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tween perceptual level (e.g., ‘apparent color of a banana’)
and semantic level (e.g., ‘yellow color’). More specifically,
the model considers single-word color names, so-called
“basic color terms”, originally defined by Berlin and
Kay,2 and extensively studied by Boynton and Olson.6

However, the model can be extended beyond the single-
word color names. For example, the model can be ap-
plied to compute nonverbal color categories exposed by
children or animals.

Function of Color Categorization
The obvious advantage of color categorization is the

reduction of vast differences among perceived color
stimuli to cognitively usable proportions. The magni-
tude of this reduction is enormous: from more than 2
million perceptually distinguishable colors8 to approxi-
mately 30 colors that can be internally represented in
cognitive space9 and to approximately 11 color terms that
can be easily identified in English language.6

Shepard,5 referring to the general principle of share-
ability advocated by Freyd,10 noted that categories make
the sharing of knowledge between species easy. From this
perspective, color categories help to consistently assign
words to object colors and, therefore, facilitate commu-
nication between individuals. In addition, a categorical
organization of color might make easy communication
within an individual, e.g., from one information-process-
ing module to another. Overall, it can be assumed that
the primary function of color categorization is to facili-
tate the successful interaction of an individual with the
surrounding world and with other individuals. This in-
teraction can be performed much easier and faster using
categorical (reduced) object description rather than de-
tailed (complete) object description.

Origin of Color Categorization
The idea about external (ecological) origin of color cat-

egorization was discussed at great length by Shepard,5
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Introduction
What is color categorization? What is the function of color
categorization? What is the origin of color categories? Re-
cently, these questions were widely discussed from philo-
sophical, linguistic, cognitive, perceptual, and
neurological perspectives.1 During the last 30 years, sig-
nificant progress has been made in theoretical under-
standing of the process of color categorization2–5 and
empirical measurement of locations, borders, and num-
bers of color categories.1,6,7 Achievements in computa-
tional modeling of the color categorization process are
less profound. The following research considers both theo-
retical and computational aspects of color categorization
by the use of the knowledge from the color imaging sci-
ence. The aim of the research is to develop a coherent
framework for 1) understanding the fundamentals of the
color categorization process, 2) modeling its essential
components, and 3) computing color categories.

Understanding Color Categorization
Definition of Color Categorization

Color categorization can be defined as the grouping
of color sensations into classes “by means of which non-
identical stimuli can be treated as equivalent”.4 In gen-
eral, this grouping can be performed at different levels
of visuo-cognitive processing. A computational model
presented in this article focuses on the linguistic color
categorization (i.e., color naming), which takes place be-
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who proposed that this organization most likely reflects
something about natural groupings of the surface re-
flection distributions of biologically significant objects
or something about the way in which terrestrial light-
ing has typically varied during evolutionary history. The
information about surface reflections and terrestrial
lighting is available to observers only through the pro-
cess of color perception. As a result, the categorical color
organization was argued to have an internal (physiologi-
cal) basis and originate from metrical properties (e.g.,
interpoint distances) of the perceptual color space.7

One of the main assumptions advocated in this ar-
ticle is that the structure of color categories originates
from the statistical structure of the perceived color en-
vironment that was observed throughout individual’s
life. By the use of words (1) ‘perceived’ and (2) ‘envi-
ronment’ this assumption recognizes that color catego-
rization is determined both by (1) the internal
properties of the sensorial system and (2) the external
properties of the outside world. From this perspective,
color categories of an individual A, for example, might

be different from ones of an individual B due to differ-
ences in their visual receptors (e.g., the individual A
is a normal trichromate; the individual B is a dichro-
mate) or/and due to differences in their environments
(e.g., the individual A lives in jungle; the individual B
lives in desert).

It should be noted that the example with the indi-
viduals A and B takes into account only ‘bottom-up’ fac-
tors involved in color categorization. However, there is
evidence that the process of color categorization is also
influenced by ‘top-down’ factors, such as culture,11 lan-
guage12 and task.13 For that reason, the color categories
of the individuals A and B might still be different even
if they have the same types of receptors and live in the
same types of environments.

