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timum cmfs will predict that the integrated cone re-
sponses of a metameric pair are equal. A feature of the
optimization method is that the color difference in a
metamer pair can be optimized to 0 at a boundary con-
dition in the variation method, and the smoothness of
the modified cmfs results from the cost function of the
least mean square of modified values in the variation
method. The cost function of the variation method is
generalized by a Taylor expansion to consider the per-
ception of color differences by the human visual system.

In the experiments, metamer data sources were ob-
tained from four individuals. The visual experiment was
designed to perform a color match between a hard copy
card and an additive mixing device. The integrated cone
responses of a metameric pair are not equal when these
metamers are evaluated by the CIE cmfs because of the
difference between the CIE cmfs and those of the indi-
vidual observer. Using the proposed optimization method,
the color difference in the metamer data has been de-
creased to ∆E = 0 with the modified cmfs predicting the
cmfs of the individual observer. The experimental re-
sults demonstrate the validity of the proposed method.

Deriving Optimal Color-Matching Functions

Basic Algorithm
The tristimulus values X, Y, Z of an object-color stimu-

lus are given as follows:
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Introduction
The Commission Internationale de l’Eclairage (CIE) sys-
tem allows the specification of color matches for a stan-
dard observer using the color matching functions (cmfs).
The cmfs of the standard observer are the fundamental
basis of colorimetry. Studies performed by Guild1 (1931)
and Wright2 (1928-29) are central to the work of the CIE,
providing the foundation for the derivation of the CIE
1931 standard colorimetric observer. The CIE cmfs were
defined simply as an average of the functions of observ-
ers with normal color vision, and the standard colori-
metric observer was defined as a hypothetical one that
has the average cmfs so defined. Therefore, the cmfs of
real observers with normal color vision do not necessar-
ily agree exactly with those of the CIE standard colori-
metric observer’s.

This article describes the optimization of the cmfs of
an individual observer based on metameric pairs using
a variation method.3 This is a so much simplified method
for estimating rough and ready cmfs of an individual
observer in comparison with past experiments. The un-
derlying assumption for the optimization is that the op-
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where ρ(λ) is the spectral reflectance of the object, S(λ)
is the spectral power distribution of the illuminant, and

    x y zλ λ λ( ) ( ) ( ), ,  are cmfs of the CIE standard colorimetric
observer. The summation (Σ) is over the visible spec-
trum with a wavelength interval ∆λ . The product
ρ(λ)S(λ) defines the object-color stimulus.

Two objects with different spectral reflectance func-
tions, ρ(λ) and ρ’(λ), give rise to metamer stimuli when
illuminated by S(λ) if their corresponding tristimulus
values, X,Y,Z and X’,Y’,Z’, are equal as follows:
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The proposed method for optimizing the cmfs of an
individual observer using the variation method4–10 is pre-
sented below. The underlying assumption for the opti-
mization is that optimum cmfs will predict that the
integrated cone responses to a metameric pair are equal.
For convenience, symbols are defined as follows:
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Let
    
q ii

* , , ,λ( ) =( )1 2 3  be the modified cmfs with a varia-
tion term ∆qi(λ), (i = 1,2,3)
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Let ρr(λ), ρm(λ) be a spectral reflectance of a reference
data and that of a metamer data, respectively. The dif-
ference between the reference and the metamer object
color stimuli is as follows:

    ∆J S Sr mλ ρ λ λ ρ λ λ( ) = ( ) ( ) − ( ) ( ). (5)

The tristimulus values of ∆J(λ) related to qi
*(λ) are

then given by

    
Q J q ii i

* * , , , .= ( ) ⋅ ( )( ) =( )∆ λ λ 1 2 3 (6)

Constraints are imposed as follows on Eq. 6:

[Constraints on the Variation Method]

    
∆ ∆Q J q const given ii i i= ( ) ⋅ ( )( ) = ( ) =( )λ λ* , , , .1 2 3 (7)

[Cost Function of the Variation Method]

    
CF q cf q∆ ∆ ∆( ) = ( )( )∑ λ λ

λ
, (8)

where
cf(∆q(λ )) cost function for each λ . At ∆q  = 0 the

minimum,
CF(∆q): cost function for the entire wavelength

range.

[Constraint with Unknown Parameters of the
Variation Method]
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where
µi(i = 1,2,3): Lagrangian unknown parameters,

The cf function is expanded using a Taylor expansion
as
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and the following Lagrange (Eq. 11) function is derived.

