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storage, retrieval, and display (both in soft and printed
forms) with an eye on cost, time, and who will do the
work is extremely challenging.1–3 Because the scope of
this publication is limited to direct digital capture of
paintings and will not address digitizing photographic
collections or photographic reproductions of paintings,
conservation issues are especially important. The pro-
cess of digitizing must not damage the painting, which
could occur all too easily by excessive handling and ir-
radiation by high-intensity light sources. Blackwell4 and
Lossau and Liebetruth5 have considered these issues in
practice. Clearly, it is desirable to digitize the art once
and in a manner that facilitates a variety of derivatives
created for a variety of applications, be it web-based,
printed publication, scientific analysis, or any number
of scholarly endeavors by art historians.

Thus the purpose of this publication is to provide suf-
ficient background to aid in setting specifications for
color image-capture systems. Having presented this
background, it is possible to propose a methodology for
digital image capture that minimizes the inherent limi-
tations of many digital systems in use today. Finally,
considerations will be given to the future. What are the
optimal characteristics of a digital imaging system de-
signed to record paintings?

A Review of Digital Imaging
The Human-Visual System

The first step in understanding digital imaging is to
understand about the human visual system. Four con-
cepts will be defined: spectral sensitivity, opponent en-
coding, spatial resolution, and nonlinear response. This
description is very simplified. For greater detail, but
still at a qualitative level, see Berns.6 For a thorough
understanding of the human visual system, see Wandell7

and Kaiser and Boynton.8

Incident light interacts with visual receptors, rods and
cones. Following a chemical reaction, light energy is con-

Introduction
Digital image databases have become ubiquitous with
museums, galleries, archives, and libraries. (For simplic-
ity, “museum” will be used to represent the many reposi-
tories.) Connect to their websites and a wealth of visual
information is available. Museums are sharing their im-
ages to increase access such as the Art Museum Image
Consortium, AMICO, a subscription program for educa-
tional institutions (see www.amico.org). The quality of
the digital images can be quite varied. Leaving aside the
issue of the long-term storage of digital information,
clearly a critical issue but beyond the scope of this publi-
cation, there are many reasons that quality might be poor.
Some are philosophical in origin where there is a delib-
erate decision not to create a high-quality accurate rep-
resentation, rather, a database of low-quality “thumbnail”
images. Some reasons are technical in origin; and some
are caused by constraints imposed by the sheer magni-
tude of creating and maintaining a digital archive of many
thousands, and in some cases, hundreds of thousands of
images. Finally, images available to the public through
the internet are usually of low resolution as well as de-
signed for CRT display. These are “derivative” images
created from the “master” image. A digital master is a
result of direct digital capture of the work of art.

The technical problems are manifest almost immedi-
ately. Trying to define specifications for image capture,
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verted to a neural signal. There are three classes of cones
(our color receptors), L, M, and S, named for their domi-
nant sensitivity to long, medium, and short wavelengths
of light. Each has a unique spectral sensitivity, shown
in Fig. 1. Spectral sensitivity defines a detector’s sensi-
tivity as a function of wavelength. Because there are
only three types of cones and their spectral sensitivi-
ties are broad, many different objects can produce the
same cone responses, leading to the identical color. This
is known as metamerism (pronounced “me-tam’-er-ism”)
and explains why color reproduction is possible in which
small numbers of colorants can reproduce our world,
composed of thousands of colorants. A metameric match
between foliage, illuminated by natural daylight, and a
CRT color reproduction of the foliage is shown in Fig. 2.
Despite large differences in their spectral properties,
these two stimuli match in color.

The cones combine spatially and form opponent sig-
nals, white/black, red/green, and yellow/blue. During the
late 1800’s, Hering considered these six colors as elemen-
tal, shown in Fig. 3. Lines connecting the various el-
emental colors indicate possible continuous perceptions.
There are not lines connecting yellow and blue and red
and green. It is not possible to have a color that is si-
multaneously reddish and greenish, for example.

Because there are different numbers of each cone type,
when they combine to form opponent signals, there are
different spatial resolutions among the opponent signals.
Spatial resolution defines the resolving power of an im-
aging system and leads to the ability to discern fine de-
tail. The black/white signal has the highest spatial
resolution, followed by the red/green signal. The yellow/
blue signal has quite low spatial resolution. These dif-
ferences in spatial resolution have been exploited in im-
age compression such as JPEG.10 The concept of “visually
lossless compression” originates with this property of the
eye. Spatial resolution is reduced in the chromatic chan-
nels in a manner that results in images that look identi-
cal to their uncompressed counterparts when viewed at
typical distances, hence the term “visually lossless.” How-
ever, information is still being discarded.

The neural processing from cone-receptor signals
through signals interpreted by the brain and result-
ing in color names such as yellow, brown, and gray is
exceedingly complex. Every year, vision scientists fill
in more pieces of the puzzle. From a practical perspec-
tive, it is very useful to have a simple mathematical
model that enables color perceptions to be estimated
from light imaged onto our visual system. A model was
derived by the International Commission on Illumina-
tion (CIE) in 1976, known as CIE L*, a*, b* (pronounced
“el-star” and so on) or its official abbreviation, CIELAB
(pronounced “see-lab”).11 The coordinates, L*, a*, and
b* represent the perceptions of lightness, redness/
greenness, and yellowness/blueness, respectively.

Figure 1. The spectral sensitivities of the human-visual
system’s cone9 (normalized to equal area).

Figure 2. Spectral properties of a metameric pair formed by
foliage, illuminated by natural daylight (dashed line), and a
CRT display (solid line).6

Figure 3. Six elemental colors postulated by Hering along with
lines indicating possible perceptions, e.g., yellowish red (W =
white; Y = yellow; R = red; K = black; B = blue; G = green) .
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CIELAB is considered a color space in which positions
indicate an object’s color. This type of color space is
diagrammed in Fig. 4. The coordinates are calculated
from the knowledge of an object’s spectral reflectance
or transmittance properties, a light source interacting
with the object, and the spectral sensitivities of an
observer. For a number of reasons, the L, M, and S
spectral sensitivities, shown in Fig. 1, are not used;
rather, a set of curves mathematically related to spec-
tral sensitivities, known as color-matching functions,6,11

are used instead.
The complex signal processing of the visual system

results in a nonlinear (curved) relationship between
light imaged onto the eye and color perceptions, shown
in Fig. 5 for lightness. This means that for dark colors,
small changes in an object’s reflectance or transmittance
lead to large changes in lightness. For light colors, the
opposite occurs: Large changes in an object’s reflectance
or transmittance lead to small changes in lightness. This
curvature is known as a compressive function. This com-
pression also occurs for the chromatic channels.

In summary, the human visual system has three cone
types, each with unique spectral sensitivities that over-
lap greatly. They combine spatially forming opponent
signals: white/black, red/green, and yellow/blue. Each
channel has a different spatial resolution. The relation-
ship between incident light and color perceptions is non-
linear. A simple model, CIELAB, can be used to calculate
color perceptions from measurements of the object, its
illumination, and the observer.

The Digital Camera
Digital cameras consist of three main components: in-

put optics, sensor, and signal processing. The optical
system is typical of conventional photography in which
a scene is imaged on to a two-dimensional plane, much
like the human visual system.12 Light interacts with a
sensor, often a charged-couple device (CCD) that con-
verts light energy to an electrical signal.13 The sensor
may be one-dimensional—a single row of sensors—or
two-dimensional—a grid of sensors. In one-dimensional
systems, the row of sensors is scanned across the image
plane. These are “scanbacks” and are similar to flat-
bed scanners. Because scanning occurs, the objects be-

ing digitized are stationary. Through signal processing,
the electrical signal is converted to a digital signal.

