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Because many types of electronic imaging devices are now available, cross-media color reproduction technology has received
widespread attention due to the need to provide accurate color stimuli for different devices. In the case of cross-media color
reproduction between a monitor and a printer, RGB has to be converted into a device-independent color space in order to trans-
late the color information between the two devices. Thereafter, gamut mapping is used to compensate for any gamut mismatch
and device-independent colors have to be re-converted into output colors such as CMY control values for printing. For color
conversion between device colors and device-independent colors, empirical representation using sample measurements is cur-
rently widely utilized. In the case of the printer, color samples are uniformly selected in the colorant space, printed as color
patches, and then measured. However, because these color samples are not evenly distributed inside the printer gamut, the color
conversion error is increased. Accordingly, this article introduces a color-sampling algorithm for a printer to reduce the error in
color conversion, and the performance is analyzed via color conversion experiments using three conversion methods, regression,

neural network, and interpolation.
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Introduction

Many types of electronic imaging devices are currently
available, including color cathode ray tube (CRT) de-
vices, ink jet printers, offset printing devices, thermal
transfer printers, and all of these devices utilize device-
dependent color spaces for color specification. However,
device-dependent color spaces do not relate to an objec-
tive definition of color or human color perception. There-
fore, CIE developed device-independent color spaces to
give a quantitative measure for all colors that is not
dependent on the imaging device. As a result, the pro-
duction of color consistency between various devices,
that is, the concept of device-independent color repro-
duction, has received widespread attention. Device-in-
dependent color reproduction requires a color conversion
between device colors and device-independent colors,
specified by the standard color space like the CIEL*a*b*
color system to achieve color consistency.

Color reproduction on a CRT monitor is based on an
addictive mixture of three primaries, for which the color
space conversion is usually performed with a 1-dimen-
sional nonlinear mapping and matrix transformation. In
contrast, color reproduction in a printer is based on a
subtractive mixture of either three primaries, Cyan (C),
Magenta (M), and Yellow (Y), or four with the inclusion
of Black (K). However, the color stimulus generated on
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paper is usually quite difficult to predict when only based
on amounts of ink for these primaries. In other words,
because of the complicated nonlinear relationship be-
tween the device-dependent input and the device-inde-
pendent output signals of a printer, it is difficult to control
the CMYK color signals in an 1-dimensional nonlinear
mapping followed by multiplication with a matrix.
Several methods have been proposed for estimating
the amounts of primary inks necessary to produce a de-
sired color stimulus. These include an analytical method
using the Neugebauer equations,' the polynomial regres-
sion model,?? 3-dimensional interpolation using a look-
up table(LUT),%1° and neural network methods.!-3 The
analytical model involves a prediction that uses several
device measurements, however, this method suffers from
an inevitable discrepancy between printer outputs be-
cause the analytical methods are not accurate enough
due to the many disturbance elements in real printer
systems. In the polynomial regression method, a sys-
tem is assumed to be a black box and the parameters
are obtained from the input-output relationships.
Three-dimensional interpolation creates a data table of
measured color values and then interpolates this table
to determine the input signal for generating a desired
color output. Neural network methods model the map-
ping between the printer color signal and the output
color stimulus values using pre-determined weighting
factors. When compared to the analytical method using
Neugebauer equations, the regression, neural network,
and LUT conversion methods all produce a high accu-
racy in color conversion. In these methods, a device is
regarded as an unknown static system, and its input—
output relationship is modeled using input values and
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the corresponding measured values of color patches.
Accordingly, the selection of color samples is very im-
portant to reduce the estimation error. For example, if
the size of the color samples is small, a color discrep-
ancy will inevitably occur, plus if the distribution of the
color samples is not uniform, the deviation of the esti-
mation error will also increase.

In the conventional approach for printers, color
samples are uniformly selected in a colorant space.
Through printing the selected color control signals, color
patches are then generated and measured to produce
the corresponding output signals in terms of CIEL*a*b*.
However, in the case of conventional uniform sampling
in CMY colorant space, there is a very non-uniform dis-
tribution of the color samples in CIEL*a*b* space, re-
quired for making decisions on the best color compromise
for device-dependent color reproduction, that concen-
trates on the low lightness axis due to a dot-overlap and
dot gain. Therefore, for the effective modeling of a
printer system, uniform color samples in CIEL*a*b*
space are required that will fit a printer gamut.

