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In these first two categories, the gamut mapping is a
pointwise operation from an input point to an output point
in an appropriate (usually perceptual) 3D color space. One
of the fundamental attributes of pointwise operations is
that they do not take spatial neighborhood effects into
account. In certain situations, these neighborhood effects
can be of high importance. For example, consider an im-
age composed on the computer display (CRT), with black
text against a blue background. The text is easily distin-
guished against the background. However, when both are
mapped to a printer’s gamut with an algorithm that maps
out-of-gamut colors to the nearest surface color, the CRT
blue maps to a much darker blue in the printer’s gamut.
On the other hand, the CRT black maps to a lighter printer
black. This is illustrated in Fig. 1, where the dotted and
solid gamuts represent the CRT and printer respectively,
and the nearest point mapping is labeled GM1. As a re-
sult of this gamut mapping, much of the luminance dis-
tinction is lost between text and background, and the
legibility of the text is diminished. A comparison of lumi-
nance profiles of the input and resulting printed images
is shown in Fig. 2. Note that such a gamut mapping func-
tion is considered optimal when rendering large areas of
black or blue in isolation, so that the problem is only en-
countered when the two regions are juxtaposed. One can
alleviate this problem by adopting a different pointwise
gamut-mapping algorithm that preserves luminance (la-
beled GM2 in Fig. 1). Now the visibility of the text will
greatly improve, but luminance preservation usually
comes at the cost of significant loss in chroma, and this
will likely be unacceptable in a different image or even
different image area. Hence, all pointwise algorithms are
heavily constrained by such trade-offs, making it diffi-
cult to develop a common algorithm that achieves high
quality for a large variety of images and gamuts.

The third category of gamut mapping algorithms,
which is the focus of this article, consists of algorithms
that take into account the spatial characteristics in ad-

Introduction
Gamut mapping is an important problem in color man-
agement, and has been one of the most active areas of
color research.1–12 The optimal gamut mapping strategy
for a given application depends on input and output gam-
uts, image content, user intent and preference. The de-
sign of the optimal technique thus involves a suitable
trade-off among image attributes such as contrast, lu-
minance detail, vividness, and smoothness. A plethora
of gamut mapping algorithms has been proposed in the
literature, optimized for different applications, and with
different trade-offs. An overview of the work in this area
along with an extensive list of references, can be found
in the manuscripts by Morovic1 and Braun.2

One might classify gamut-mapping algorithms into
three basic categories. The first category comprises de-
vice dependent algorithms, wherein the gamut mapping
is a function of the input (usually computer display) and
output (usually printer) gamuts. These algorithms are
independent of input image content. Most well-known
gamut mapping algorithms fall in this category.1,3–6

The second category consists of image dependent al-
gorithms, wherein the gamut mapping is a function of
the input image statistics, and of the output device
gamut. These algorithms are generally expected to per-
form better than image independent algorithms because
they can adapt to image content2,7,8 at added computa-
tional cost.
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dition to color characteristics of the image. We believe
not many algorithms exist in this class. With such algo-
rithms, two pixels of the same color in an input image
might map to different colors in the output image, de-
pending on the spatial characteristics in their respec-
tive spatial neighborhood. A few researchers have
proposed techniques in this category. Meyer and Barth9

used homomorphic filtering to separate low and high
spatial frequency channels, and then to apply global
dynamic range compression only to the low frequency
channel. A potential problem with such approaches that
separate spatial from color transformations is that they
are susceptible to noise amplification. Kasson10 proposed
a blending of two gamut mapping algorithms, one pre-
serving luminance and one preserving chrominance. The
blending is a function of distance from gamut, and spa-
tial frequency, with luminance being preserved at high
frequencies, and chrominance preserved at low frequen-
cies. McCann11 used the principles of Retinex theory to
develop an iterative gamut mapping which attempts to
preserve ratios of colors at adjacent pixels.

In this article, we propose a spatial gamut mapping
technique, which is intended to mitigate the trade-off
between luminance and chrominance preservation by in-
corporating the pixel neighborhood into the mapping.
This article is a more complete description of a recent
conference proceeding.12

This article is organized as follows. In the next sec-
tion, the spatial gamut-mapping algorithm is described.
In the following section, a psychophysical experiment is
presented that evaluates the spatial algorithm in com-
parison to standard pointwise techniques. This is fol-
lowed by an analysis of the results, and concluding
remarks.