For color, the one-dimensional detector array is
trebled, each array having either a red, green, or blue
filter in front of the detector, often referred to as “tri-
linear arrays.” In some systems, a color filter wheel is
positioned between the optical system and a mono-
chrome, i.e., grayscale, scanning array. The array scans
across the image plane multiple times, once for each
filter-wheel position. For two-dimensional arrays, de-
tectors are filtered in a mosaic pattern. Similar to the
human visual system, there is not the same number of
red, green, and blue sensors. Image processing is used
to interpolate missing data for each color plane, some-
times called “demosaicing.” The design of the mosaic and
accompanying image processing is optimized to mini-
mize artifacts caused by sampling, known as “aliasing.”
It is also possible to have three two-dimensional mono-
chrome arrays, each filtered with either a red, green, or
blue filter or a single two-dimensional array and filter
wheel. These systems do not require the complex inter-
polation procedures.

For color accuracy, the most important characteristic
of the digital camera is its spectral sensitivities. Ide-
ally, they should closely resemble the human visual
system’s spectral sensitivities shown in Fig. 1. Strictly,
a camera’s spectral sensitivities should be a linear trans-
formation of the human visual system’s spectral sensi-
tivities.14 That is, through a linear transformation, the
L, M, and S sensitivities are well estimated. Thus, CIE
color-matching functions, which do not resemble L, M,
and S sensitivities, meet this criterion. This is also
known as the Luther or Luther-Ives condition. For many
scanbacks, this critical characteristic is seldom achieved,
shown in Fig. 6. It is seen that these sensitivities have
very little overlap and the position of the red sensitiv-
ity is shifted considerably to longer wavelengths. It is

Figure 4. Conceptualized CIELAB color space.6

Figure 5. Nonlinear response between incident light and light-
ness. The incident light can have units of radiance, irradiance,
luminance, illuminance, or simply power per unit area. (CIE
L* is used as a representation of lightness.)
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important to note that these sensors were designed for
flat-bed scanners. These devices are optimized for im-
aging photographic materials. These sensitivities are
“densitometric,” rather than “colorimetric.” They are
designed to record the amounts, i.e., densities, of cyan,
magenta, and yellow dyes in color photographic materi-
als.15 Also shown in Fig. 6 is the spectral density, calcu-
lated by Dλ  = -Log10(Rλ ,gray/Rλ ,paper), of color-paper
photographic dyes reproducing a medium gray color. The
blue and green peak sensitivities of the scanback are
approximately coincident with the yellow and magenta
dye peaks. The red sensitivity is not coincident to the
cyan dye, but shifted to shorter wavelengths. This is a
result of the particular IR cut-off filter used in this cam-
era system, selected to improve its colorimetric perfor-
mance when used as a scanback. When the sensor is
used in a scanner, a different IR cut-off filter would be
used. If a photographic collection were digitized using
this type of scanback, it is possible to transform the R,
G, and B data to highly accurate L*, a*, b* estimates,
though the computations are complex and for some pho-
tographic materials, the spectral sensitivities would
need to be changed.16–18 When digitizing paintings, den-
sitometric spectral sensitivities will result in large er-
rors, even with the addition of color management,
demonstrated in a latter section. Unfortunately, these
types of digital cameras are the most common types used
to create digital archives.4

Figure 7 is a plot of the spectral sensitivities of typi-
cal digital cameras employing color CCD two-dimen-
sional arrays. There is considerably more overlap than
densitometric scanbacks. However, the red sensitivity
is still shifted towards longer wavelengths. It must be
noted that color accuracy is only one of a number of cri-
teria when designing a digital camera. Low-light sensi-
tivity,  image noise, resolution, read-out speed,
manufacturing costs, and so on all must be considered.

Many of these design criteria are mutually exclusive;
the final design is always a compromise.

Figure 8 is a plot of the spectral sensitivities of a mono-
chrome scanner with a filter wheel. The key design cri-
terion was color accuracy. The spectral sensitivities of
this camera system are much closer to the human vi-

Figure 6. Spectral sensitivities of a typical scanback (solid
lines), normalized to equal area. These sensitivities include
the CCD spectral sensitivity, filter transmittances, and infra-
red radiation blocking filter. The human visual system’s spec-
tral sensitivities, shown in Fig. 1, are also plotted (dashed lines)
as is the spectral density of typical photographic dyes com-
bined to reproduce a medium-gray color (dashed-dotted line).

Figure 7. Spectral sensitivities of a typical color CCD two-
dimensional array (solid lines), normalized to equal area. These
sensitivities include the CCD spectral sensitivity, filter trans-
mittances, and infrared radiation blocking filter. The human
visual system’s spectral sensitivities, shown in Fig. 1, are also
plotted (dashed lines).

Figure 8. Spectral sensitivities of a monochrome scanback with
three optimized color filters (solid lines), normalized to equal
area. These sensitivities include the CCD spectral sensitivity,
filter transmittances, and infrared radiation blocking filter.
The human visual system’s spectral sensitivities, shown in Fig.
1, are also plotted (dashed lines).
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sual system than the other sensitivities shown in Figs.
6 and 7. The red sensitivity has its peak response coin-
cident with the eye’s L sensitivity.

Finally, it is worthwhile showing the spectral sensitiv-
ity of a typical color transparency film, shown in Fig. 9.
Because of the inherent design of film in which sensitivi-
ties are stacked, limited choices for photosensitive mate-
rials, and a system that must simultaneously consider
image capture and display, the spectral sensitivities do
not closely resemble the human visual system. Further-
more, color-photographic materials are designed to make
pleasing reproductions, not necessarily accurate repro-
ductions. For all of these reasons, photographic repro-
ductions are not color accurate although with experience,
it is possible through filtration using color-compensat-
ing filters to achieve global color matches. This is done
routinely in museum photographic departments.

CCD detectors have a linear response to incident light,
shown in Fig. 10. This is a dramatic difference to the
nonlinearity shown in Fig. 5. Depending on how the
“raw” detector signal is processed and the digital prop-
erties of the stored image, this difference can be incon-
sequential or result in large visual artifacts. This will
be considered in detail later in this article.

The raw detector signals, in the form of an analog sig-
nal, i.e., millivolts, are amplified and digitized using an
analog-to-digital converter (ADC). The range of digital
values depends on the number of bits in the ADC. Most
commonly, 8, 12, or 16 bit ADC’s are used. This means
that there are 28 (256), 212 (4096) or 216 (65,536) number
of gray levels for each color channel (also called “color
levels” as well as “bit depth”). The greater the number
of levels, the less the amount of error caused by the con-
version from analog to digital signals. Visual artifacts
caused by an insufficient number of gray levels are de-
scribed and shown below in the next section.

Thus the camera has an inherent spatial and color
resolution. The spatial resolution is determined in large

part by the number of detectors. For example, high-reso-
lution scanning systems commonly have one-dimen-
sional arrays with 6000 or 8000 detector elements that
scan in 8000 or more steps. Thus the camera would have
spatial resolution of 6000 × 8000 or 8000 × 8000 pixels
(“picture elements”). This does not mean that a digital
camera with more pixels is always better than one with
less. Having many pixels combined with poor optics may
have poorer image quality than fewer pixels with excel-
lent optics. Ultimately, spatial resolution is determined
for the entire camera system including the optics, sen-
sor, and image processing, e.g., spatial interpolation, by
imaging targets designed to quantify resolution and
mathematically analyzing the digital images of these
targets.2,13,19 Color resolution is determined by the num-
ber of bits in the ADC. For high-quality digital cameras,
the ADC’s have a minimum of 12 bits.

The Digital Image
A digital image is simply a two-dimensional array of

numbers in which each number relates loosely to the
amount of light reflected by an object. The image reso-
lution defines the dimensions of the array. The concept
of relating numbers to light reflection is easier to un-
derstand when a black and white, i.e., “monochrome” or
“grayscale”, image is considered. Essentially, dark ar-
eas have small numbers while light areas have large
numbers. The most common bit depth for images is 8
bits per channel. Because digital values begin at 0, the
numbers range from 0 to 255 (28 – 1). A white is near
255 while a black is near 0.

There is a tendency to treat digital values as if they
were perceptions: a perfect white is 255, a perfect black
is 0, and a medium gray, e.g., Kodak Gray Card, is 128.
For color, all three channels have the identical digital
values. Although it is always true that a larger number
corresponds to a lighter gray, the relationship between
digital values and perception is rarely one to one. Re-

Figure 9. Spectral sensitivities of typical transparency film
(solid lines), in this case Eastman Kodak Ektachrome 64T.15

The human visual system’s spectral sensitivities, shown in Fig.
1, are also plotted (dashed lines).