[Lagrange Function of the Variation Method]
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f: Lagrange function of the variation method for each λ ,
F: Lagrange function of the variation method for all wavelengths,
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where
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A modified value ∆q is independent of q and, based on
Eq. 11, the following equation is derived:
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Equation 7 is converted as follows:

    
∆ ∆J q consti iλ λ( ) ⋅ ( )( ) = ′, (13)

where

    const const J qi i i′ = − ( ) ⋅ ( )( )∆ λ λ .

By eliminating ∆qi(λ), (i = 1,2,3) in Eqs. 12 and 13,
a linear equation of the parameters µ i, (i = 1,2,3) are
derived. By solving the equation for the parameters
µi, (i = 1,2,3) the ∆q value and the modified cmfs are
derived as shown in Eqs. 14 and 15.

    ∆q H q Vλ λ λ( ) = ( )( ) ( )− ( )2 1 1 , (14)

    
q q q ii i i

* , , ,λ λ λ( ) = ( ) + ( ) =( )∆ 1 2 3 (15)

The method derives the optimum solution over
the entire wavelength range (see Supplemental
Material).

Description of the Cost Function
The cost function of the variation method is derived

considering the CIE L*a*b* color space of the perception
of color differences by the human visual system.
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The cost function measures the CIE L*a*b* sensitiv-
ity depending on variations in the CIE XYZ cmfs as
shown in Eq. 17 where w (0< w) is a coefficient in the
cost function.

The first term cf1(∆q(λ)) in Eq. 17 is for the L*a*b* sen-
sitivity and the second term cf2(∆q(λ)) in Eq. 17 is for the
smoothness of the modified cmfs. Equation 17 is expanded
using the Taylor expansion as shown in Eq. 18.
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The Hessian matrix of the cost function is calculated
as shown in Eq. 19.

The first derivative of the cost function is as follows:
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Equations 19 and 20 are applied to the calculation of
Eq. 14.

The Hessian matrix (Eq. 19) is semipositive for any
q(λ), as shown in Characteristic 1 in the Supplemen-
tal Material, so the truncated cost function (Eq. 10) is
convex based on Theorems 1 and 2 in the Supplemen-
tal Material.

Experiments
Experimental Data Source

This section discusses the experimental setup and
data collection procedures.

Experiments—Shaw and Fairchild11,12

Shaw and Fairchild (1999) designed a visual experi-
ment to allow observers to perform visual color match-
ing between a neutral gray card of L* = 50 created with
a Fujix Pictrography 3000 color printer, and an ACS VCS
10 additive mixing device. The ACS VCS 10 consists of
seven colored discs, all rotating at high speed to stimu-
late an additive integral visual response. The propor-
tions of each colored disc are adjusted by an observer
using the controls to simulate the stimuli. The viewing
booth had both fluorescent daylight and incandescent
illumination to view the colors. The seven discs in the
ACS VCS 10 were white, red, green, blue, yellow, purple
and black. Independent control was allowed on any three
primaries at any one time using the control panel. The
goal was to generate a metameric match between the
stimuli and the three primaries. Of the five colored pri-
mary discs, three primaries were chosen: red, green and
blue (RGB).

The total number of observers was four. All observers
claimed to have normal color vision, but this was not
tested. The matching field was 8 cm × 9 cm, subtending
a visual angle of 7°. Observers were seated 75 cm from
the stimuli and asked to make an exact match to the

gray card using only the three primaries specified. When
a color match was achieved, a PhotoResearch PR650 was
used to measure the spectral radiance of the metamer
from the observer’s angle of view. This was considered
very important due to the angular properties of the col-
ored discs, whereby a color match was perceived as a
different color when viewed from a different angle. Each
observer was asked to repeat the experiment 10 times.

The precision and accuracy of the PhotoResearch was
not tested. A previous evaluation performed by Alfvin
and Fairchild13,14 indicated that the systematic and ran-
dom errors associated with the instrument were mini-
mal and acceptable for the purpose of this research.

Optimization of cmfs
In optimizing cmfs, the metamer data, above were em-

ployed. The experimental data were within a common
wavelength range of 400  nm-700  nm (in 5  nm steps).
The spectral data for each observer were averaged to
reduce experimental noise. In the experiments, the cmfs
of the CIE 1931 standard colorimetric observer were
used as the standard reference to derive the modified
cmfs optimized to an individual observer. The cost func-
tion described above was employed. The weighting co-
efficient was ω = 102.