Gamut Mapping with Spatial Feedback
In this section, we describe a spatially dependent

gamut mapping algorithm based on the principle that it
is more important to preserve luminance at high spatial
frequencies, while it is generally desirable to preserve
chrominance at low spatial frequencies.13 Our proposed
method tightly couples the spatial and color transfor-
mations in a corrective feedback mechanism, resulting
in a robust framework for gamut mapping.

In the following discussion, the term “luminance” is
used generically encompassing the strict definitions of
luminance, i.e., the Y component in XYZ, and lightness,
i.e., the L* component in CIELAB. The chrominance com-
ponents C1 and C2 are likewise a generic representation

of opponent color signals. Gamut mapping operations
take place in such a device independent luminance–
chrominance space.

A block diagram of the proposed algorithm is shown
in Fig. 3. Let us define G1 as a pointwise gamut clipping
algorithm that emphasizes preservation of chroma over
luminance. Let G2 be another pointwise gamut clip-
ping algorithm that emphasizes preservation of lumi-
nance over chroma. First G1 is applied to the input
colors, and an error image ∆Y is computed between the
luminances of the input signal Y and gamut mapped
signal Y'. A spatial filter F is applied to the error im-
age, resulting in image ∆Y'. Here, F has high-pass
frequency characteristics, i.e., it preserves the high spa-
tial frequencies while suppressing the low spatial fre-
quency components of the signal ∆Y. The error image,
which comprises only the high frequency errors intro-
duced by gamut mapping, is then added back to the
gamut mapped signal Y' to yield signal Y''. The feed-
back step may move some pixel colors (Y'' C1' C2') out of
the gamut, and hence, a second gamut mapping opera-
tion G2 is applied to limit all colors to the intended
gamut. The proposed algorithm exhibits the following
characteristics:
• If a region in the image is completely within the

gamut, then G1 is an identity function; ∆Y = ∆Y' = 0;
and G2 is an identity function. Hence this region of
the image is unaltered.

• If a region in the image is outside the gamut, and is
smoothly varying (i.e. of low frequency), G1 will re-
strict colors to the gamut; ∆Y will be a low frequency
signal, therefore its high frequency component, ∆Y’
will be close to zero; and G2 will be essentially an
identity function. Thus, the overall mapping in this
region is predominantly G1.

• If a region in the image is outside the gamut, and
contains high frequency detail, then ∆Y will contain
some high frequency components; these components
will be extracted by the filter as ∆Y'; the feedback
will move colors out of gamut; and the second gamut
mapping G2 will take effect. Hence in this case, the
overall mapping is predominantly G2.

In summary, the proposed scheme leads to the preser-
vation of the characteristics of G1 in low spatial frequen-
cies and those of G2 in high spatial frequencies. Hence
the strengths of both algorithms are exploited in the ap-
propriate spatial frequency bands, and the trade-offs
that one must face with pointwise algorithms are now

Figure 1. Mapping of black text and blue background from CRT
gamut (dashed line) to print gamut (solid).

Figure 2. Spatial luminance profile of the gamut mapping
shown in Fig. 1.
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significantly mitigated. All the operations up to this
point constitute the overall spatial gamut-mapping al-
gorithm, performed in a device independent luminance–
chrominance space. The final step is to convert device
independent color to device dependent color (i.e., CMYK)
via a printer color correction transform.14 To reduce the
overall computational complexity of the algorithm, G1

can be implemented using a 3-D lookup table, and G2

can be concatenated with the printer color correction
transform from CIE color to CMYK.

The design of G1 and G2, and the spatial filter F can
depend on many factors, including global and local im-
age characteristics, device characteristics, rendering
intent and preference. We will describe an initial imple-
mentation in this article, recognizing that more research
will be needed to further optimize the algorithm para-
meters. For this article, the gamut mapping G1 was cho-
sen to map out-of-gamut colors to the nearest surface
point of the same hue. This mapping generally favors
preservation of chroma over luminance. For G2, the cusp
algorithm was chosen where out-of-gamut colors are
mapped to the surface in a direction towards a neutral
point whose luminance is that of the cusp color.1 (The
cusp is defined as the point of maximum chroma in a
given hue slice.) Figure 4 is an illustration of the cusp
algorithm for the input and output gamuts actually used
in the experiments. This algorithm tends to emphasize

luminance over chroma preservation, especially for
points close to the gamut surface. Another alternative
for G2 is a mapping that clips out-of-gamut colors to sur-
face colors of the same luminance. In our initial experi-
ments, we found that this yielded results very similar
to cusp clipping when used in the framework of Fig. 3.
Moreover, one may wish, for cost or performance consid-
erations, to disable the spatial component of the gamut
mapping (namely G1 and F in Fig. 3), and apply only G2

for gamut mapping. We found that in this case, cusp clip-
ping does not desaturate the image as much as constant-
luminance clipping, and is hence preferable. For these
reasons, cusp clipping was finally chosen for G2.