Figure 10. Relationship between incident light and raw de-
tector signals for CCD arrays.
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lating digital values to perception requires system char-
acterization using standard test targets.

This difficulty in relating numbers to perceptions be-
comes further exacerbated when an image is output and
viewed. Simply taking a digital image and displaying it
on different computer platforms and printing it out on
different printers reveals the large range of renditions
that result from the identical image file. Again, this
problem is minimized through system characterization
using standard test targets and measurement equip-
ment. The origins of this problem begin with the inher-
ent nonlinearity of many imaging devices. Conventional
photography, broadcast television, computer-controlled
CRT and LCD displays, and printing all have a nonlin-
ear relationship between their input, e.g., exposure,
voltage, digital counts, dot area, and their output, mea-
sured as reflectance, transmittance, or light energy.

A specific nonlinearity worth exploring is the
nonlinearity of CRT displays, shown in Fig. 11. By coin-
cidence, this nonlinearity is similar to the human vi-
sual system, except inverted. This is an expansive
function that is inherent to all vacuum tubes. During
the early 20th century, a simple mathematical equation
was derived to relate input and output, shown as Eq.
1. 20,21 The normalized output was predicted by
exponentiating the normalized input. The specific ex-
ponent is notated by the Greek symbol gamma, γ. The
use of γ to notate an exponent stems from photographic
science.22 However, a film’s gamma has a different physi-
cal meaning than a display’s gamma. Digital systems
use gamma as shown in Eq. 1. This is a simplification.
For very small digital counts, the exponent is replaced
with a slope term, for example, sRGB.23 Furthermore,
this equation will only accurately model computer-con-
trolled CRT displays if the monitor has its black level
set perfectly: at 0 digital code value, there is not any
emitted light while at 1 digital code value, light is emit-
ted. Because this display set up is rarely achieved, more
complex equations have been derived.24,25

output

maximum output

input

maximum input







=






γ

(1)

Because CRT displays have inherent nonlinearity, raw
detector signals from digital cameras will lead to poor
image quality unless the image is first “gamma cor-
rected,” that is, the inherent nonlinearity is appropri-
ately compensated. The raw signals are exponentiated
by the inverse of the display’s gamma, shown in Eq. 2.
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The net effect of gamma correcting the raw image and
the display’s inherent nonlinearity is an image that ap-
pears correct. That is, the tonal properties appear rea-
sonable. Complete gamma correction is also a
simplification. Quite often, gamma correction is not fully
applied in order to compensate for dim (e.g., broadcast
television) or dark, e.g., projected slides, viewing condi-
tions reducing the perceived contrast in images. See
Hunt26 for greater details. This is shown in Fig. 12. Im-
posing an exponential function to a digital image is a
common and useful procedure.

The vast majority of color images are 24-bit images, 8
bits for each of the red, green, and blue channels. Yet,
for high-quality digital cameras, their analog-to-digital
converters are 12 or 16 bits per channel. In order to have
an 8-bit per channel image, the 4096 or 65,536 poten-
tial levels from the camera must be transformed to 256
levels. This is a reduction of information, and in simi-
lar fashion to spatial compression, this should be done
in a manner that minimizes visual artifacts. The most
common artifacts are banding in which smooth grada-
tions become banded, or blocking in which details are
lost, shown in Fig. 13. These are known as “quantiza-
tion errors.” When a continuous signal, i.e., analog sig-
nal, becomes discrete, i.e., digital, it is quantized into a
number of specific levels. The specific number of levels
is determined by the bit depth. For all imaging applica-
tions, 216 number of levels is a sufficient number of lev-
els such that quantization errors are essentially
eliminated. However, when converting to 8 bits per chan-
nel, quantization errors can be quite noticeable depend-
ing on the method of bit reduction. A numerical analysis
is considered in a later section, Optimal Encoding—
Lightness.

A useful method to analyze quantization is by evalu-
ating image histograms. The histograms for the Fig. 13
images are shown in Fig. 14. The height of a peak rep-
resents the number of pixels with a particular digital
value. The left-hand image has a histogram in which
each level between the minimum and maximum digital
counts has a number of pixels. Conversely, the right-
hand image is missing data, resulting in only a few lev-
els. The visual banding is quantified via an image
histogram.

Assessing Color Image Quality
Obviously, any digital-capture system is capable of

transforming an object into a digital image. The impor-
tant question is whether the digital image has archival
value as a digital representation. Can the digital val-
ues be used to estimate the color of the object? Even
though any “picture tells a thousand words,” digital
image-archives should do more; they should facilitate

Figure 11. CRT nonlinearity. This nonlinearity is inherent to
all vacuum tubes.20,21
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Figure 12. Photograph and gray scale imaged linearly and displayed with (left) and without (right) “gamma correction.” (Image
courtesy of C. McCabe).

Figure 13. The effects of quantization on image quality is shown in the right-hand figure. Notice that smooth gradations become
banded and that fine detail in the woman’s hair are lost.
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scientific documentation and study of works of art. The
goal is to have the capability to estimate quantitative
information about the object, not create a visually
equivalent representation for a defined output device
such as a display or printed document. Imaging test
targets along with the work of art and comparing stan-
dard values of the test target with its estimates is most
easily accomplished for analyzing the ability to estimate
the color of cultural heritage. The standard values of
interest are those that predict what observers see.
CIELAB provides these required values.

Two types of test targets should be used. The first is a
gray scale, such as the Kodak Gray Scale Q-13 or ISO
14524 chart.27 Gray-scale targets characterize the rela-
tionship between digital values and lightness (by plot-
ting the target’s average digital counts and measured
values), dynamic range (by evaluating whether each step
has a unique average digital count), and whether the
image is gray-balanced (by evaluating whether each
channel has matched digital counts). Although it is com-
mon practice to include the Kodak Separation Guide
along with a gray scale, this target cannot be used to
effectively evaluate color errors or for color management.
It was designed to validate the correct correspondence
between four-color film separations and screens. This
practice is unnecessary in modern graphic reproduction.
Ideally, gray scale and color targets should span the
lightness and color range of imaged objects and have
similar spectral, i.e., made using similar colorants, and
surface, i.e., gloss and texture, properties. For modern
photographic and printed materials, IT8 standard tar-
gets are available.28,29 For paintings, targets are largely
nonexistent. A target that is often used in broadcast
television in order to evaluate the color accuracy of
broadcast television cameras is the GretagMacbeth
ColorChecker Color Rendition Chart (usually called the
ColorChecker chart),30 shown in Web Fig. 1 and Ref. 6.
It is produced using painted papers. Because it has a
number of pigments, it is a convenient target to evalu-
ate the accuracy of digitized paintings. Both targets can
be cut up to make smaller targets so that resolution is

not significantly reduced when including these targets
along with the object undergoing digitization. The
GretagMacbeth ColorChecker Color Rendition Chart is
also available as a smaller target. A more comprehen-
sive target of greater than 100 colored patches has also
been recently released, the ColorChecker DC.