The computational model described in this article con-
siders only ‘bottom-up’ aspects of color categorization.
The model consists of five major components: physical
color environment, color perception, perceived color en-
vironment, color categorization, and color categories
(Fig. 1).

Figure 1. A computational model of color categorization.
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A Computational Model of Color Categorization
Physical Color Environment

Physical color environment corresponds to physical
characteristics of visual stimuli seen by an individual
in the past. A visual stimulus defines a momentary pat-
tern of light reflected/radiated by observed objects (e.g.,
people, trees, fruits, lights, etc.). Generally, the physi-
cal color environment can be modeled by a representa-
tive sample of color stimuli entered individual’s eyes
throughout his/her life. Because such modeling is prob-
lematic one has to find plausible alternatives. In this
article, the physical color environment is modeled by a
representative sample of natural (photographic) images.

In line with this idea, a set of 630 natural images was
collected. The images were taken from TV net (110 pic-
tures), Photo CDs (170 pictures), and scanned from
books about color in nature (350 pictures). They repre-
sented typical categories of scenes: portraits, landscapes,
flowers, animals, etc. The whole set of natural images
contained 5 424 000 pixels. A random sample of 10 000
pixels was chosen for further processing and analysis.

Color Perception
Color perception is a complex process of transforming

visual stimulus into apparent object color. Generally,
color perception can be modeled by a transformation
from physical to perceptual color values. Here, the pro-
cess of color perception is modeled by the CIE 1976
L*u*v* (CIELUV for short) transformation, which is one
of the standard transformations recommended by the
CIE (Commission Internationale de l’Eclairage). Other
transformations (e.g., CIELAB, CIECAM97) can be used
as well (see Ref. 14 for a review).

The R, G, B gray values representing the sample of
10 000 pixels from the natural images were transformed
to r, g, b luminance values, then to the X, Y, Z tristimulus
values, and eventually, to the L*, u*, v* color coordi-
nates. The transformation from R, G, B to X, Y, Z val-
ues was made using a CRT characterization procedure
based on the assumption that the images were to be
shown on a CRT display with typical PAL (European
color television) characteristics: γ = 2.5; Ymin = 0.001 cd/
m2 ; Ymax = 70.0 cd/m2 ; (xr, yr) = (0.64, 0.33), (xg, yg) =
(0.30, 0.60), (xb, yb) = (0.15, 0.06), (xw, yw) = (0.313, 0.329).
The transformation from X, Y, Z to L*, u*, v* was made
using standard formulae.15

Perceived Color Environment
Perceived color environment corresponds to percep-

tual color characteristics of visual stimuli seen by an
individual in the past. Generally, the perceptual color
environment can be modeled by statistics of a represen-
tative sample of these stimuli in a perceptual color space.
In this article, perceived color environment is modeled
by statistics of the representative sample of the natu-
ral images in the CIELUV color space.

The sample of 10 000 randomly chosen pixels repre-
senting the natural images in the CIELUV color space
is shown in Fig. 2 (left). The normalized histograms of
the CIE lightness L*, hue H and chroma C* values are
presented in Fig. 2 (right). For comparison, Fig. 2 (right)
also shows L*, H and C* histograms of 10 000 pixels
from an image with uniformly distributed R, G, B gray
values. Apparently, the color statistics of the natural
images is not spread uniformly in the CIELUV color
space, especially in the chroma (Fig. 2d) and hue (Fig.
2f) dimensions. Most of the points are concentrated
around the lightness L* axis of the CIELUV color space.
This area represents achromatic colors, i.e., colors with

small chroma C* values. Two other areas with a high
frequency of occurrence can be identified. These two
areas correspond to red–yellow–green, and blue parts
of the CIELUV color space (Fig. 2f). There are very little
colors in the green–blue and red–blue parts of the
CIELUV color space.

