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Using Radial Basis Function Networks to Approach the Depth from Defocus
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In range finding, the depth from defocus (DFD) is a simple and effective method. The DFD yields the absolute depth, and does
not have the image-to-image matching and occlusion problems. Therefore, we use the DFD method to analyze the defocused
images to obtain depth information using Gaussian blurred function. In order to find the range of objects, a sigma value of the
Gaussian function due to edges out of focus is necessary. Because the sigma value of the Gaussian function depicts on the
intensity of images grabbed by imaging devices, we employ an approximate method, the radial basis function networks (RBFN),
to approach the sigma value directly in the spatial domain. The RBFN regularizes the center position and the sigma value of the
Gaussian function to fit the profile of the defocused image by three layers of neural networks based on the radial basis function.
It has accurate ranging results with less than 8% of the root mean square error in sigma value approaching and 5% of the
relative error in ranging, imaging system ranges from 220 mm to 355 mm and focuses at 400 mm.
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Introduction

In biological systems, the images that fall on the retina
are quite badly focused everywhere except within the
central fovea.! There is a gradient of focus, ranging from
nearly perfect focal at the point of regard to almost com-
plete blurred at points on distance objects. It is called
the depth of field.? Different lenses have variant mag-
nification of depth of field in optics. We regard it in fo-
cus when an image is located within the depth of field
as well as defocus when image is out of the depth of
field. The magnitude of defocus is formed by an object’s
position and the optical parameters (e.g., focal length,
aperture, etc.). It can be measured by imaging devices,
e.g., CCD camera. When images are taken by imaging
system, the profile of the defocus is visible in gray level
and approached by mathematic analysis. The distance
of the objects can be ranged if the camera parameters
are known and defocus model is set in a certain dis-
tance. The depth from defocus (DFD)3-®* method in range
finding field is well known. The range finding methods
can be divided into two categories: active and passive.
There are several passive imaging methods, such as ste-
reopsis,® structure from motion,” shape from shading,?°
depth from focus (DFF)'® and depth from defocus
(DFD).1*"** Among these passive methods, the DFD yields
the absolute depth that can be recovered with only two
images. Besides, DFD has not the image-to-image
matching and occlusion problems. Therefore, we use
DFD method to analyze the defocused images to obtain
depth information using the Gaussian spread function,
which is a passive range-finding method. In order to find
the range of objects, a sigma value of the Gaussian func-
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tion due to edges out of focus is necessary. The sigma
value definitely affects the accuracy of the distance be-
tween object and image, which is estimated in spatial
or frequency domain. Most approach methods in spa-
tial domain are focused on the polynomial estimation*
that has the drawbacks, such as polynomial terms must
be compatible with the defocus algorithm governed by
camera model, existence of the transfer and accuracy of
the estimation. Because the sigma value of the Gaussian
function depicts on the intensities of image grabbed by
imaging system, it needs an approximate algorithm to
find the sigma value. Multi-layer feed-forward neural
networks are regarded as the universal approximators's
and have the capability to approach nonlinear input—
output relationships of a continuous and multivariate
function. We employ a direct approximate algorithm, the
radial basis function networks (RBFN),6-18 to evaluate
the sigma value in the spatial domain of the defocused
image. The radial basis function networks comprise
three layers, input, output and hidden layer respectively.
When the networks fit the target, the pixel numbers
grows toward the intensities of the image respectively,
the weights vector of the hidden layer show the center
position of the Gaussian function as well as the weights
vectors of the output layer show the sigma value of the
Gaussian function. The RBFN is a direct method to mea-
sure the depth of the defocus images by approaching
the sigma value from the Gaussian blurred edges.

Analysis Method

In order to find the depth of the objects and the cam-
era, we have to know the camera parameters as well as
the blurred parameters. The camera parameters are
based on the geometric camera model and blurred pa-
rameters based on point-spread function (PSF). Then
we can get back the depth between objects and camera
by radial basis function networks (RBFN) and the cam-
era model.
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Figure 1. Geometry of imaging and Gaussian blurred profile.