Both G1 and G2 leave in-gamut colors unaltered. While
the chosen G1 yields high-chroma reproductions, it is sus-
ceptible to the “lightning rod effect”, where-in several
image colors map to one point, especially near black and
at the gamut cusp. In the proposed technique, if these
image colors are from a high spatial frequency region,
the filtered feedback will redistribute their luminance
values, and G2 will retain luminance distinction, thus
eliminating the problem.

Figure 5 demonstrates what happens at various
points in the algorithm for the example of blue text on
black background (see Figs. 1 and 2). Adding the fil-
tered error ∆Y' to the gamut mapped luminance Y''
yields the signal Y'', which retains the characteristics
of the original input image Y near the edge while re-
taining the characteristics of the gamut mapped image
Y'' in smooth regions (see Fig. 2). This signal, in com-
bination with the chrominance signals C1' and C2' must
be remapped to the gamut surface with the transform
G2, to yield a luminance profile Y''' which may be some-
what different from Y''. In this example, Y'' contains
luminances that are below the minimum luminance
achievable by the printer, hence these values get
clipped. However, even with this limitation, the algo-
rithm restores the edge information that was dimin-
ished in the pointwise algorithm (shown as a dashed
line in the rightmost plot in Fig. 5). The extent and
spatial footprint of the enhancement is dependent di-
rectly on the characteristics of the high-pass filter F.
In this article, we have chosen a simple linear filter
whose operation at pixel i is given by:

    

∆ ∆ ∆Y k Y
N

Yi i j
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2 , (1)

where, k is the filter gain, N is the filter size, and S is
an N × N neighborhood around pixel i. Eq. 1 says that
the filter is subtracting a low frequency component (i.e.,
the N × N neighborhood average) from the signal, and
thus retaining the remaining high frequency compo-

Figure 3. Block diagram of proposed spatial gamut mapping algorithm.

Figure 4. Cusp gamut clipping algorithm shown at a fixed hue
angle (CIELAB H = 40). C is the cusp at the given hue plane. F
is the neutral focal point for all gamut mapping vectors in the
given hue plane. The input gamut is that of a Xerox
DocuColor12 xerographic printer, and the output gamut is that
of a Xerox Xpress inkjet printer.
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nents. With these characteristics, the overall gamut
mapping, with spatially filtered feedback, will approxi-
mately reproduce the variations in Y at high spatial fre-
quencies, while reducing to the pointwise mapping G1

at low spatial frequencies.
As might be expected, the filter gain k and filter size

N will dictate the outcome and efficacy of this spatial
gamut mapping technique. With a high gain in filter F,
the luminance Y at the regions of high spatial frequencies
is preserved or even enhanced. However, this comes at the
cost of strongly distorting the chrominances at those re-
gions. If a low filter gain is used, the effect of luminance
preserving at the regions of high spatial frequencies
might be unnoticeable. The filter size N determines the
cut-off frequency between high and low spatial frequen-
cies as well as the spatial extent of the filtering effect.
The optimal N generally depends on the image type. For
images with soft or noisy edges, e.g. scanned pictorials,
a relatively large filter size, such as N = 15 (at 600 dpi),
is required for noticeable improvement. On the other
hand, for images that have strong edges and low noise,
e.g. computer generated business graphics, a large fil-
ter size produces distinct halo effects around edges;
hence a smaller filter size, such as N = 3 (at 600 dpi), is
preferable. In general, if the image type is known a
priori, the algorithm should use this information to
switch between the small and large filter sizes. If this is
not the case, an adaptive scheme can be applied to ac-
complish the selection of the filter size. Preliminary work
on adaptive filtering was described in a previous article.12

The main focus of this manuscript, however, is spatial
gamut mapping of scanned pictorial imagery. From our
experiments on a Xerox DocuColor12 xerographic CMYK
printer with 600 dpi resolution, a filter gain k = 1 and a
filter size N = 15 was empirically chosen. Automatic opti-
mization of k and N as a function of image type, image
resolution, etc. is an area of ongoing research.