The data agrees well with the measurements reported
by Howard and Burnidge,16 Hendley and Hecht,17 and
by Burton and Moorhead.18 They showed that naturally
occurring colors are distributed within a very restricted
area of the chromaticity diagram, and that there are
three important groups of colors in nature. Water, sky,
and distant objects fall within a blue region; green plants
fall within a yellow–green region; earth and dried veg-
etation are yellow to orange–red. The last group also
includes the average color of human complexions, which
have a dominant wavelength close to 590 nm.19

It should be noted that the color statistics of the natu-
ral images shown in Fig. 2 does not match the actual
colors in the original scenes. The natural images were
obtained from various image sources and they were as-
sumed to be shown on the CRT display with PAL char-
acteristics. Therefore, the color statistics of the natural
images is affected by color gamut of the image sources
and, in particular, by the color gamut of the PAL dis-
play. Further research is needed to obtain a better
colorimetrical representation of the perceived color en-
vironment. This can be achieved, for example, through
collection of a large database of natural scenes using
the multi-spectral imaging technique.20

Color Categorization
Color categorization can be considered as the group-

ing of color sensations into classes. Generally, the pro-
cess of color categorization can be modeled using the
concept of vector quantization from information theory.
Vector quantization is a data compression method where
a set of data points is encoded by a reduced set of refer-
ence vectors, the codebook.21 One can assume that the
color categorization is based on the minimum distance
criterion. This implies that points with minimum dis-
tance to each other in the color space are likely to be-
long to the same color category. Therefore, the process
of color categorization can be modeled by a clustering
algorithm such as the K–means or ISODATA clustering
algorithms.

In this research, the process of color categorization
was modeled by K–means clustering of the CIE L*u*v*
color coordinates of the statistics of the natural images
in the CIELUV color space. Modeling was performed
using a K–means clustering routine of CANTATA visual
programming environment for the Khoros system.22 This
routine converts an input image into vectors of equal
size and performs the K–means clustering algorithm on
the vectors using randomly chosen K initial cluster cen-
ters. After K initial cluster centers are chosen, the im-
age vectors are iteratively distributed among the K
cluster domains. New cluster centers are computed from
these results, such that the sum of the squared distances
from all points in a cluster to the new cluster center is
minimized.

Color Category System
The color category system can be described by few ba-
sic parameters (location, border, order, number, and
weight) of color categories. Generally, these parameters
can be modeled by the corresponding parameters (lo-
cation, border, rank, number, and weight) of clusters
derived by the clustering algorithm. This article focuses
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Figure 2. (left) A random sample of the color statistics of 630 natural images in the CIE (a) L*u*v* color space, (c) L*C* diagram,
and (e) u’v’ diagram. The solid line indicates the PAL TV color gamut. (right) Normalized histograms of the (b) lightness L*, (d)
chroma C* and (f) hue H values for (solid lines) the natural images and (dashed lines) the image with uniformly distributed R, G,
B gray values.
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on modeling the location, rank and number of color
categories, because these parameters have been exten-
sively studied in psychology and linguistic. The model
of color categorization proposed here enables to com-
pute these parameters and compare them with the
empirical data. The following section describes the re-
sult of this comparison.

Computing Color Categories
Location of Color Categories

The location of color categories can be computed from
coordinates of cluster centers derived by the K–means
clustering algorithm from the color statistics of the natu-
ral images in the CIELUV color space. Figure 3 (top)
illustrates eleven cluster centers derived by the CAN-
TATA K–means clustering algorithm from the sample
of 10 000 pixels representing the natural images. The
cluster centers are plotted in the CIE u*v* (Fig. 3a) and
CIE u’v’ (Fig. 3b) chromaticity diagram together with
the eleven focal colors found by Boynton and Olson.6 The
original focal colors were derived by Boynton and Olson
on the basis of single-word color naming of 424 color
samples from the OSA space. The coordinates of focal
colors shown in Fig. 3 were obtained through the se-
quential transformation of the OSA L, j, g, values to the
CIE Y, x, y values, and, eventually, to the CIE L*, u*, v*
values by using standard table and formulae.15

The location of the cluster centers in the CIELUV
space was close to the location of the focal colors with
one exception. Among the cluster centers there was a
‘green–yellow’ cluster, which did not belong to the eleven
focal colors described by Boynton and Olson. On the
other hand, the analogue of the focal color ‘purple’ was
not derived by the K–means clustering algorithm.