Both targets are first measured using a spectropho-
tometer, usually having bidirectional geometry, a geom-
etry that minimizes specular reflection from con-
tributing to the measured values.1 From the spectral
measurements, CIELAB values are calculated for a stan-
dard illuminant and observer, the specific standards
dependent on the intent of the archive. The choice of
illuminant and observer is complex. Should the object’s
color be defined by its appearance in an exhibition gal-
lery, its appearance during conservation, or its appear-
ance as envisioned by the artist? Exhibition galleries
can have a range of illumination from bluish natural
daylight (7500 K) to yellowish incandescent (2200 K).
7500 K and 2200 K refers to correlated color tempera-
ture, the temperature of a blackbody radiator which
generates a white light matching the color of the source
of interest. Sources and displays are often defined in
terms of their correlated color temperatures. Conserva-
tors tend to use a combination of natural and artificial
daylight, probably averaging to 6500 K. Depending on
the artist, there can be one or more illumination choices,
for example a plein air versus studio painter. Quite of-
ten, the image archive is defined by how the archive
will be used rather than the above considerations. If
the end product is a printed publication, CIE illuminant
D50 and the 1931 standard observer are used.31 If the
end product is web based, CIE illuminant D65 and the
1931 standard observer are used.23 These output-ori-
ented images should be considered derivative images,
created using principles of color management.6,15,32 For
the analyses in this article, CIE illuminant D65 and the
1964 standard observer were used because this corre-
sponds to viewing objects in a natural-daylight lit stu-
dio with north-facing windows or typical conservation
laboratories. In the author ’s experience, this combina-
tion leads to the best correlation between numerical and
visual color quality because CIELAB is most visually
uniform for D65 and metrics such as CIE94 are opti-
mized for visual data subtending a 10° field of view, rep-
resented by the 1964 standard observer. Also, for
metameric matching, the 1964 standard observer bet-
ter correlates with visual observations. This combina-
tion of illuminant and observer is in contradiction with
a number of imaging standards (e.g., Refs. 23, 31, and
32) that require the use of the 1931 standard observer
and often illuminant D50.

Assuming that the digital-camera system is gray-bal-
anced, the gray scale is used to ascertain whether the
image is linear or nonlinear with respect to light input.
Because CIELAB L* is nonlinearly related to incident
light as shown in Fig. 5, luminance factor, instead is used.
Luminance factor, also known as CIE tristimulus value
Y, is linearly related to incident light and is a standard
of light measurement.11 It is also used in the calculation
of L*. Spectrophotometers designed for color measure-
ment provide both CIE tristimulus values, X, Y, and Z,
and CIELAB coordinates. The average digital values for
each patch from the two images of the Kodak gray scale
shown in Fig. 12 are plotted against luminance factor in
Fig. 15. As expected, the raw digital counts are linearly
related to incident light. The gamma-corrected digital
values are nonlinearly related to incident light. This
nonlinearity can compensate for typical display

Figure 14. Histograms of the images shown in Fig. 13.
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nonlinearities, such as that shown in Fig. 11. This re-
sults in images that have reasonable tone reproduction,
as demonstrated in Fig. 12. Because of various types of
imaging noise, the curves are not perfectly smooth.

A scanback-type digital camera with spectral sensitivi-
ties similar to those shown in Fig. 6 was used to digitize
the Kodak Gray Scale and ColorChecker chart. The raw
signals were transformed to L*, a*, and b* coordinates,
the general methodology described below, Optimal En-
coding – Color. Both numerical and graphical analyses
are performed in order to evaluate the camera’s accu-
racy in estimating colorimetric data measured using a
spectrophotometer. Graphically, “vector plots” are made,
shown in Fig. 16. The uppermost portion of Fig. 16 is an
a*b* projection. The end of the tail represents the mea-
sured coordinates while the head represents the esti-
mated coordinates. Vectors pointing either towards or
away from the origin (the center of the dashed lines at
a* = 0, b* = 0) indicate chroma error. Chroma is defined
as the degree of departure of a color from a gray of the
same lightness.6 Vectors pointing away from the origin
indicate the estimate is over-predicting chroma. Vectors
pointing towards the origin indicate the estimate is un-
der-predicting chroma. Vectors pointing in directions
other than towards or away from the origin indicate hue
errors. The length of the vector indicates the magnitude
of the chromatic error. Ideally, the errors should be suffi-
ciently small such that only the arrowhead is shown with-
out a tail. There are some systematic trends: yellows have
large chroma errors, blues have large hue errors, and
reds and greens have relatively smaller errors. The bot-
tom graph of Fig. 16 shows an L*C*ab projection where
C*ab represents chroma (    a b* *2 2+ ). Vectors that are point-
ing upwards indicate that the estimation is too light;
vectors pointing downward indicate that the estimation
is too dark. Vectors parallel with the C*ab axis indicate
accurate lightness estimation. There are two systematic
trends. First, many of the chromatic samples’ lightnesses
have been underestimated because the vectors are point-

ing downwards. Second, the lighter samples of the
ColorChecker ’s gray scale have been over estimated (vec-
tors pointing upwards) and the darker neutrals have been
under estimated (vectors pointing downwards). Ordi-
narily, errors of this type for neutral samples indicate
calibration errors in which there is a mismatch between
actual and assumed photometric properties of the image
capture system, that is, a mismatch in gamma. In this
case, these estimation errors were caused by spatial non-
uniformities in illumination. Non-uniform illumination
of the Kodak gray scale was interpreted as a slight non-
linear photometric response. This was compensated for
during color management. Because the spatial non-uni-
formities varied across the image plane, this compensa-
tion resulted in systematic errors in different image
locations.

These differences are quantified numerically by cal-
culating differences in color positions. CIELAB is a rect-
angular color space with L*, a*, and b* axes (shown in
Fig. 4). Thus ∆L*, ∆a*, and ∆b* values are calculated
where the Greek symbol ∆ (“delta”) represents differ-
ence. ∆L* is calculated by subtracting the measured
value from the estimated value, i.e., ∆L* = L*estimated –
L*measured, and in similar fashion for the other coordi-
nates. A positive ∆ value indicates that the estimated
value has more of the particular quantity than the mea-
sured value. It is also useful to describe differences in

Figure 15. Luminance factor plotted against digital counts
for the Kodak gray scales from Fig. 12.

Figure 16. CIELAB vector plots in which the arrowhead de-
fines the coordinates of the estimated values while the end of
the arrow tail defines the coordinates of the measured values.
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lightness, chroma (∆C*ab), and hue (∆H*ab), rather than
lightness, redness/greenness, and yellowness/blueness,
particularly for chromatic samples. The equations are
given in Refs. 6 and 11. All of these values have been
tabulated in Table I. With experience, the numerical
information can be quite useful. In many cases, the
graphical information is more intuitive.

An obvious question concerns the magnitude of error.
Are these errors large or small? Are they visible? Are
they objectionable? Simply stated, these errors are large
and objectionable, particularly since the goal is to esti-
mate colorimetry from an image archive. One problem
is the systematic nature of some of the errors shown in
Fig. 16. The second problem is the size of these errors.
When all three dimensions are considered simulta-
neously, the length of the vector can be used as an error
metric. In CIE terminology, this is called a total color
difference and is notated by ∆E*ab. However, CIELAB
as a color-difference space is poorly correlated with vi-
sual judgments of color difference.6 The last column in
Table I lists a weighted color difference, ∆E*94, also re-
ferred to as CIE94. This equation was designed for in-
dustries manufacturing colored products.33 The
weighting was optimized to improve correlation with
visual tolerances. A CIE94 color difference of unity is
slightly above a visual threshold. Thus, if pairs of col-
ored patches were prepared with these differences in
their CIELAB coordinates, the differences would all be
obvious, simulated in Web Fig. 2.

It is important to point out that CIE94 was designed
to correlate with comparisons of the quality of colored
patches, not colored images. As a rule of thumb, two
pictorial images viewed side by side with systematic
errors that result in an average ∆E*ab of 2.2 or less are
indistinguishable from one another.34,35 If the errors are

around 5∆E*ab on average, the accuracy is acceptable
for high-quality color reproduction. However, the 2.2 and
5∆E*ab rule of thumb applies to imaging systems where
errors from both image input and output occur. Because
this analysis is only considering image input, the er-
rors should be even smaller. In the author ’s opinion, a
well-designed image input device should result in aver-
age errors of less than 2∆E*ab for the ColorChecker. Pres-
ently, there has been insufficient evaluation of CIE94’s
effectiveness for predicting the color quality of pictorial
images and accordingly, recommended figures of merit
cannot be given. Also, this equation will soon be updated
by the CIE.

As a final analysis, a color-difference histogram should
be evaluated, shown in Fig. 17. Quite often, differences
are not normally distributed and average and maximum
errors can be misleading.

Despite color management, these errors are large al-
though not unexpected. It is not surprising given the
large discrepancy between the camera and human spec-
tral sensitivities, plotted in Fig. 6. Although the cam-
era does a fine job in recording red, green, and blue light,
the human visual system does not “record” light in the
same manner. No matter how complex the color man-
agement system, there will always be estimation errors.