Psychophysical Evaluation of Spatial Gamut
Mapping
The ultimate goal of gamut mapping is to create an out-
put image that is a visually preferred rendition of the
original. It is important, thus, to ensure that human
observers evaluate the performance of the gamut map-
ping technique. To this end, a visual experiment was
conducted to compare the spatial gamut mapping tech-
nique with a selected set of previously published algo-
rithms on a set of pictorial images.

Description of the Algorithms
The spatial gamut mapping was compared with two

standard pointwise techniques, which were: (i) clipping
to the nearest point on the gamut surface while preserv-
ing hue; and (ii) nonlinear L* compression using the in-

verse-gamma-inverse (IGI) technique4 followed by cusp
clipping. These algorithms have been reported as suc-
cessful pointwise techniques in previous experiments.1,4

The IGI mapping is described by the equation:

L*out = 100(1 – (1 – L*in/100)γ), (2)

where γ is chosen to map a certain percentage of the in-
put L* dynamic range to the same percentage of the out-
put L* dynamic range. For our experiments, the
percentage chosen was 95%. Figure 6 is a plot of the IGI
function for γ = 1.25. In general, IGI brings a fraction of
the dark colors into the gamut, and preserves or enhances
mid-tone contrast. The reader is referred to the work by
Braun et al.4 for further details on this function.

Because the spatial gamut mapping is an extension of
the pointwise gamut mapping, the proposed method can
be used in conjunction with common pointwise methods.
Thus, two versions of the spatial gamut mapping method
were tested. The first version was exactly as depicted in
Fig. 3, with the operations G1, G2, and F implemented
as described in the previous section. Because the im-
ages were all pictorials, the filter size was chosen to be
N = 15. CIELAB was used as the luminance–chromi-
nance space. Because G1 is identical to nearest-point
mapping (NP), this first version is in effect a spatial
extension of NP. In the second version, IGI L* compres-
sion was applied in addition to the spatial operation.
There are several possible locations in Fig. 3 where L*
compression can be applied. These are shown in Fig. 7
as dashed gray blocks. The compression can be applied
as a preprocessor before the proposed algorithm (i.e., L1).
Alternatively it can be applied just prior to G1 (i.e., L2),
in which case its effect is included in the error image
calculation. Finally, it can be applied just prior to G2

(i.e., L3). The second alternative can lead to potentially
undesirable interactions between L* compression of in-
gamut pixel colors and the spatial filter F. Intuitively,
the third alternative is unappealing since the spatial
feedback is applied with no knowledge of a subsequent
global color adjustment (i.e., IGI). Hence, the first alter-
native was chosen, i.e., IGI was applied at location L1 as
a global preprocessing step, followed by spatial gamut
mapping, which is a correction that is local in both spa-
tial and color coordinates.

For convenience, we adopt the following symbols for
the four algorithms: NP, IGI_CUSP, SGM, IGI_SGM.
Table I lists the components of the four algorithms with
respect to the block diagram of Fig. 3.

Stimuli
Five pictorial scenes were used, whose grayscale ver-

sions are shown in Fig. 8. These scenes represent a broad

Figure 5. Spatial luminance profile of black text and blue background of Figs. 1 and 2 at the various stages in the proposed
algorithm.
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range of pictorial imagery, and include smooth and tex-
tured regions, flesh tones, pastels, neutrals, highlights,
shadows, and saturated colors of many different hues.
For each scene, the original and the four gamut-mapped
versions were printed on a Xerox DocuColor12 printer.
The prints were of size 5” × 7”. The printer was cali-
brated for matching under D50 illuminant, and the im-
ages were displayed in a light booth under D50
illuminant. The illumination level within the booth was
2300 lux. The viewing distance was approximately 20”.

All ambient illumination in the room was turned off.
The gamut-mapped versions were restricted to a smaller
gamut of a Xerox Xpress inkjet printer. By using the
same printer for original and gamut-mapped versions,
cross-printer and cross-media problems such as
metamerism could be avoided.

Experimental Procedure
A total of 18 observers participated in the visual experi-
ments. Among these, 11 were experts and 7 were non-
experts in terms of experience in color imaging. All
observers reported normal color vision.

Two psychophysical experiments were conducted. One
used visual preference and the other used accuracy of re-
production, as the quality criterion. The technique of pair-
wise comparison was used in both experiments. In the
preference task, the subject was presented with a pair of
images corresponding to two gamut-mapping algorithms,
and asked to select the most preferred image. This was
repeated for every possible pair of images, for each of the

Figure 6. Plot of the inverse-gamma-inverse (IGI) function for γ = 1.25. (The L* values are scaled to occupy the range 0–255.)