A linear regression analysis demonstrates that the co-
ordinates of 10 focal colors and 10 corresponding clus-
ter centers are similar: the correlation between their
lightness L* values is r = 0.762 (Fig. 3c); the correlation
between their hue H values is r = 0.999 (Fig. 3d); the
correlation between their chroma C* values is r = 0.876
(Fig. 3e); the correlation between their saturation (s)
values is r = 0.900 (Fig. 3f). These results support the
idea that the structure of color categories originates from
the statistical structure of the perceived environment.

Rank of Color Categories
Berlin and Kay2 have suggested that if languages are

ranked according to number of color category terms, the
evolutionary sequence of these terms (in reference to
English names) is generally as follows: 1) black and
white; 2) red; 3) green/yellow; 4) yellow/green; 5) blue;
6) brown; 7) pink, purple, orange, and gray. In other
words, if a language has only three color terms, they
are most likely to correspond to English white, black,
and red, and not, for example, to pink, orange, and
brown. The exact evolutionary order of color words var-
ies across different languages, but in general shows a
remarkable consistency [see Ref. 1 for a recent review].
The same order was found in the rate of usage of color
words within the English language by McManus23 who
studied the frequency of the color terms in literature
and science databases.

Overall, the rank (order of emergence) of the cluster
centers resulting from the K–means algorithm is simi-
lar to the rank of color terms described by Berlin and
Kay. For example, the cluster centers obtained by the
K–means algorithm with K = 3 roughly correspond to
English terms ‘black’, ‘white’, and ‘red’ (Fig. 4a); the
cluster centers obtained by the K–means algorithm

with K = 7 roughly correspond to English terms ‘black’,
‘white’, ‘red’ ‘green’, ‘yellow’, ‘blue’ and ‘brown’ (Fig. 4b);
the cluster centers obtained by the K–means algorithm
with K = 11 roughly correspond to English terms ‘black’,
‘white’, ‘red’ ‘green’, ‘yellow’, ‘blue’, ‘brown’, ‘grey’, ‘or-
ange’, ‘pink’ and ‘green–yellow’ (Fig. 4c). Interestingly,
the proposed computational model enables to predict
the future development of English language with 15
color terms (Fig. 4d).

Figure 5 shows a moderately high correlation (r =
0.710) between rank of 10 color-terms derived from Ber-
lin and Kay’s data and the sum of the two parameters:
(1) normalized numbers of items in the clusters and (2)
normalized CIELUV distance between the cluster cen-
ter and the average center of all clusters. The results
suggest that the development of a color term across lan-
guages might be determined by two constraints: (1) fre-
quency at which colors represented by this term occur
in environment, and (2) perceived remoteness of these
colors from colors represented by already existing terms.

In general, the obtained results support the idea that
the evolutionary order of color terms depends on both
the external properties of the outside world (frequency
of color occurrence) and the internal properties of the
perceptual system (metrics of color space). This idea
might explain the old mysteries of why the color term
‘red’ has a particular salience in different cultures and
why it evolves before other color terms in many lan-
guages. The possible explanation is that the color term
‘red’ corresponds to colors that are both frequently oc-
curred in the perceived environment of people speaking
these languages and substantially distant from other
colors in their perceptual spaces. On the one hand, the
term ‘red’ evolves before, for example, the term ‘pink’
because pink colors are relatively rare in nature (Fig.
2). On the other hand, the term ‘red’ evolves before, for
example, the term ‘green’ because green colors are rela-
tively close to the average center of the all colors in the
CIELUV color space and, especially, in the CIE u’v’ chro-
maticity diagram (Fig. 2).

Number of Color Categories
Rosch4 has argued that the primary task of category

systems is to “provide maximum information with the
least cognitive effort”. This can be achieved if catego-
ries represent the perceived world with minimum dis-
tortions and minimum complexity. One can assume that
the simultaneous minimization of the distortion and
complexity costs (values) yields an optimal number of
color categories. This is similar to the strategy to jointly
optimize distortion errors and a codebook complexity
function for the design of an optimal vector quantizer
proposed by Buhmann and Kuehnel.21 Considering the
color categorization process within the framework of
optimal vector quantization is a promising direction for
future research. The following discussion is a first step
in this direction.