To model a printer gamut, the gamut boundary needs
be calculated. In this study, the printer gamut is deter-
mined using 3 primaries, 3 secondaries, and black. Next
the initial sample points are uniformly distributed among
grid points of divided cubes in CIEL*a*b* space. There-
after, a fixed size of uniform sample points is generated
from the initial sample points by removing the outside
grid points. However, although these uniform sample
points represent uniform position information in a
CIEL*a*b* printer gamut, the corresponding input driv-
ing signals of CMY must also be calculated to generate
real uniform color sample patches. A multi-layered
perceptron' with a 3—-100-3 structure is utilized to esti-
mate the CMY control signals of the uniform sample
points. Finally, the CMY values for the uniform sample
points are printed and measured using a colorimeter, and
these input—output pairs of gamut-based color samples
are then used to model the printer system.

Determination of Color Samples Based on
Printer Gamut

A color output device can be represented as a mapping
function between a set of digital control values and col-
ors specified in a device-independent color space. Fig-
ures 1(b) and 1(c) show the color specifications in
CIEL*a*b* space for digital control values of Fig. 1(a),
which represents uniform 9 x 9 x 9 color samples in RGB
and CMY space, respectively. As shown in Fig. 1b and
lc, the monitor and printer output colors relative to
uniform control values are not uniform in CIEL*a*b*
space and, in particular, the printer colors are strongly
concentrated in the low lightness region.

In an ink jet printer, the shape of printed ink drop-
lets is almost circular. Accordingly, these dots have to
be overlapped in order to print over the entire area of
the printing material. However, printed dots have ad-
ditional dot growth problem referred to as dot gain de-
pending on ink, paper grade and viewing conditions.
There are two types of dot gain. One is mechanical dot
gain, which is a physical enlargement of the printed dot,
and the other is optical dot gain, which is an apparent
visual enlargement due to an interaction between light
and the paper substrate in the vicinity of the dot.!> These
facts cause lightness reduction and makes reproduced
colors much darker than they should be. Therefore, in
order to model a printer gamut effectively, it is impor-
tant to select color samples that are uniformly distrib-
uted throughout the entire printer gamut.
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Figure 1. Uniform digital control values of printer and moni-
tor and their corresponding specifications in CIEL*a*b* space;
(a) is uniformly sampled monitor and printer colors in RGB
and CMY space, respectively, (b) is measured printer outputs
in terms of CIEL*a*b*, and (c¢) is measured monitor outputs
in terms of CIEL*a*b*.
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Figure 2. Gamut volume represented by primary colors.

Determination of Gamut Volume

The gamut volume of a printer can be assessed differ-
ently according to the dot allocation method used in the
dithering process. However, in the current approach a
printer is assumed to be a static system and its gamut
is estimated using the fixed halftoning method.

Figure 2 shows the gamut volume of a printer assessed
using C, M, Y, R, G, B, and K primary colors and the
halftone pattern of a blue noise mask.!® For each primary
color, 256 color patches were generated and their repro-
duced colors were then measured with a colorimeter to
obtain the corresponding CIEL*a*b* specifications.

Allotment of Initial Sample Points

After determining the gamut boundary, the initial
sample points are uniformly allotted in the gamut to
model the gamut volume. For uniform sampling in a
CIEL*a*b* printer gamut, the gamut volume is divided
into a set of cubes. Figure 3 shows the divided sub-cubes
and their vertices in a CIEL*a*b* printer gamut. In this
figure, the lightness distribution is from 28.4179 to 93.6327
and the hue range is from —53.7799 to 75.5809 and from
-52.9612 to 86.2676 for a* and b*, respectively. These
values were obtained based on gamut measurements
with primary colors of Fig. 2 and utilized to limit the
gamut range when allotting the initial sample points.

As the size of the cubes decreases, a detailed gamut
representation becomes possible. However, large-sized
samples require a lot of time in color space conversion.
In this study, the side length of each cube was arbitrary
set at 7.0921, thereby dividing the lightness into 14 lev-
els with a total of 3049 vertices.

Selection of Sample Points Included In Printer Gamut

For uniform sampling, the initial sample points were
distributed among the vertices of the divided cubes in a
limited CIEL*a*b* cube. However, some of the initial
sample points may also be outside the printer gamut,
as shown in comparison of Figs. 2 and 3. To model the
printer gamut of Fig. 2, those sample points located
outside the gamut need to be excluded. In this research,
the decision, related to including sample points is cal-
culated based on a volume comparison with tetrahedra.
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Figure 3. Allotment of initial sample points in CIEL*a*b*
space.
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Figure 4. CMY control signals, uniformly distributed in
colorant space.