Geometric Camera Model

The amount of defocus or blurring depends solely on
the distance to the surface of exact focus and the char-
acteristics of the lens system. As the distance between
the imaged point and the surface of the exact focus in-
creases, the image objects become progressively more
defocused. If we could measure the amount of blurring
at a given point in the image, therefore it seems pos-
sible that we could use the parameters of the lens sys-
tem to compute the distance to the corresponding point
in the scene.

Based on the similar triangles, the distance D (see
Fig. 1) to an imaged point is related to the parameters
of the lens system and the amount of defocus by the
following equations* .

___fv
D= P _fo_ o7 ifD>u, (1.a)
and
_ foo
D_—vo—f"'UF if D <u, (1.b).

where D is the distance from the lens to the object.

v is the distance from the lens to the defocused image.

f is the focal length.

F is called F-number and is equal to f/ 2r, r is the ra-
dius of the aperture.

u, isthe distance between the lens and the locus of per-
fect focus.

v, isthe distance between the image plane and the lens
in perfect focus.

The lens law can be expressed as

1,1 1
7 2)

Up Yo

when u, is infinite, then v, is equal to f.
o is the blur parameter in length units (mm) can be
written as
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U:prk (3)

where 0,is a blur parameter in pixel units, and k is the
camera parameter.

The camera parameter & is positive and is a constant
of proportional characteristic of a given camera. When
o is very small, in which case diffraction effects domi-
nate, let £=1/42 is a good approximation in most prac-
tical cases.!® The camera parameter %k has to be computed
by camera calibration first.2°

From the above description, the distance of object D
depends on parameters: f, v, 0, and r. When an object is
located at a fixed position, the blur parameter o is vary-
ing with f, v and r. Most of the researchers have focused
on comparing two images by adjusting the lens position'?
v, or aperture! r to measure the depth of object. When
the robot moves and the camera parameters are free of
adjustment, the blur parameter is only varying by mov-
ing in the distance D. It means that the depth recovery
is based on the blurred parameter of the point spread
functions, such as uniform, line and Gaussian, Uniform
spread function exists when no light energy is absorbed
by the camera system.!* Line spread function depends
on a perfect lens for avoiding the diffraction effects. We
are interested in the most common case and then PSF
can be approximated by the Gaussian function will be
very close to the real lens.

Depth Recovery

There are two categories for depth recovery by depth
from defocus method: spatial domain and spatial fre-
quency domain. The popular frequency domain for depth
recovery is the Fourier transform?’ and the well-known
S-transform.* The polynomial approach!*?> and inverse
filter*'32° are famous depth recovery in spatial domain.
It is difficult for the frequency domain to deconvolute
the defocus operator from the scene and to model it. The
inverse filter method is inaccurate and constrained in
both windowing and border effects. The polynomial ap-
proach in the spatial domain by the maximum likeli-
hood method* occurs errors when the Laplacian of the
convolution of raw image intensities and Gaussian point
spread funtion is zero. Taking natural log of zero will
make the program halted. We will present the radial
basis function netwroks to find the sigma o directly in
the spatial domain in the following section.
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Radial Basis Function Networks (RBFN)

We propose a neural network for finding the sigma
value of the Gaussian point spread function in robot vi-
sion. Neural networks are divided into supervised and
unsupervised learning network. The former with tar-
get values, the latter without any target. In this article,
the image intensities of each pixels are the target of
networks, so we need a supervised learning networks.
The back-propagation networks (BPN) is the popular
model in supervised learning networks, but it is slow in
learning rate and is not the best approximation for con-
tinuous function.?’ In contrary, the RBFN provides the
optimal approximate ability in supervised networks. The
network architecture and radial basis functions is de-
scribed as follow:

The RBFN’s Architecture

A radial basis function networks may be depicted as
shown in Fig. 2. The architecture consists of three lay-
ers, an input layer, a hidden layer and an output layer.

(i) The Input Layer: The layer consists of I elements
and forwards the input signals vector x =[x, ..., x;]
to each neuron of the hidden layer. In this article,
the input vector x are the pixel numbers of the
blurred edge image (see Figs. 6a,c,e,g).