Optimal Encoding – Lightness
From the review of digital imaging, minimizing quanti-
zation errors is critical in order to maximize an archive’s
scientific value. This is achieved by the optimal encod-
ing of the lightness properties of the work of art. The
first step towards optimization is by review of the proper
digital capture practices for two-dimensional works of
art and documents, listed in Table II.

TABLE I. Colorimetric Errors Comparing Measured and Estimated Values for a GretagMacbeth ColorChecker
Color Rendition Chart Imaged with a Scanback-Type Digital Camera Followed by Color Management

Sample ∆L* ∆a* ∆b* ∆C*ab ∆H*ab ∆E*ab ∆E*94

Dark Skin -6.0 -0.3 3.6 2.5 -2.6 7.0 6.5
Light Skin -2.6 4.1 -0.4 2.6 3.2 4.9 3.8
Blue Sky -4.2 0.5 -3.9 3.7 -1.3 5.8 4.7
Foliage -6.8 -1.4 14.9 14.5 4.0 16.5 10.3
Blue Flower -4.9 -1.0 -4.7 4.3 2.1 6.8 5.5
Bluish Green -5.8 5.2 -4.6 -5.6 -4.2 9.1 6.9
Orange -7.0 -0.8 4.5 3.4 -3.1 8.4 7.2
Purplish Blue -4.1 -6.6 -7.5 6.9 7.1 10.7 6.5
Moderate Red -3.8 4.8 -4.3 3.7 5.3 7.5 5.1
Purple -6.4 -8.8 -0.3 -5.4 7.0 10.9 8.2
Yellow Green -6.5 -2.5 18.0 18.0 2.7 19.3 8.2
Orange Yellow -8.2 -7.1 12.6 10.2 -10.2 16.7 10.0
Blue -8.1 -11.7 -12.5 10.4 13.6 18.9 11.6
Green -6.5 6.4 7.0 1.6 9.3 11.5 8.5
Red -8.7 6.0 -4.2 4.0 6.1 11.3 9.4
Yellow -4.6 -4.8 28.5 28.2 -6.1 29.3 8.3
Magenta -3.3 -1.1 -1.8 -0.3 2.1 3.9 3.5
Cyan -6.3 12.1 -12.7 1.3 -17.5 18.6 12.9
White 6.1 -3.9 1.1 2.4 -3.2 7.3 7.1
Neutral 8 1.5 0.6 -1.7 0.2 1.8 2.3 2.3
Neutral 6.5 -3.3 0.5 -1.2 1.1 0.7 3.5 3.5
Neutral 5 -5.7 0.3 -0.5 -0.2 -0.5 5.8 5.8
Neutral 3.5 -6.6 0.7 0.4 -0.5 -0.6 6.7 6.7
Black -8.8 0.6 1.1 -0.8 -0.9 8.8 8.8

Average -5.0 -0.4 1.3 4.4 0.6 10.5 7.1
Maximum 29.3 12.9
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Many of these practices are consistent with proper
conventional photographic practices. It is worth stress-
ing the importance of having sufficient illumination and
the maximum aperture to keep exposure (scan) times
short. With an increase in exposure time, noise accu-
mulates.13 This is observed most easily by evaluating
the blue channel in dark image areas. Noise appears as
a random speckled pattern, shown in Fig. 18. The blue
channel is used because CCD detectors have their poor-
est sensitivity to the blue region of the visible spectrum,
and therefore are most affected by noise accumulation,
particularly when incandescent illumination is used.
From a conservation perspective, minimizing exposure
times is also desirable, often a problem with scanbacks.4

Techniques to evaluate image noise in digital capture
are described in Refs. 2, 13, 36, and 37.

In conventional photography, many films are “very for-
giving” if the image is either under- or over-exposed.
Because most films are designed for photographing
scenes with very large dynamic ranges, there is more
exposure latitude when capturing paintings. CCD de-
tectors have less exposure latitude; an incorrect expo-
sure is “less forgiving.” If the exposure time is too long,
the CCD array saturates causing blooming. A specular
highlight smears in the direction of the one-dimensional
array. Also, light areas are clipped, mapped to the same
maximum value, resulting in a loss of highlight infor-
mation. If the exposure time is too short, the raw data
do not encompass the full range of possible digital val-
ues. This results in quantization error.

A technique to evaluate the effects of quantization on
color quality is to define an imaging system, assume
that there is 1 bit of uncertainty (accomplished by add-
ing 1 bit to the signal), and evaluate the effect of this
uncertainty on colorimetric error.38 For this analysis,
only ∆L* errors were considered based on analyzing the
Kodak gray scale. If the raw camera data were 16 bit
and the digital image encompassed the full possible
dynamic range (0 – 65,535), there would not be any sig-
nificant error as shown in Table III. When the quanti-
zation is reduced to 12 bits, errors appear, largely for
the darker samples. The 10-bit (0 – 1023) level of error
could be observable in smoothly varying colors. At 8 bits
(0 – 255), there are large errors, particularly for dark
colors. If exposure times are too short, this is equiva-
lent to reducing the bit depth. Thus the 10 and 8 bit
data shown in Table III correspond to the effects of un-
derexposure using a digital camera. Digital uncertainty
from linear signals has a greater visual effect for dark
colors. The systematic trend, in which errors increase
with decreasing lightness, is explained by the human
visual system’s nonlinear lightness response, shown in
Fig. 5. An error of one bit for a dark color results in a
larger visual difference in lightness than a one-bit error

Figure 17. CIE94 histogram of the data given in Table I.

TABLE II. List of Proper Digital Capture Practices

Object and image planes parallel

Correct camera aperture for appropriate depth of field

Spatially uniform illumination across the object

Sufficient amount of illumination

Amount of ultraviolet and infrared radiation minimized (or eliminated by
filtering)

Flare (stray light) minimized

Specular reflections minimized

Digital cropping minimized

Characterization targets included along with object

Exposure time appropriate to maximize dynamic range of raw digital
data

Exposure times or amplification for each channel appropriate to yield
gray balance

Figure 18. Incorrect exposure time or an insufficient amount
of light results in excessive image noise, shown for the blue
channel.
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for a light color. This is seen in the 8 bit data. The er-
rors decrease with increasing lightness of the gray scale.
This would result in large banding, especially in shad-
ows and dark colors. Shadow detail would also be lost.
Clearly, it is critical to set the exposure time properly.

Based on this simple analysis, a camera’s analog to
digital converter should have a minimum of 12 bits. This
is in agreement with Olson39 who found that quantiza-
tion errors should result in a maximum ∆L* of 0.25 or
less. His analysis accounted for both the human visual
system’s color and spatial properties. Hill40 performed
an extensive computational analysis for theoretical and
actual color gamuts and also concluded that linear en-
coding required 11 or 12 bits.

As Table III shows, 8-bit quantization results in large
visual errors for linear signals. However, when 12 or 16
bit data are transformed to 8 bit per channel data, there
isn’t a restriction that the transformation be linear. It
was noted above that by coincidence, the nonlinearities
of CRT displays are nearly the exact inverse of the hu-
man visual system’s nonlinearity (seen by comparing
Figs. 5 and 11). As a consequence, gamma correcting
signals as part of the bit-reduction transformation has
the “free” benefit of reducing visual errors. This is shown
in Table IV in which 12 bit signals encompassing the
full dynamic range (0 – 4095) are gamma corrected [i.e.,
Eq. 2] before being mapped to 8 bits. Mapping linear
12-bit raw signals nonlinearly onto 8-bit signals is
clearly advantageous. The level of improvement is
equivalent to increasing bit depth.