Figure 4 shows the distribution of a CMY control signal
for a gamut measurement including inside the printer
gamut.

In Fig. 4, each vertex of a cube has a CMY value of
the device input space and its corresponding measured
L*a*b*. As shown in Fig. 4, 9 x 9 x 9 CMY sample
patches were generated and measured for gamut mea-
surements. Then, all the cubes were divided into six
tetrahedra to generate look-up tables for the gamut. This
tetrahedral division technique is quoted from Ref. 10.

Each element of the look-up tables represents a tet-
rahedron and has measured L*a*b* values for the four
vertices of each tetrahedron. After composing look-up
tables for all tetrahedra, each initial sample point in
Fig. 3 is compared to all the elements in the look-up
tables using barycentric interpolation coefficients in
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Figure 6. Partition of a tetrahedron for volume comparison; (a) is a tetrahedron, (b),(c),(d), and (e) is sub-tetrahedra of (a).

order to determine whether the current sample point is
included within the printer gamut, quoted in Ref. 17.

In Fig. 6, p, represents an initial sample point of Fig.
3 with L*a*b* specifications, and p,, p,, p; and p, repre-
sent the stored L*a*b* values of each tetrahedron in
the look-up tables. These values are measured data for
each grid point of Fig. 4. As shown in Fig. 6, each tetra-
hedron in the look-up tables is divided into four sub-
tetrahedra. Next, when the volume of the tetrahedron
(a) is defined as V; and the volumes of the (b), (¢), (d),
and (e) sub-tetrahedra are set at V,, V,, V; and V,, re-
spectively, the volume of each tetrahedron can be calcu-
lated by the equation below.

_1p1p2p3 Py _1\po P2 P3Py
T76l111 1] *"6l1111
=1P1P0P3P4 _ 1|1 P2 Py P4 1
2760111 1) 376|111 1f @)
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where, | | denotes the determinant. If an initial sample
point is included into printer gamut, the sample point
will have more than one tetrahedron, which satisfies
the equation below.
VViZO and W1+W2 +W3 +W4 =1, i=1,2,3,4
Wy=Vi, i=1234 (2)
Vr

That is, if an initial sample point is located inside a
tetrahedron, the number of elements in the look-up
tables satisfying Eq. 2, will be one, whereas if the sample
point is placed at a vertex of a tetrahedron or on a bound-
ary surface, the number of satisfying elements will be
more than one. Accordingly, an initial sample point is
not included within the printer gamut, if there are no
elements in the look-up tables that satisfy Eq. 2. Thus
by using barycentric interpolation coefficients, the
sample points, located within the printer gamut can be
chosen as uniform sample points to model printer gamut.
Finally, Fig. 7 shows 3- and 2-dimensional distribution
of 731 uniform sample points included within the printer
gamut of CIEL*a*b* space.

Lee, et al.
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Figure 7. Graphical illustration of uniform sample points to
model printer gamut; (a) 3-dimensional representation, (b) 2-
dimensional representation on a*b* plane, given L* = 49.6.

As mentioned earlier, the distribution of color samples,
which are uniformly selected in CMY space, is highly re-
lated to lightness. Therefore, as the lightness is de-
creased, the distribution of the color samples becomes
denser. This clustering phenomenon occurs with all ink
jet printers. Moreover, if color stimuli are then predicted
using these color samples, the prediction error will re-
sult a substantial difference inside the gamut volume and
the total estimation error will also increase. In particu-
lar, the estimation error in the bright region of the gamut,
which is very sensitive to color perception, will increase
due to insufficient color samples as opposed to the dark
region of the gamut. Consequently, when modeling the
input—output relationship of an unknown printer system,
the corresponding CMY values of the uniform sample
points must be calculated. Therefore, to relate CMY with
the CIEL*a*b* uniform sample points, the color conver-
sion of CIEL*a*b* to CMY is required.

Color Space Conversion via Gamut-Based Color Samples of Printer
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Figure 8. Multi-layered perceptron with 3—-100-3 structure.

Estimation of CMY Control Signals of the Uniform
Sample Points. Subtractive color mixing printers gen-
erate color stimuli by mixing CMY signals. Thus, in or-
der to estimate the CMY control signals for the uniform
sample points, inverse printer system has to be mod-
eled. In this study, a multi-layered perceptron system!
was used for this purpose. The mapping from CIEL*a*b*
signals to CMY colorants was implemented using a
multi-layered perceptron with a 3-100-3 structure. The
network size was determined by empirically selecting
effective numbers of hidden layers and units. As shown
in Fig. 8, each unit receives its input signals from the
previous layer, computes the weighted sum, and then
outputs the unit’s level of activation by weighting this
sum with a nonlinear function.