(ii) The Hidden Layer: The layer is composed by J
elements with radial basis function and calculates
the ouput 4, , jO{1, ..., J} from the input signals x.
Feeding the input vector x onto each neuron as
center ¢;, and its distance between x and c is called
the Euclidean norm, a;= | | x —¢; | |. The output of
the hidden layer is:

hj(x;cj)=(p(| Ix—cjl 1)

where @is a continuous differential function, the Euclid-
ean norm can be modified by shape factor s (see Fig. 3).

| Ix—cj |l
hj(x,cj)—(p(vj =
Sj

The unit of transferring function based on argument
v is called the radial basis function unit. Because each
neuron in the hidden layer owns different center ¢ and
shape factor s, the output 2 variant even with the same
input x.

(iii) The Output Layer: This layer consists of K ele-
ments, each output is comprised of weights w),
and the output A; of the hidden layer in linear
superposition as follow:

m] J
vy P)=5 wkjhj(x;cj,sj) (4)
Jj=1

where P is all the training parameters, such as centers,
shape factors and weights.
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Figure 2. A multi-input/multi-output of the radial basis func-
tion networks.

The output of the RBFN can be formed in matrix:
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Figure 3. The radial basis function unit.
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Hence, a RBFN can be written as the following
mathematic forms strictly:

J
Ifif = (s i) RIS RS i) = 3 Wii#UxC18))
-

1<k <K;x, cRY, s, w,R}, then fis called the RBFN and
w,;is the weight.

The Radial Basis Functions

The hidden layer consists of a set of radial basis func-
tions. The hidden layer neuron calculates the Euclid-
ean distance between the center c; and the network input
vector and then passes the result to a radial basis func-
tion. All the radial basis functions in the hidden layer
neurons are usually of the same type. Typical choices of
the radial basis functions are:
(i) The thin-plate-spline function (TSF):

@v) = V2 xlog(v),

(i) The Gaussian potential function (GPF):

av=e’,

(iii) The multi-quadric function (MQF):

@v) = (V2 +1>y2,

(iv) The inverse multi-quadric function:

V) = (V? +1)'y2,

where v is a non-negative number and is the distance
from the input vector x to the radial basis function cen-
ter c. In radial basis function networks, the TSF2%3° and
MQF 1617 are divergent functions when v > « as well as
GPF'617and inverse MQF are convergent functions when
v 2 o. The GPF, convergent function, is close to the
Gaussian point spread function. Therefore, we use the
Gaussian radial basis function network to approach the
Gaussian blurred parameter as sigma value in defocus
image by adjusting the centers and weights. When the
output fits the targets which are the intensities of the
blurred edge’s profile, the weight of the vectors w,;in
output layer is proportional to sigma o. Having esti-
mated o, Egs. 1la and 1b can now be used to calculate
the distance D to the image point. There are two pos-
sible solutions, one corresponding to a point in front of
the locus of exact focus, the other corresponding to a
point behind it. This ambiguity is generally unimpor-
tant because we focus at a fixed distance and the cam-
era moves closely to the objects.

Results and Discussion

Using the natural light source to get the images that
could be processed as ranging information is the one
of the characteristics of the passive depth ranging
methods.

Simulation with Standard Function

In order to check the exactness and accuracy of the
algorithms described in the previous section, we used a
step function to simulate the intensity of sharp edges
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Weights vs. sigma values by RBFN training and simulating procedures.
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Figure 4. The relationship between weights and sigma val-
ues in radial basis function networks.

and convoluted it with Gaussian function from o = 1 to
20. At the beginning of the training procedure, we cre-
ate a radial basis network with given inputs as number
of pixels, and targets as gray level of pixels. Initially
the hidden layer of the RBFN has no neurons. We set
the error goal before network training, and the error is
the difference between the output and the target in each
epoch of training step. The following steps are repeated
until the network’s mean square error falls below goal.
(i) The network is simulated.
(i1) The input vector with the greatest error is found.
(iii) A radial basis function neuron is added with
weights equal to that vector.
(iv) The output layer weights are redesigned to mini-
mize error.

After the training procedure, we obtain the weights.
Then, we simulate the RBFN with the weights by re-
versing the inputs and targets. We make the forward-
ing and reversing processes with different scale for
avoiding data covered. From Fig. 4, it is obvious that
the sigma value is proportional to the output layer
weights. It shows that our algorithms are exact for re-
alizing ideal images (noiseless and high quality images).