The relationship between incident light, gamma-cor-
rected signals, and normalized lightness, i.e., CIE L*/
100, are plotted in Fig. 19. All these curves have simi-
lar shape; their differences are not significant in terms
of how the encoding affects quantization errors. As a
comparison, a Kodak gray scale was photographed us-
ing 4” × 5” positive film in a museum photographic de-
partment, then digitized using a drum scanner with a
linear response. The relationship between incident light

and raw 12-bit signals is plotted in Fig. 20. This
nonlinearity is typical of conventional photography,
though quite different than what is usually shown as
the nonlinear response of film. This is for two reasons:
linear signals are plotted rather than logarithmic sig-
nals and when photographing paintings using controlled

TABLE III. The Effects of Quantization Levels on Lightness
Errors, ∆L*

Kodak gray scale L* ∆L* for ∆L* for ∆L* for ∆L* for
16 bits 12 bits 10 bits 8 bits

19 11.70 0.01 0.15 0.47 2.22
18 11.86 0.01 0.15 0.50 2.22
17 14.27 0.01 0.13 0.50 1.93
B 16.54 0.01 0.11 0.50 1.72
15 19.43 0.01 0.09 0.49 1.43
14 21.53 0.01 0.08 0.48 1.33
13 25.46 0.00 0.07 0.47 1.05
12 27.63 0.00 0.06 0.46 0.95
11 31.41 0.00 0.05 0.45 0.82
10 35.09 0.00 0.04 0.44 0.70
9 38.62 0.00 0.04 0.43 0.62
8 43.56 0.00 0.03 0.42 0.52
M 48.08 0.00 0.03 0.41 0.45
6 53.35 0.00 0.02 0.40 0.38
5 59.17 0.00 0.02 0.39 0.32
4 65.66 0.00 0.02 0.39 0.28
3 72.53 0.00 0.01 0.01 0.24
2 79.37 0.00 0.01 0.35 0.20
1 87.88 0.00 0.01 0.41 0.17
A 96.63 0.00 0.01 0.01 0.14

Average ∆L* 0.00 0.06 0.40 0.88
Maximum ∆L* 0.01 0.15 0.50 2.22

TABLE IV. The Effects of Gamma on Lightness Errors, ∆I*.
(See text for an explanation of the computations.)

Kodak gray scale L* ∆L* for ∆L* for ∆L* for ∆L* for ∆L* for scanned
γ = 3 γ =2.5 γ = 2 γ = 1 photography

19 11.70 0.00 0.00 0.01 2.22 1.43
18 11.86 0.03 0.04 0.08 2.22 1.43
17 14.27 0.17 0.20 0.27 1.93 1.31
B 16.54 0.23 0.26 0.34 1.72 1.13
15 19.43 0.29 0.31 0.38 1.43 1.01
14 21.53 0.31 0.33 0.39 1.33 0.92
13 25.46 0.35 0.36 0.40 1.05 0.76
12 27.63 0.36 0.37 0.41 0.95 0.69
11 31.41 0.38 0.38 0.40 0.82 0.59
10 35.09 0.39 0.39 0.40 0.70 0.49
9 38.62 0.40 0.39 0.39 0.62 0.43
8 43.56 0.41 0.39 0.38 0.52 0.34
M 48.08 0.42 0.39 0.37 0.45 0.27
6 53.35 0.42 0.39 0.36 0.38 0.21
5 59.17 0.43 0.38 0.35 0.32 0.17
4 65.66 0.43 0.38 0.34 0.28 0.18
3 72.53 0.43 0.38 0.32 0.24 0.24
2 79.37 0.43 0.37 0.31 0.20 0.32
1 87.88 0.43 0.37 0.30 0.17 0.40
A 96.63 0.44 0.36  0.29 0.14 0.46

Average ∆L* 0.34 0.32 0.32 0.88 0.64
Maximum ∆L* 0.44 0.39 0.41 2.22 1.43

Figure 19. Relationship between light, expressed as luminance
factor, and lightness (solid line) or gamma-corrected signals (γ
= 3: dashed line; γ = 2.5: dotted line; γ = 2: dot-dashed line).
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illumination, the full dynamic range of conventional film
is not utilized. These data were used to perform a quan-
tization error analysis in which the photographic
nonlinearity was used rather than a gamma function in
transforming 12-bit to 8-bit per channel data, also shown
in Table IV. The photographic nonlinearity has much
larger error then any of the gamma-corrected signals.
That is, the digitized photographic transparency re-
sulted in greater quantization errors than direct digi-
tal capture.

There are several different gamma functions used in
the imaging industry. These can be either de facto or
legitimate national or international standards. Choices
include 1.8, the system gamma of Apple computer sys-
tems; 2.2, the inherent nonlinearity of CRT displays
when modeled by Eq. 1 and recently incorporated into
the sRGB display encoding;23 3.0, the nonlinearity in-
corporated into CIELAB;11 2.3, an empirical fit to CIE
L* used in the RLAB color-appearance model.41 The CIE
L* equation, L* = 116(Y/Yn)1/3 – 16 where Y is luminance
factor of a stimulus and Yn is the luminance factor of
the white object-color stimulus, has an offset term. If
the offset is removed and the following equation is fit:
L*/100 = (Y/Yn)1/γ, a gamma of 2.3 results when the
independent data are uniformly sampled by L* (i.e.,
Y/Yn = 0.00, 0.01, 0.03, 0.06, 0.11 … ) and 2.4 when the
independent data are uniformly sampled by Y/Yn (i.e.,
Y/Yn = 0.00, 0.10, 0.20, 0.30, 0.40 … ). When an offset is
included, the sRGB exponent is 2.4. The analyses shown
in Tables III and IV were repeated. For γ = 1.8 the aver-
age error was 0.35 ∆L*; for the other exponents, the
average was 0.34. These differences were not statisti-
cally significant, therefore, the particular exponent is
not critical.

The above analyses lead to the following recommen-
dations. First, the digital range of the raw data should
be maximized, but without clipping. For 12-bit data, the
maximum digital values should not exceed about 4000,
likely specular highlights. For sample A of the Kodak

Gray Scale, the average digital value should be around
3900. For 16-bit data, the maximum digital values
should not exceed about 64,000 and sample A of the
Kodak Gray Scale should have an average digital value
of about 63,000. When writing images in standardized
formats such as TIFF, the raw data should be directly
saved as 16-bit TIFF. For 12-bit data, the digital values
are premultiplied by 24, i.e., they are bit shifted so that
the images can be viewed in Photoshop™ without ad-
justment. This does not affect quantization errors. If
this premultiplification (bit shifting) is not performed
the displayed image will be very dark. For 8-bit TIFF,
the raw data must be rescaled and gamma corrected.
The maximum digital value should not exceed about 250.
The National Archives and Records Administration
specifies digital values of 247 and 8 for patches A and
19, respectively of the Kodak Gray Scale.42 For sample
A of the Kodak Gray Scale, the average digital value
should be around 245. The minimum values for all bit
depths should approach 0. However, for a variety of com-
putational and image noise reasons, the values for
sample 19 of the Kodak Gray scale will be about 5, 80,
or 1000 for 8-, 12-, and 16-bit data, respectively. The
key is ensuring that the available range of digital val-
ues is maximized during image acquisition but without
clipping. That is, it is critical to achieve proper expo-
sure. If software is available to display raw data histo-
grams, this can provide the needed information. Proper
exposure should not be verified by looking at the digi-
tized image on a monitor. Because the display is 8 bits
per channel, camera software will have user controlled
adjustments to impose a transfer function, sometimes
called a “process curve”, to convert from raw to display
data. The same curve will be used to generate the 8 bit
TIFF file. Although the image may look reasonable,
quantization error is still being introduced.

Optimal Encoding – Color
Dealing with color is significantly more complex than
optimally encoding lightness. As described above, most
digital cameras in use today have inappropriate spec-
tral sensitivities. If the sensor was optimized for photo-
graphic materials, shown in Fig. 6, or for consumer
applications, shown in Fig. 7, they are not accurate color
measurement instruments. For scientific imaging, the
camera should be thought of as an imaging colorimeter
or spectrometer. Several systems have been designed
as imaging colorimeters: the IBM Pro 3000 system,43–45

the VASARI system,46,47 and the MARC system.48 Sys-
tems designed as imaging spectrometers are still at the
research and development stage, summarized in Refs.
49, 50 and 51.