Thus, all units except for the input layer can be de-
scribed by

0 0
0j = fgz wji0; +bJH (3)

where o; is the output of the i,, unit in the previous
layer, w; is the weighting coefficient to connect the i,
unit of the previous layer with the j, unit, b; is the
bias term, and fis the sigmoidal activation function as
shown below

1
l+exp ™

)= 4)

This function can take any real number within the
range [0 ~ 1]. Therefore, all input and output signals
have to be scaled to the interval [0 ~ 1]. Figure 9 shows
the maximum chroma of each primary color. From Fig.
9, it is assumed that a* and b*of the input CIEL*a*b*
values are given as [-60 ~ 90], respectively, the L* in-
put values are from [0 ~ 100], and the output values of
the CMY signal lie within a range of [0 ~ 255].

For network learning, CMY and the measured values
of conventional color samples uniformly selected in CMY
space were used. The total number of color patches was
729. Each digital control value of CMY was set to 0, 32,
64, 96, 128, 160, 192, 224, and 255 for uniform sam-
pling in the colorant space. Using a training set of these
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Figure 9. Maximum chroma of 3 primaries and 3 secondaries.

CIEL*a*b* and CMY pairs, back-propagation learning
was performed to optimize the weights of the network,
which were set at random values in the initial state.
Figure 10 shows the transition of the total system error
in the network learning.

The total system error can be represented as follows.

1729 9
TSE =2 (tp —0p) 5)
p=1

where £, are the scaled CMY values of the 729 color
patches uniformly selected in colorant space and o, are
the output values of the network. After 3 x 106 itera-
tions, the total system error was 0.163 and mean error
per output node was 0.0004 for scaled data of [0 ~ 1].

A neural network should be able to generalize colors
that are not included in the training set. For a generali-
zation verification of the network, an additional 729
patches were generated. To exclude the CMY values,
included in the training data, the training data CMY
values were sub-sampled. The additional CMY values
were 16, 48, 80, 112, 144, 176, 208, 240 and 1 was added
for mapping the bright region. These CMY and
CIEL*a*b* pairs were then used to test the network
after network learning.

Table I shows the results for the 729 training data
and the 729 test data for generalization. Max and Min
represent the maximum and minimum difference be-
tween the estimated and real values, respectively. These
CMY values were rescaled into a range of [0 — 255] for a
comparison with the range of the original digital con-
trol values.

Generation of Proposed Gamut-Based Color
Patches and Measurement

After determining the weights of the network, the pro-
posed gamut-based printer samples are generated. In
order to obtain the CIEL*a*b* and CMY data pairs of
the proposed color samples, uniform sample points in
terms of CIEL*a*b* are input into the neural system
after back-propagation learning, then the output of the
neural system, CMY values, are utilized as the printer
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TABLE I. Generalization Test of Neural System

729 training data 729 test data

C [0-255] Max 16 Max 20
Min 0 Min 0
M [0-255] Max 14 Max 16
Min 0 Min 0
Y [0-255] Max 7 Max 13
Min 0 Min 0

Mean square 2.5134 4.3455

error of CMY

input signals. Figure 11(a) shows the network output
namely, a gamut-based CMY control signal that gener-
ates the proposed gamut-based color samples, which are
approximately uniform in CIEL*a*b* space. Figure 11(b)
show the measured values of patches, generated by
printer input of Fig. 11(a) in CIEL*a*b* space. Figure
11(c) represents the samples projected onto an a*b*
plane when L* is from 48 to 50.

Compared to the fictive uniform sample points of Fig.
7(a) and (b), the proposed gamut-based samples are not
completely uniform in printer gamut of CIEL*a*b* space
due to estimation error in the color conversion with neu-
ral system and printer variability according to time and
printing environments. However, the proposed sample
points are comparatively uniform and independent to
lightness.

Experiments

To evaluate the proposed color samples, color conver-
sion experiments between the test chart and its repro-
duction were performed for neural network, regression,
and interpolation methods, as shown in Fig. 12.

Fuji Color Paper IT8.7/2-1993 was utilized for the test
chart. Figure 13 shows the distribution of the test chart
color samples in CIEL*a*b* space.