Figures 1 through 4 show the modified cmfs for ob-
servers 1 through 4, respectively. In the optimization of
Figs. 1 through 4, the constraint of Eq. 7 was imposed
on the variation method and consti = 0, (i = 1,2,3) for ∆E
= 0. Figure 1 depicts almost the same cmfs as the CIE
1931 cmfs. In Fig. 2, except for the change in the wave-
length range from 550 nm – 700 nm in the modified  z λ( )
function, the modified cmfs are smooth and realistic. In
Fig. 3, although there is a non-negligible difference in
the wavelength range from 640 nm – 700 nm in the modi-
fied y λ( )  function, the modified cmfs are realistic. In
Fig. 4, the modified z λ( ) function is the same as the
CIE 1931 z λ( ), except for the slight difference in the
wavelength range from 660 nm – 700 nm. As for the
smoothness of the modified cmfs, the least mean square
does not necessarily ensure the continuity of the first-
order derivative (see Supplemental Material), al-
though it is a general constraint for smoothness.

Discussion
In general, the problem studied here has very large
dimensionality (61) in the wavelength range from 400
nm – 700  nm (in 5 nm steps). It is not easy to deter-
mine the optimal solution. In the proposed optimiza-



476  Journal of Imaging Science and Technology®             Matsushiro, et al.

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 z
1 

(λ
)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 y
 (

λ)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 x
 (

λ)

Figure 1c.     z( )λ

Figure 1b.     y( )λ

Figure 1a.

CIE 1931

Modified

CIE 1931

Modified

CIE 1931

Modified

    x( )λ



Optimizing Color-Matching Functions for Individual Observers Using a ... Vol. 45, No. 5, September/October 2001  477

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 z
1 

(λ
)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 y
 (

λ)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 x
 (

λ)

Figure 2c.     z( )λ

Figure 2b.     y( )λ

Figure 2a.     x( )λ

CIE 1931

Modified

CIE 1931

Modified

CIE 1931

Modified



478  Journal of Imaging Science and Technology®             Matsushiro, et al.

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 z
1 

(λ
)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 y
 (

λ)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 x
 (

λ)

Figure 3c.     z( )λ

Figure 3b.     y( )λ

Figure 3a.     x( )λ

CIE 1931

Modified

CIE 1931

Modified

CIE 1931

Modified



Optimizing Color-Matching Functions for Individual Observers Using a ... Vol. 45, No. 5, September/October 2001  479

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 z
1 

(λ
)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 y
 (

λ)

Wavelength (nm)

C
ol

or
-m

at
ch

in
g 

F
u

n
ct

io
n

 x
 (

λ)

Figure 4c.     z( )λ

Figure 4b.     y( )λ

Figure 4a.

CIE 1931

Modified

CIE 1931

Modified

CIE 1931

Modified

    x( )λ



480  Journal of Imaging Science and Technology®             Matsushiro, et al.

tion method, the problem is constrained by Eq. 7. The
linkage of all dimensions is described by linear equa-
tions of Eq. 7, so the optimization problem is replaced
by a linearly combined multidimensional problem that
has only partial differentials operating on the cost func-
tion about one parameter included in the solution
framework. The elimination of cross terms in partial
differentials makes the proposed method simple to
solve and successful.

In optimization problems, there is often difficulty in
distinguishing between experimental error and the op-
timization error. In the proposed optimization method,
∆E = 0 is certain and thus, the optimization error can
be neglected, and only experimental error is included
in the results. This technique can be repeated across a
number of metameric matches to obtain a good statisti-
cal estimate of an individual observer’s cmfs. The solu-
tion of the method has an unbiased property against
the cmfs of an individual observer based on expectations
(see Supplemental Material).

Conclusions
The optimization of the cmfs of individuals using a varia-
tion method has been described. In the variation method,
metamer data was employed as the source data. The
underlying assumption for the optimization is that the
optimum cmfs will predict that the integrated cone re-
sponses to a metameric pair are equal.

A feature of the optimization method is that the color
difference in a metamer pair can be optimized to 0 at a
boundary condition in the variation method, and the
smoothness of the modified cmfs results from the cost
function of the least mean square of modified cmfs val-
ues in the variation method. The cost function of the
variation method has been generalized using a Taylor
expansion to consider the perception of color differences
by the human visual system.

This work has utilized experimental data from previ-
ous visual experimental data by Shaw and Fairchild
(1999). The modified cmfs for observer 1 were almost
the same as the CIE 1931 cmfs. For observer 2, except

for the fluctuation in the wavelength range from
550 nm – 700 nm in the modified   z λ( )  function, the
modified cmfs were smooth and realistic. For observer
3, although there was a non-negligible difference in the
wavelength range of 640 nm – 700 nm in the modified

  y λ( )  function, the modified cmfs were realistic. For ob-
server 4, the modified   z λ( )  function was the same as
the CIE 1931   z λ( ) , except for a slight difference in the
wavelength range from 660 nm – 700 nm. As for the
smoothness of the modified cmfs, the least mean square
does not necessarily ensure the continuity of the first-
order derivative (see Supplemental Material), al-
though it is a general constraint for smoothness.    
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