Figure 7. Block diagram of spatial gamut mapping algorithm showing the various alternatives for L* compression, L1, L2, L3.

TABLE I. Components of the Different Gamut Mapping
Methods Used in the Psychophysical Experiments

L* compression G1 Filter Feedback G2

NP None Nearest Point None None
IGI_CUSP IGI None None Cusp

SGM None Nearest Point High-Pass Cusp
IGI_SGM IGI Nearest Point High-Pass Cusp

Figure 8. Grayscale versions of images used in psychophysical experiment.
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five scenes. In the reproduction task, the original image
was presented as a reference, and the subject was asked
to select, from a given pair of images, the one that was
the more accurate reproduction of the reference.

Data Analysis Techniques
The direct outcome of a pairwise comparison experi-

ment is the probability matrix     
ˆ ( )P i j→  whose (i,j) entry

denotes the fraction of times that subjects select an im-
age processed using algorithm i over one processed us-
ing algorithm j. That is,     

ˆ ( )P i j→  is the estimated
probability that algorithm i is chosen over algorithm j:

    
ˆ ( )P i j→ =

    

The number of occurrences that algorithm  is preferred over 
The total number of comparisons that are made between algorithms  and 

i j
i j

The estimated probability matrix provides a first-
order observation about the performance of each method
compared with every other method, a pair at a time. How-
ever, it does not directly provide an ordering of prefer-
ence for all four algorithms. Even if a rank ordering is
possible, it does not provide information about how much
better or worse one method is compared to the others.
To further analyze the psychophysical results, models
such as Thurstone’s law of comparative judgement,15,16

or the Bradley–Terry analysis17,18 can be applied to gen-
erate preference scales from the probability matrices.
These preference scales assign a score to each algorithm
that indicates its performance relative to the other al-
gorithms. The differences between the aforementioned
two models are in the form of their underlying probabil-
ity distribution functions (Thurstone uses a cumulative
Gaussian function, while Bradley–Terry uses a logistic
function), and the method of estimating the preference
scales (Thurstone uses least-squares estimates, while
Bradley–Terry uses maximum-likelihood estimates). In
the authors’ experience, the outputs of these models are
quite similar; however, the Bradley–Terry formulation
has been more fully developed from a statistical view-
point, and offers hypothesis testing and estimates for
confidence intervals. Hence, we adopted that model to
analyze our experimental data. For a detailed descrip-
tion of the Bradley–Terry model, and comparisons with
the Thurstone model, see Ref 18.

Results and Discussions
For illustration purposes, Color Plate 2 (p. 482) shows
the original and four gamut-mapped reproductions for one
of the scenes, “macaws”, used in the experiment. In order
to fit all the images onto one figure for easy comparison,
a small interesting region has been cropped from this
scene. It must be noted that additional processing to pre-
pare prints for this journal may result in some loss in
color accuracy; however, it is hoped that the salient points
about the algorithms will be retained. First, a compari-
son of images (A) and (B) shows that shadow detail around
the beak, and high-chroma detail in the red feathers have
been eliminated by nearest point clipping (NP). IGI L*
compression in image (C) has overall lightened the im-
age. This is effective in bringing out the shadow detail. It
also restored high-chroma detail, but did so at the ex-
pense of an overall loss in chroma. Spatial gamut map-
ping in image (D) is a spatial extension of (B); it is easily
seen that much of the high-chroma detail was restored
without a substantial sacrifice in chroma. A combination
of IGI compression and spatial gamut mapping in image
(E) shows the benefit of both components, i.e., restora-

tion of shadow detail around the beak, as well as resto-
ration of high-chroma detail in the feathers.

Results from the Preference Experiment
The probability matrices for the preference experiment

are listed in Table II. From Table II(a)−(c), it can be seen
that the columns labeled as “IGI_SGM” have all entries
that are substantially greater than 0.5 for both the ex-
pert and non-expert groups. Because a tie in a pair-wise
comparison has probability 0.5, IGI_SGM is a clear win-
ner under the preference criterion when compared to the
other three methods independently. The results in Table
II also indicate that NP is the worst method among all
the four techniques.