An experiment was performed to evaluate to colori-
metric potential of four imaging systems, three digital
cameras and scanned conventional photography. Cam-
era A has spectral sensitivities closely related to the
human visual system, similar to those shown in Fig. 8.
It consists of a monochrome sensor and three color fil-
ters. Camera B has spectral sensitivities similar to those
shown in Fig. 7. It consists of a two-dimensional color
CCD array. Camera C has spectral sensitivities similar
to those shown in Fig. 6. It is a scanback employing a
flat-bed scanner-type trilinear color-filter array. An 8”
× 10” view camera along with tungsten-balanced chrome
64 ISO film was used for conventional photography.
Color compensation filters were used to achieve a vi-
sual color match between neutral areas of the test tar-
get and its reproduction. The transparency was digitized

Figure 20. Relationship between light, expressed as luminance
factor, and normalized 12-bit raw signals for a digitized pho-
tographic positive transparency.
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using a flat-bed scanner with densitometric spectral
sensitivities similar to Fig. 6. The illumination for all
four systems was tungsten halogen with a correlated
color temperature around 3200 K. Image capture was
performed adhering to the practices outlined in Table
II. All four digital systems have 12-bit analog to digital
converters. The raw signals were recorded as 16-bit
TIFF uncompressed. There was not any signal process-
ing such as gamma correction imposed. Thus, these im-
ages were “linear RGB.” However, because of differences
in spectral sensitivity, light sensitivity (dynamic range),
the spectral characteristics of tungsten illumination,
and flare, the range of digital values were quite differ-
ent for each channel and for each imaging system.

Three targets were imaged: the Kodak Gray Scale, the
GretagMacbeth ColorChecker Color Rendition Chart,
and a custom target of 68 artist oil paints, shown in
Web Fig. 3. Each of the paints was mixed with titanium
white in order to maximize the spectral “fingerprint” of
a given pigment. The Kodak Gray Scale and
ColorChecker chart were used to derive a transforma-
tion from R, G, and B to L*, a*, and b* values. The paint
target was used to evaluate the accuracy of the trans-
formation. The transformation can be thought of as
employing color management principles.

The first step was to develop a transform that linear-
ized the raw data with respect to CIELAB. The general
equation is shown as follows:
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where L* is the measured L* values of the Kodak Gray
Scale, d is either the average raw R, G, or B digital val-
ues of each gray scale sample, and the remaining terms
are model coefficients. This particular equation enables
amplification (kg,1), properties of the ADC (d/65,535),
flare (ko), and differences in measurement geometry
between the spectrophotometer used to measure the
gray scale and the digital capture system (kg,2) to be
taken into account. In most cases, not all of the model
terms were statistically significant and the equation was
reduced in complexity accordingly. This equation can be
thought of as a more analytical form of the exponential
model described by Eq. 1. Nonlinear optimization was
used to estimate the model parameters for each chan-
nel and for each camera. The camera signals, linear-
ized with respect to L*, are referred to as R*, G*, and
B*. Equation 3 also facilitates gray balance. In the case
of digitized conventional photography, a different ap-
proach was taken to linearize the raw signals because
the nonlinearity shown in Fig. 22 cannot be well fit us-
ing Eq. 3. A fifth-order polynomial was used, Eq. 4:
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where β 0 – β5 are model coefficients estimated by linear
optimization.

The average R*, G*, and B* values of each color patch
of the ColorChecker were used to develop a linear trans-
formation, Eq. 5:

    

ˆ* * * *

ˆ* * * *

ˆ* * * *

, , ,

, , ,

, , ,

L R G B

a R G B

b R G B

= + +

= + +

= + +

β β β

β β β

β β β

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

(5)

where each β term is a model coefficient. Hats (“^”) are
shown over the CIELAB values because these are esti-
mated values. The model coefficients were constrained
via Eq. 6:
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The purpose of Eq. 6 was to maintain gray balance.
The model parameters for each camera were estimated
using least-squares linear optimization. A numerical ex-
ample of this approach to color management is presented
in Ref. 6. This is referred to as a colorimetric transfor-
mation. Although polynomial expansions of Eq. 5 are
often used for color management, these often do not re-
sult in improved performance when independent data
are evaluated.

Before evaluating the independent data, the oil paint
target, it is useful to evaluate the modeling perfor-
mance of the Kodak Gray Scale and ColorChecker
chart. The average CIE94 color difference between
measured and estimated values for the Gray Scale var-
ied between 0.5 and 1.0. The estimation performance
for the ColorChecker chart is shown in Figs. 21 and
22. As expected, the closer the camera’s spectral sensi-
tivities are to the human visual system, the better the
colorimetric estimation. The causes for the large er-
rors for camera C were discussed above. The errors for
cameras A and B are random indicating that this simple
transformation is performing appropriately. It was
surprising that the performance for camera B was not
better. The MARC system, having similar spectral sen-
sitivities, has a reported48 estimation error of 2.5∆E*ab

for the ColorChecker whereas for this analysis, the
average was 6∆E*ab. Further analyses revealed that the
colorimetric performance was very sensitive to the il-
lumination system’s spectral power distribution, spa-
tial uniformity, and illuminance, as well as setting the
optimal exposure time. Prefiltering the source in or-
der to balance the three channels and improve its day-
light characteristics, numerical flat-fielding in order
to improve spatial uniformity, signal averaging, and
more careful attention to exposure reduced the aver-
age estimation error to 3.5∆E*ab. The Marc I camera
employed a Sony ICX021AK sensor whereas camera B
employed a Sony ICX085AK sensor. The latter sensor
has improved light sensitivity but its spectral sensi-
tivities are poorer approximations to the human visual
system. Thus, the reduction in estimation accuracy
from 2.5 to 3.5∆E*ab is consistent with these differences.
All of the camera systems’ colorimetric estimation ac-
curacies were highly dependent on image capture char-
acteristics underscoring the importance of proper
capture procedures listed in Table II. The colorimetric
accuracy of digitized film was intermediate between
cameras B and C, consistent with film’s spectral sensi-
tivities shown in Fig. 9.

The estimation accuracy for the artist oil paint target
is shown in Figs. 23 through 25. The trends for the direct
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Figure 21. CIELAB a*b* projection vector plots showing estimation errors for the ColorChecker chart.

Figure 22. CIELAB L*C*ab projection vector plots showing estimation errors for the ColorChecker chart.
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digital capture systems were the same as the
ColorChecker accuracy: Camera A had the least estima-
tion error while camera C had the greatest estimation
error. The digitized photographic system had the poorest
estimation accuracy of the four imaging systems. For each
imaging system, there were systematic errors; that is,
certain color regions were not accurately estimated. This
is observed by evaluating the error vectors. For example,
the +a*+b* and –a*–b* quadrants had vectors pointed in
similar directions for camera C. Lightness was underes-
timated for the scanned photographic system. Ideally,
error vectors should be largely random and small, such
as those shown for the ColorChecker in Fig. 21. Because
CIELAB is not visually uniform, caution should be taken
when evaluating error-vector plots. The same length vec-
tor corresponds to a different visual difference depend-
ing on the chroma of the measured color. Thus, the overall
accuracy is judged by looking at the histograms plotted
in Fig. 25. Clearly, camera A has the highest estimation
accuracy. One important property is to minimize the
maximum errors. Camera A’s largest error is 6.8 ∆E*94.
The errors form a tight grouping. As a comparison, the
digitized film has errors up to 12 ∆E*94 and the grouping
is broadly dispersed.

The differences in estimation accuracy between the
ColorChecker and the artist paint target, underscores
the importance of independent verification. Achieving
high estimation accuracy for a characterization target
is much simpler than achieving high accuracy when
using the system for imaging paintings.

As an estimation problem, residual errors result, the
magnitude of the errors dependent on the inherent prop-
erties of the camera and also on the method of estima-
tion. A linear method has been described; nonlinear
methods may result in improved performance, shown
in Ref. 6 or using higher order matrices or multi-dimen-
sional look-up tables. This is an evolving area of re-
search. However, no matter how complex the color
management system, the trends described above would
persist: Digitized photographic positive transparencies
and densitometric-type scanbacks (Camera C) will al-
ways result in large estimation errors; the improvement
in performance is correlated with the similarity of a in-
put device’s spectral sensitivities to the human visual
system.

