 × 1331 combinations to be verified.
We can obtain three peak positions of R, G and B with
maximal µ-factor among the 1331 indexed combinations
for each width. We found the maximal µ-factor locates
almost always at index = 50, that is, the corresponding
peak position of R spectral sensitivity function is at 600
nm, that of G spectral sensitivity function is at 540 nm,
and that of B spectral sensitivity function is at 450 nm
(Table I). This result is consistent with the properties
of q-factor of a series of spectral sensitivities. Three
spectral sensitivities with high q-factors own high µ-
factor if they are uncorrelated as possible as they can.
Some second smaller peaks give other combinations of
spectral sensitivities that have comparatively high µ-
factors, but these peaks are very close to the above three
principle peaks, for example, {610 nm, 530 nm, 460 nm}
etc.

As we noted above, µ-factor is the sum of q-factor of
orthogonal sensitivities. The width of the spectral sen-
sitivities affects their µ-factor. There exists an optimal
width for the maximum µ-factor when peak positions
are fixed. Very interestingly, here again (Fig. 5), the
optimal width w = 50 nm and corresponding µ-factor =
0.9779.

When the peak positions and widths of two spectral
sensitivities are fixed, and only one SS changes its peak
position, how does their µ-factor change? Because µ-fac-
tor is an extension of q-factor, the peak position should
be consistent with that of q-factor. Figure 6 shows that
this is correct. We let one SS change its λ0, say, 380–480
nm by 10 nm, while the other two fix their peak positions
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as we obtain the maximum µ-factor (540 nm, 600 nm).
These figures graphically describe the behavior of µ-fac-
tor of changing single SS just like that of q-factor. The
peak positions of SS with maximum µ-factor locate at
about λ0 = 450 nm, 530 ~ 540 nm, and 590 ~ 610 nm.

More Discussion of µ-Factor
It is expected that the color filters and its number

affect the accuracy of recording an original image. The
use of more than three filters in the recording pro-
cess is an alternative approach when three filters can-
not span the human visual space effectively (low
µ-factor) because of cost or manufacturing difficulty.
The following simulated example demonstrates how
a fourth filter dramatically improves the µ-factor of a
camera system (Fig. 7). The three hypothetical spec-
tral sensitivities have width 50 nm with peak posi-
tions 650 nm, 550 nm and 450 nm individually. Its
µ-factor is 0.742. We let the fourth hypothetical spec-
tral sensitivity changes peak positions from 400 nm

to 700 nm by 10 nm, and width from 10 nm to 100 nm
by 10 nm, there are 310 combinations. We find the
maximum µ-factor of the four-channel system is 0.973,
and the fourth filter has width of 60 nm and peak
position of 590 nm. The corresponding q-factors of the
four spectral sensitivities are 0.953, 0.982, 0.297 and
0.997 respectively.

Because µ-factor is not based on a perceptually uni-
form color space, such as L*a*b*, a high µ-factor doesn’t
always lead to a small L*a*b* error (Fig. 8). But the av-

TABLE I. The Peak Positions of Spectral Sensitivities with
Maximal µ-Factor at Different Width

Maximal Blue SS Green SS Red SS
Width (nm) µ-factor Peak (nm) Peak (nm) Peak (nm)

10 0.380 450 540 600
20 0.713 450 540 600
30 0.895 450 540 600
40 0.965 450 540 600
50 0.978 450 540 600
60 0.963 450 540 600
70 0.935 460 540 600
80 0.901 470 530 600
90 0.865 490 510 600

100 0.824 490 510 600
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erage L*a*b* error over an ensemble of reflectance is usu-
ally highly correlated with the µ-factor of the camera
system4 (Fig. 8). On the other hand, some research in-
dicates that the condition µ-factor ≈ 1 is a sufficient con-
dition but not a necessary one for color reproduction,7

therefore some color imaging devices with poor µ-factor
may yield a good color reproduction. Another issue of µ-
factor is that it doesn’t consider the measurement noise,
which always exists in real world and will contaminate
the camera output signal thus lead to a big color differ-
ence in recording process. And finally, with the devel-
opment of multi-spectral imaging system, a new
measure of goodness to evaluate its quality is desired.7

Conclusion
The metrics of goodness of spectral sensitivities includ-
ing Neugebauer ’s q-factor for single SS and Vora and co-
workers µ-factor for a set of SS were analyzed in this
study based on least-squares approach. Hypothetical
spectral sensitivities with peak wavelength and width
parameter varied were evaluated with these criteria. The
disadvantage of q-factor has been overcome by µ-factor.
The latter has the disadvantage of not considering prac-
tical issues such as measurement noise, and it is not
based on a perceptual uniform color space.    
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