First, a color space conversion experiment based on a
neural network was simulated. A multi-layered

Lee, et al.
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Figure 12. Color conversion experiment using test chart IT8.7/2-1993.
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perceptron network with a 3-100-3 structure, as in Fig.
8, was implemented and the weights for the uniform
color samples in CMY space and the proposed gamut-
based color samples were calculated, respectively. Here,
the neural network input was scaled CIEL*a*b* values
of the test charts and the network gave CMY control
values within a range of [0 ~ 1]. Finally, the color patches
were printed with re-scaled control values of [0 ~ 255]
from the network output.

Second, a polynomial regression function was utilized
for mapping the correlation between CIEL*a*b* and
CMY using a multiple regression of 20 variables. De-
tails of the implemented polynomial regression function
can be found in Ref. 18. Two multiple regression func-
tions of 20 variables were implemented using the 729
conventional color samples and 731 proposed gamut-
based color samples, respectively.

Third, a 3-dimensional look-up table model using tet-
rahedral interpolation was also simulated for color con-
version. This technique can be found in Ref. 10. Here,
two look-up tables were generated for the 729 conven-
tional color samples and 731 proposed color samples and
exploited as mapping functions between CIEL*a*b* and
CMY space.

An ink jet printer was used to print the color patches.
Blue-noise mask to generate halftone patterns of the
test patches was utilized. For measurement of the
sample colors of the test charts, a Techkon SP820 colo-
rimeter was exploited. After the color conversion of the
test charts using each color conversion method, mod-
eled separately for two color samples, the color differ-
ence between the test charts and their reproductions
for the three conversion methods was compared, as
shown in Fig. 14.

Figure 14 shows resultant color difference for 264 Fuji
color samples. As shown in Fig. 14, the proposed color
samples produced a lower estimation error than the con-
ventional color samples over almost all samples of Fuji
color paper regardless of the conversion method. Table
IT shows the numerical results for the color difference.

As shown in Table II, the mean and maximum color
difference was reduced regardless of the color conver-
sion method. In particular, the color difference was con-
siderably reduced in the color conversion using
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TABLE Il. Color Difference Comparison Relative To Color Conversion Method

Color samples, uniformly selected in CMY space

Mean of color difference (Maximum color difference)
Proposed gamut-based color samples

Test chart Color conversion method
Fuji color paper (IT8.7/2-1993) Regression
Neural

Interpolation

6
5.
4

.94 (16.25) 451 (15.11)
38 (39.88) 3.89 (21.04)
.84 (40.23) 3.99 (21.72)

TABLE lll. Color Difference Comparison For Color Samples Included In Printer Gamut

Mean of color difference (Maximum color difference)

Test chart Color conversion method Color samples, uniformly selected in CMY space Proposed gamut-based color samples
Fuji color paper (1T8.7/2-1993) Regression 5.83 (12.32) 2.89 (8.31)
Neural 3.46 (10.73) 2.24 (10.30)
Interpolation 2.99 (25.14) 2.29 (8.45)
regression. However, the maximum color difference was 2. M. Xia, E. Saber and A. M. Tekalp, End-to—end color printer calibra-

quite large because the test chart included many out-
of-colors, not included in the ink jet printer gamut. Ac-
cordingly, a color conversion experiment using colors
inside the printer gamut was simulated and the results
are shown in Table III.

Conclusion

A color sample selection method was proposed to fit the
gamut of a printer system in CIEL*a*b* space. To model
a printer gamut, the gamut boundary needs to be calcu-
lated. In this study, the printer gamut was determined
using 3 primaries, 3 secondaries, and black. Next the
initial sample points uniformly allocated at the grid
points of divided cubes in CIEL*a*b* space. Thereafter,
a fixed size of uniform sample points was generated from
the initial sample points by removing grid points of out-
side the printer gamut. However, because these uniform
sample points are position data in CIEL*a*b* space, the
corresponding CMY control signals were calculated to
generate real color sample patches. A multi-layered
perceptron with a 3—-100-3 structure was utilized to es-
timate the CMY control signals of the uniform sample
points. Finally, color patches were printed using the
predicted CMY values for the proposed sample points
and measured by a colorimeter, and these input—output
pairs of gamut-based color samples were then used to
model the printer system. To evaluate the performance
of the proposed color samples, the color difference be-
tween a test chart and its reproduction was compared
for the conventional and the proposed color samples. As
a result, the proposed gamut-based color samples were
able to reduce estimation error regardless of the color
conversion method. The proposed method was particu-
larly effective in color conversion when using the re-
gression method. /&
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