Depth Ranging Architecture
The implemental equipments used for this research
are described as follow:

* Image grabber card — Imagenation Co., CX100 frame
grabber card with 512 x 486 resolution at 8 bits.

¢ Lens — Canon Co, 1/2 inch sensor, aperture F1.6-16,
focal length f= 16 mm.

e Camera — Ikegami Co., ICD-47, 1/2 inch B/W CCD
with 768(H) x 494(V), S/N ratio 48db, 0.02lux/F1.6
(AGC on).

¢ IBM PC—Intel Pentium 200Mhz PC for data acqui-
sition control and processing.

We set the aperture diameter to maximum (10mm)
for grabbing useful images under natural lighting. From
the sensor size of the CCD camera and the resolution of
the grabber card, we get the camera parameter k equals
to 0.0125. When we want to simulate the moves of the
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TABLE I. The Calculated Distances of Objects and Their Relative Errors

Distance D (mm) 355 310 265 220
Sigma o (pixels) 1.3709 5.5856 9.4653 14.8327
Calculated D (mm) 369.5937 299.5953 255.1150 211.6445
Root Mean Square error (%) 7.3500 2.0036 1.6300 1.1806
Relative error (%) 4.1137 3.3563 3.7302 3.7979
a Object 1 b. Object 2
c. Object 3 d. Object 4

Figure 5. Pictures of objects grabbed by ranging implementation.

robot towards close objects, we place the cubic blocks,
which each side is 45 mm, in front of the CCD camera.
The lens is focused at 400 mm and stacks the cubic
blocks one by one for simulating the robot moves from
335 mm to 220 mm with 4 steps close to objects (see
Figs. 5a—d). Figures 6a, 6¢, 6e, and 6g show the 3D pro-
file on the blurred edges of the objects in front of cam-
era at different positions: 355 mm, 310 mm, 265 mm
and 220 mm respectively. Figures 6b, 6d, 6f, and 6h
present the generalized mean profile of the blurred edges
approached by RBFN. The experimental results are
listed in Table I. From Table I, the RBFN has accurate
ranging results with less than 8% of the root mean
square error in sigma value approaching and 5% of the
relative error in ranging, imaging system ranges from
220 mm to 355 mm and focuses at 400 mm.

Discussion

Assuming that the point spread function of the defocused
images is a Gaussian function, we have shown that the
depth of the scene can be measured only from one im-
age obtained from natural lighting and used the RBFN
to approach the sigma value. Our implement consists of
three steps, the network training procedure, the simu-
lating step to approach the sigma value and the depth
range step. In the first step, the larger shape factor is
the smoother the function approximation will be. The
larger shape factor requires a lot of neurons to fit a fast
changing function. On the contrary, a smaller shape fac-
tor requires many neurons to fit a smooth function, and
the network may not generalize well. We find the best
shape factor in this implement is equal to one, as the
Gaussian function is smooth except the object 1. For
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gaining the best results in approaching the sigma value,
we set an error goal equal to zero during the training
procedure of the ideal Gaussian point spread function.
We use the Gaussian function to approach the Gaussian
blurred edge of objects. Therefore, no transfer is needed
like some DFD methods to deal the spatial domain and
polynomial approximation. In training procedure, the
RBFN spends more time for computing, but our case
takes only one calculating period in simulation. The
RBFN has ranging results with less than 8% of the root
mean square error in sigma value approaching and 5%
of the relative error in depth ranging. Therefore the
RBFN is so accurate in ranging and fast in computing.

Conclusion

We employ radial basis function networks to evaluate
the sigma 0; it has relevant ranging accuracy as well as
fast computing. Because we do not need a lot of images
like the depth from focus method for ranging, the algo-
rithm evaluated in this article is an accurate and a fast
method for depth ranging. Focusing is the most impor-
tant part of the imaging system in computer vision, be-
cause it affects the shape and size of the objects in the
image. The algorithm is also useful as the pre-process-
ing of an imaging system for a pattern recognition and
classification. With this accurate depth ranging system,
we can develop an auto-focusing system. This is now
required for any imaging system to allow us to get sharp
focused images quickly and efficiently. &
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Figure 6. The 3D profile of objects’ blurred edge and the Gaussian function approached by RBFN.
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