The above analyses lead to the following recommen-
dations: The archival master image should be the raw
data, converted to a standardized format such as 16-bit
TIFF uncompressed. Ideally, the image should include
the work of art, a gray scale, and a color target. The
color target should replace the Kodak Separation Guide.
Because the TIFF format supports image tags (TIFF
stands for Tagged Image File Format), spectral data of
the gray scale and color targets should be a part of the
tag. If possible, the spectral power distribution of the
illumination and the spectral sensitivities of the cam-
era system should also be included. If it isn’t practical
to include characterization targets in the image, the av-
erage digital counts of each target’s color patches, cap-
tured under identical conditions, should be included in

Figure 23. CIELAB a*b* projection vector plots showing estimation errors for the artist oil target.
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the tag. A dictionary of standard image metadata is in
preparation by the National Information Standards Or-
ganization, NISO.52 Images of the characterization tar-
gets should also be archived. If 8 bit data must be stored,
gamma correction between 1.8 and 2.4 should first be
applied. Color management should not be applied to the
digital master. Rather, color management should be
applied to various derivative images. The necessary in-
formation to implement reasonable color management
stems from the characterization targets.

The Future
As color measurement developed during the 20th Cen-
tury, there was a transition from predominantly colo-
rimeters to predominantly spectrophotometers. That is,
trichromatic instruments were replaced with spectral
instruments. The principal advantages were numerous.
The spectral data enabled an object’s color to be calcu-
lated for any illuminant and observer of interest. Thus,
the quality of a color match could be evaluated under
any number of illuminating and viewing conditions.
Second, the spectral data enabled a variety of analyti-
cal analyses such as colorant identification, instrumen-
tal-based color matching, and colorant strength.6 Finally,
and perhaps most importantly, the presence or absence
of metamerism could be readily observed. As an illus-
trative example, Pablo Picasso’s The Tragedy was re-
stored in 1937 and 1997. During 1937, paint losses were
filled and inpainted. See the National Gallery of Art

website: www.nga.gov. The inpainted areas appear pur-
plish when photographed, easily seen in the bottom-
right portion of the web image. Spectral measurements
of untreated and inpainted areas reveal that Picasso
used prussian blue while the conservator used ultra-
marine blue, shown in Fig. 26. Unfortunately, most of
the 1937 inpainting could not be removed during 1997;
hence the pigment mismatch persists. Because the spec-
tral sensitivity of the red sensitive layer of film is shifted
towards longer wavelengths compared with the human
visual system as shown in Fig. 9, the ultramarine was
reproduced as a grayish purple rather than a grayish
blue. Spectral measurements would have alerted the
conservator that a metameric match was produced. This
specific problem with blue pigments has been described
by Staniforth.53 Clearly, an imaging spectrometer would
be a useful analytical tool. Furthermore, the lack of colo-
rimetric accuracy, causing the large color shift in this
example, and the need to standardize an illuminant and
observer, as described above, would be eliminated.

Spectral-based imaging of artwork is currently at a
research stage, summarized in Refs. 49 through 51. Us-
ing camera A, a novel approach to spectral imaging was
evaluated in which a second image, taken by filtering
the camera lens with a light blue filter (Wratten 38),
was combined computationally to estimate the spectral
reflectance of an image area.54–57 The spectral and cam-
era data of the Kodak Gray Scale and ColorChecker
chart were used to derive the necessary transforms.
Following spectral estimation, CIELAB coordinates

Figure 24. CIELAB L*C*ab projection vector plots showing estimation errors for the artist oil target.
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were calculated in the usual way. The ColorChecker was
estimated to an average accuracy of 0.3∆E*94 (1.6∆E*ab).
The artist’s paint target had an average accuracy of
2.0∆E*94, nearly a twofold improvement in colorimetric
accuracy.

One of the very interesting aspects of this spectral es-
timation approach is that spectra are generated from a
conventional digital color camera. The spectra can be used
for a variety of color reproduction58–61 and conservation62–

65 applications. Using only spectral information from the
ColorChecker chart, the estimated spectral reflectance
factor data for four blue pigments from the artist’s paint
target are plotted in Fig. 27. The fits are fairly typical of
spectral-estimation techniques: the estimates tend to
have greater spectral selectivity. The overall shapes are
reasonably predicted. These estimated spectra were
evaluated using a statistical method of pigment identifi-
cation based on reflectance spectrophotometry.65 The fol-
lowing pigments formed the database of possible blue
pigments: cobalt, ultramarine, manganese, prussian, ph-
thalocyanine, cerulean, and indanthrone. The database
was formed from the artist’s paint target. The cobalt and
ultramarine blue spectra were correctly identified. Man-
ganese blue was incorrectly identified as phthalocyanine

Figure 25. CIE94 color difference histogram showing estimation errors for the artist oil target

Figure 26. Spectral reflectance factor measurements of Pablo
Picasso’s The Tragedy (solid line) and 1937 inpainting (dashed line).
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blue. This was due to the secondary peak at 650 nm in
the estimated spectrum. The prussian blue sample was
incorrectly identified as manganese blue. The spectral
estimation was repeated, except that spectral informa-
tion from the entire painted target was used in place of
the ColorChecker. The estimated spectra are also plot-
ted in Fig. 27. In all cases the spectral fits are improved.
The pigment identification was repeated. Only the
prussian blue sample was incorrectly identified, again
as manganese blue. Given the known similarity in spec-
tral properties between prussian and manganese blues,53

these results were very encouraging.

Conclusions
An archival digital image of a work of art should facili-
tate a variety of applications including web-based im-
ages, color reproduction, scientific study, art historical
and other scholarly studies, and most importantly, an
accurate recording of its physical properties. As de-
scribed, achieving an accurate recording is difficult and
requires specialized hardware, optimal imaging prac-
tices, and specialized software.

Two issues need to be emphasized. The first is that
scanback sensors are very common among the museum
community. Because the number of pixels is often the
dominant criterion when specifying an imaging system,
scanbacks fare quite well. However, the majority of tri-
filter scanbacks are densitometric rather than colorimet-
ric. As described above, this results in very poor color
accuracy, even following color management. There are
two solutions: redesign the filter array, e.g., Ref. 66, or
use a monochrome sensor and filter-wheel assembly with
appropriate filter spectral transmittances. In general,
greater emphasis needs to be placed on a sensor’s spec-
tral sensitivities. For accurate color imaging, sensors need
to be closely related to the human visual system. This
aspect of camera design is often overlooked. For example,
Koelling67 listed the five most important technical issues
for digitizing works of art as image resolution, file for-
mat, file storage, file refreshment, i.e., updating storage
media, and copyright. Hernandez68 defined key digital
camera selection criteria as dynamic range, optical reso-
lution, bit depth, scanning area, and software.

The second issue to be emphasized is that image edit-
ing visual techniques to improve color accuracy has not

Figure 27. Spectral estimation of four samples from the artist oil target shown in Fig. 23: measured, solid line, estimated from
spectral data of ColorChecker, dotted line, estimated from spectral data of the entire target, dashed line.
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been included in this article. This was deliberate and
not an omission. Visual matching between objects and
their CRT representation is very complex and is highly
dependent on viewing conditions,26,41 cognitive aspects
given the dissimilar nature of light-emitting and light-
reflecting stimuli,41 the observer,7,8 and monitor calibra-
tion.23–25 Any display will be highly metameric to
reflective works of art. Furthermore, color management
must be used, an evolving area of color technology.6,15,32

Transforming the raw camera signals to a derivative
image such as an sRGB image should be a computational
exercise, not a visual adjustment. The calculations are
straightforward (a numerical example is given in Ref.
6) and eliminate the natural tendency to boost contrast
and color saturation caused by unmatched viewing con-
ditions and color gamut limitations of CRT displays.

For those engaged or soon to be engaged in creating
a digital archive, the recommendations described
above should be seriously considered. At the very
least, standardized (actual or de facto) gray scale and
color targets must be included in each image. The
image metadata or image tag must contain informa-
tion about the targets and details of the image-cap-
ture system.   
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