The Bradley–Terry scales, calculated from data in
Table II, and their 95% confidence intervals are shown
in Fig. 9(a) (see Ref. 18 for details). From this figure, we
see that IGI_SGM is the most preferred method, while
NP is the least preferred. This is in agreement with the
probability matrix in Table II. In comparing NP with
SGM, and IGI_CUSP with IGI_SGM respectively, we see
that introduction of the spatial mapping step consis-
tently results in an improvement. Also, respective com-
parisons of NP with IGI_CUSP and SGM with IGI_SGM
suggest that IGI compression tends to improve prefer-
ence scores. This is probably because the L* compres-
sion tends to lighten the images, an effect that is
generally desirable in gamut mapping.19 A combination
of IGI and spatial mapping tends to inherit the advan-
tages of both approaches, thus yielding the highest pref-
erence score. Finally, both expert and non-expert groups
yield very similar trends.

Results from the Reproduction Experiment
The probability matrix for the reproduction experi-

ment is given in Table III. From Table III(b) it can be
seen that the column labeled as “SGM” has all entries
substantially greater than 0.5. That is, for the experts,

TABLE II. Probability Matrix from Preference Experiment: (a)
All Observers; (b) Only Expert Observers; (c) Only Non-Ex-
pert Observers. An Entry in the i-th Column and j-th Row is
the Fraction of Times an Observer Picked Algorithm i Over
Algorithm j.

(a)

NP IGI_CUSP SGM IGI_SGM

NP –– 0.71 0.63 0.76
IGI_CUSP 0.29 –– 0.49 0.62

SGM 0.31 0.51 –– 0.71
IGI_SGM 0.24 0.38 0.29 ––

(b)

NP IGI_CUSP SGM IGI_SGM

NP –– 0.75 0.67 0.75
IGI_CUSP 0.25 –– 0.49 0.67

SGM 0.33 0.51 –– 0.73
IGI_SGM 0.25 0.33 0.27 ––

(c)

NP IGI_CUSP SGM IGI_SGM

NP –– 0.66 0.71 0.77
IGI_CUSP 0.34 –– 0.49 0.54

SGM 0.29 0.51 –– 0.69
IGI_SGM 0.23 0.46 0.31 ––
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SGM is a clear winner under the reproduction criterion.
No method is clearly the worst technique. For non-ex-
perts, the results presented in Table III(c) are inconclu-
sive. According to Table III(c), “IGI_SGM” is the best;
and the “NP” is the worst. However, the “IGI_SGM” is
only slightly better than “NP” with the probability of
0.51. This difference could be simply due to noise, which
is inevitably present in psychophysical data.

Looking at the Bradley–Terry scores in Fig. 9, we see
that SGM outperforms the other algorithms. This trend
is even stronger among the expert observers. The dif-
ferences among the remaining three algorithms are not
statistically significant. It appears that the expert group
paid careful attention to fine image detail, which was
successfully restored by SGM. For the non-experts, all
four reproductions were essentially the same. With the
feedback we received from some of the observers, we
conclude that this trend is probably caused by the fact
that all the reproductions were visually so different from
the original reference image that casual observers could
not distinguish among them. Generally speaking, the
spatial algorithms performed better than their pointwise
counterparts because they effectively retained detail and
edge information in shadows and high-chroma regions
that is often lost with standard techniques. L* compres-
sion resulted in improved performance in the preference
experiments, presumably due to an increase in perceived
overall lightness, colorfulness, and contrast of the im-
ages. However, this was not the case in the reproduc-
tion experiment, presumably because the color changes
just mentioned would result in a less accurate match to
the original image.

Conclusions
We have presented a gamut-mapping algorithm that
takes into account spatial characteristics of the image.
This feature eliminates some of the compromises neces-
sitated by standard pointwise algorithms. By closely cou-

pling the spatial and color transformations in a correc-
tive feedback mechanism, our approach does not suffer
from the noise amplification problems that can arise when
the two transformations are applied separately. Psycho-
physical experiments indicate that the proposed algo-
rithm outperforms standard pointwise gamut mapping
methods for pictorial images. Because the spatial algo-
rithm is an extension of pointwise mappings, it will need
to be continually evolved as improved pointwise meth-
ods are developed.

We believe that with some extensions, the algorithm
will be equally effective for business graphics images.
For example, while we have used high frequency lumi-
nance preservation as the criterion for spatial feedback,
other criteria such as saturation or purity may be bet-
ter suited for graphics imagery. Another important ex-
tension of this work is the adaptive optimization of the
spatial filter for different image characteristics. Finally,
while our method is likely to achieve results that are
qualitatively similar to that obtained by Kasson and
McCann, we believe our algorithm requires a simpler
implementation and fewer computations than either of
these approaches.    
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