In order to compute the optimal number of color cat-
egories, we need to specify distortion measure and com-
plexity measure. A widely used distortion measure is
the Euclidean distance:

      Di i iα α α( , )x y x y= − 2 , (1)

where Diα(xi,yα) is a difference between a given set of
data vectors xi and a smaller set of codebook vectors yα.
In our case, data vectors xi correspond to the CIE L*, u*,
v* color coordinates of 10 000 randomly chosen pixels
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Figure 3. Eleven (circles) cluster centers derived from the color statistics of natural images and (crosses) focal colors found by
Boynton and Olson6 in the CIE (a) u*v* and (b) u’v’ chromaticity diagram. The relationship between (c) lightness L*, (d) hue H, (e)
chroma C*, and (f) saturation s values of the cluster centers and the focal colors.
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Figure 4. Cluster centers derived by the K–means clustering algorithm from the color statistics of natural images for (a) K = 3,
(b) K = 7, (c) K = 11, and (d) K = 15.
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Figure 5. Relationship between the color-terms rank obtained from Berlin and Kay’s data2 and the sum of the normalized fre-
quency (i.e., numbers of items in the clusters) and the normalized remoteness (i.e., CIELUV distance between the cluster center
and the average center of all clusters) obtained from the statistics of the natural images.
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representing the color statistics of the natural images
before applying the K–means clustering algorithm;
codebook vectors yα correspond to the CIE L*, u*, v* color
coordinates of the cluster centers representing the color
statistics of the natural images after applying the K–
means clustering algorithm; Diα(xi,yα) corresponds to the
CIELUV color difference ∆E*uv between vectors xi and
yα. Figure 6a shows normalized Diα(xi,yα) for number of
clusters K = 1, 2, 4, 8, 16, 32, and 64. Apparently, the
bigger is the number of clusters the smaller is Diα(xi,yα).

A detailed analysis of different complexity measures
is given by Buhmann and Kuehnel.21 In general, com-
plexity can be defined by means of entropy from infor-
mation theory:

    C p p p( ) logα α α= −∑ ,  (2)

where C(pα) is the codebook complexity and pα is the
probability of occurrence of the αth value. Figure 6a
shows normalized C(pα) values, which were calculated
by a statistical program of the Khoros system for num-
ber of clusters K = 1, 2, 4, 8, 16, 32, and 64. Evidently,
the bigger is the number of clusters the bigger is C(pα).
To minimize the distortion costs the number of cluster
centers should be increased, whereas to minimize the
complexity costs the number of clusters should be de-
creased. Because the two constraints conflict with each
other, the optimal number of color categories K can be
determined by a compromise between the distortion and
complexity costs:

      K D C pi i= +{ }min ( , ) ( )λ λα α α1 2x y (3)

where λ1 and λ2 are weighting parameters. Figure 6b
shows an example of how the weighting parameter might
influence the optimal number of clusters representing
the color statistics of the natural images. When the com-
plexity costs have a stronger weight than the distortion
costs (λ1 = 0.4; λ2 = 0.6) the optimal number of clusters

is about 2. This situation can be associated with a ‘primi-
tive’ language distinguishing very few color terms. When
the distortion and complexity costs have equal weights
(λ1 = 0.5; λ2 = 0.5), the optimal number of clusters is
about 8. This situation approximately corresponds to
the number of color words frequently used in everyday
English. When the distortion costs have a stronger
weight than the complexity costs (λ1 = 0.4; λ2 = 0.6) the
optimal number of clusters is about 16. Such a situa-
tion relates to an ‘advanced’ terminology exhibited by,
for example, professional painters and color designers.

Possible Applications and Future Research
The result of this research can be applied in different
areas of imaging science such as color quantization,
image quality, and gamut mapping. For example, the
analysis of the color statistics representing the natural
images in the CIELUV color space (Fig. 2) revealed that
the obtained distribution was more uniform (less redun-
dant) in the lightness L* dimension than in the hue H
dimension, and, especially, in the chroma C* dimension.
Therefore, one can hypothesize that distortions of the
lightness L* values would probably be more visible than
distortions of the hue H and chroma C* values.

Color Plate 1 (p. 481) provides an initial support of
this hypothesis. Plate 1 contains the original image (top,
left) from a Kodak Photo CD and three processed im-
ages. The processed images were obtained using a pro-
gram that spatially scrambled pixels independently for
the hue H (top, right), chroma C* (bottom, left), and
lightness L* (bottom, right) values of the original im-
age. It can be seen from the Plate 1 that the distortion
of the lightness values is, indeed, more visible than the
distortion of the hue and chroma values. Based on these
observations, one can suggest that color quantization
would probably require more levels for lightness L* di-
mension than for hue H, and, especially, chroma C* di-
mension. Our preliminary investigation has shown that
the quantization with 128 levels of lightness L*, 32 lev-
els of hue H, and 16 levels of chroma C* produced a
fairly good results for many natural images.

Figure 6. (a) The normalized (circles) distortion and (crosses) complexity costs for number of clusters K = 1, 2, 4, 8, 16, 32, and
64. (b) The sum the distortion and complexity costs for (circles) λ 1 = 0.4, λ2 = 0.6; (stars) λ1 = 0.5, λ 2 = 0.5; and (squares) λ1 = 0.4,
λ2 = 0.6. See text for details.



Computing Color Categories from Statistics of Natural Images Vol. 45, No. 5, September/October  2001  417

The data described in this article support the assump-
tion that the structure of color categories originates from
the statistical structure of the perceived color environ-
ment observed throughout individual’s life. Conse-
quently, this implies that the location of prototypical
colors in a perceptual space might be different for dif-
ferent individuals. In principle, it is possible to deter-
mine the exact coordinates of the prototypical colors in
the perceptual space for an individual or a group of
people (e.g., based on their age, geography, genotype,
etc.). This can be achieved, for example, using the
method described by Boynton and Olson.6 If the exact
coordinates of the prototypical colors are known, one
can create a “prototypical color profile” that is specific
for the individual or the group of people. The “proto-
typical color profile” can be used to customize the pro-
cess of color reproduction through the transformation
of chromaticity coordinates of all colors in an image to-
wards the chromaticity coordinates of the correspond-
ing color prototypes. This transformation can be total,
i.e., all colors are replaced by the corresponding color
prototypes, or partial, i.e., all colors are shifted towards
the corresponding color prototypes. One can hypothesize
that an image with colors shifted towards individually
specific color prototypes might have a higher subjective
image quality than the original image. In general, the
concept of the “prototypical color profile” might be used
to develop new types of adaptive algorithms that opti-
mize image quality based on individual and cultural
differences. This idea needs to be investigated further.

The prototypical colors could also be used to optimize
the process of color gamut mapping. In this case, it would
be necessary to define a set of prototypical colors pro-
duced by a source device (e.g., a CRT monitor) and a set
of prototypical colors produced by a destination device
(e.g., an inkjet printer). This can be done experimen-
tally by asking observers to estimate prototypicality of
colors produced by both devices. When the prototypical
colors of the devices are known, they can be used to con-
vert any image from the source device into the destina-
tion device in such a way that the prototypical colors of
the source device are mapped into the prototypical col-
ors of the destination device. Interestingly, an algorithm
that utilizes the notion of categorical colors for gamut
mapping has been already proposed.24

The possible applications of the concepts of color cat-
egorization and color prototypes for color quantization,
image quality and gamut mapping might be considered
as a first step towards incorporating cognitive aspects
of color in imaging science. One can even hypothesize
that some image processing techniques (e.g., color quan-
tization, color enhancement, gamut mapping, etc.) might
be more appropriate to perform in a cognitively uniform
color space rather than in a perceptually uniform color
space. The equality of distances between centers of color
categories (color prototypes) can be the criterion of uni-
formity for such a space. The development of a

cognitively uniform color space for color imaging science
is a subject of future research.    
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