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Properties of Improved Dot Diffusion for Image Halftoning

Murat Mese+ and P. P. Vaidyanathan

Department of Electrical Engineering, California Institute of Technology, Pasadena, California

The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion method. The method was
improved by optimization of the so-called class matrix so that the resulting halftones are comparable to the error diffused halftones.
First, 8 x 8 class matrices were used for dot diffusion method. However, there is a problem with this size of class matrix: enhancement
of images is necessary before halftoning. It was found later that if the size of the class matrix was increased to 16 x 16, then there is
no need for the enhancement step. In this article, we will review the dot diffusion. This will be followed by a discussion on special
cases of dot diffusion. Then, we will show how the optimization is done to get the class matrices.
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Introduction

Digital halftoning is the rendition of continuous-tone
pictures on displays that are capable of producing only
two levels. There are many methods for digital halftoning,*
such as ordered dither, error diffusion, dot diffusion, and
direct binary search (DBS). Ordered dithering is a
thresholding of the continuous-tone image with a spa-
tially periodic screen. In error diffusion, the error is ‘dif-
fused’ to the unprocessed neighbor points.2 The dot
diffusion method for halftoning introduced by Knuth?
is an attractive method that attempts to retain the good
features of error diffusion while offering substantial
parallelism. This method will be reviewed in the sec-
tion entitled “Dot Diffusion”. The method was improved
by optimization of the so-called class matrix by Mese
and Vaidyanathan* and inverse halftoning algorithms
for dot-diffused images were proposed in Ref. 5.%

A mathematical description of dot diffusion algorithm
was also given in Ref. 6. In Knuth’s original method,
the images are enhanced with the help of a high pass
filter before dot diffusion.? The enhancement step was
found to be necessary in order to reduce artificial peri-
odicity patterns in the dot diffused image. But the en-
hancement step also results in very noticeable
sharpening of edges. It was shown later” that enhance-
ment is unnecessary if the size of the class matrix is
increased sufficiently. We shall elaborate on this in the
section entitled “Dot Diffusion without enhancement”.

In this article, the description of dot diffusion is re-
viewed in the “Dot Diffusion” section. In the section en-
titled “Special cases of Dot Diffusion”, we will show that
error diffusion and binary quantization are special cases
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of dot diffusion. The optimization without the enhance-
ment step is discussed in the “Optimization of the class
matrix” section. Then the problems with the enhance-
ment step will be pointed out and the 16 x 16 class ma-
trix is optimized for dot diffusion without enhancement
in the section entitled “Dot Diffusion without enhance-
ment”. A preliminary version of this article was presented
in Ref. 7.

Dot Diffusion

The dot diffusion method for halftoning has only one
design parameter, called the class matrix C. It deter-
mined the order in which the pixels are halftoned. To be
specific the pixel positions (n;, n,) of an image are di-
vided into IJ classes according to (n; mod I, n, mod <J)
where i and j are constant integers. Let x(n,n,) be the
contone image with pixel values in the normalized range
[0,1]. Starting from class k£ = 1, we process the pixels for
increasing values of k. For a fixed %, we take all pixel
locations (n,,n,) belonging to class k and define the half-
tone pixels to be

Ol if x(nq,ny)20.5

h =
(r1,m5) if x(nq,n,)<0.5

(D

We also define the error e(n,n,) = x(nq,n,) — h(ng,n,).
We then look at the eight neighbors of (n,,n,) and re-
place the contone pixel with an adjusted version for
those neighbors which have a higher class number, i.e.,
those neighbors that have not been halftoned yet). To
be specific, neighbors with higher class numbers are
replaced with x(n,,n,) + 2e(n,,n,)/w for orthogonal
neighbors and x(n,,n,) + e(n,n,)/w for diagonal neigh-
bors where w is such that the sum or errors added to
all the eight neighbors is exactly e(n,,n,). The extra

* (Class matrix is defined in the “Dot Diffusion” section.
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TABLE I. A Part of the Class Matrix (Defined in Eq. 2) Which Is
Not Close to the Boundaries of the Class Matrix

n=2)+n,-1 n=2)+n, n,=2)+n,+1
ny=1)+n,-1 y(n,—1) +n, yn,=1)+n,+1
yn +n,-1 yn, +n, yn, +n,+1

factor of two for orthogonal neighbors, i.e., vertically
and horizontally adjacent neighbors, because vertically
or horizontally oriented error patterns are more per-
ceptible than diagonal patterns. The contone pixels
x(ny,n,) which have the next class number & + 1 are
then similarly processed. The pixel values x(n,,n,) are
of course not the original contone values but the ad-
justed values according to earlier diffusion steps. (2)
When the algorithm terminates, the signal A(n,,n,) is
the desired halftone. Notice that the pixels in the same
class can be processed simultaneously.

Usually an image is enhanced? before dot diffusion is
applied. For this the continuous image pixels (C(i,j) are
replaced by

N VI i i+_1._ j:rl_
- C(l,]) aC(l,]) where C(l,]) _ ZLu=i IZU—J—l
1-a 9

c
C'G, j) ®v).

Here the parameter a determines the degree of enhance-
ment. If a = 0, there is not enhancement, and the en-
hancement increases as aincreases. If a = 0.9 then the
enhancement filter can be further simplified.?

Special Cases of Dot Diffusion

Commonly used sizes for the class matrix are 8 x 8 and
16 x 16. A trivial special case of the dot diffusion algo-
rithm arises when the class matrix is of size 1 x 1. In
this case the algorithm reduces to direct pixel by pixel
binary quantization.

Next, what happens when the class matrix is made ar-
bitrarily large? Assume that the image is of size x x y
and let the class matrix of size x x y be defined as follows:

Clnyny) =m;—Dy+n,forn,=1,...,x,n,=1,.... (2)
Because of the structure of this class matrix, the pixels
are processed in raster scan order the same way the pix-
els are processed in error diffusion. In Table I we have
shown a part of the class matrix which is not close to
the boundaries of the class matrix. In step (n; — 1)y +
n,, the error due to quantization at (n,,n,) is diffused
only to the pixels at locations (n,n, + 1), (n; + 1, ny— 1),
(n,+ 1, ny) and (n; + 1, ny, + 1). Furthermore, the error
will be diffused to the four neighbor pixels with the dif-
fusion coefficients shown in Table II. Thus, the dot dif-
fusion method becomes identical to error diffusion if the
class matrix is as large as the image itself, and defined
asin Eq. 2. The only difference between this special case
and the Floyd-Steinberg error diffusion is in the values
of the filter coefficients as summarized in Tables IT and
ITI. The filter in Table II is referred to as the DD (dot
diffusion) filter to distinguish it from the FS (Floyd-
Steinberg) filter in Table III. Using these two sets of
filters in error diffusion, we found that the image quali-
ties are nearly identical. There may be slight differences
in the implementation complexities (e.g., the denomi-
nators in F'S filters are powers of two which makes divi-
sions very easy). The main point of this discussion,
though, is to make the conceptual connection between
dot diffusion and error diffusion.
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TABLE Il. Diffusion Coefficients for the Case Where Dot
Diffusion Reduces to Error Diffusion (Infinite Size Class
Matrix). These are called the DD filter coefficients.

X

D= oM

1 2
6 6

TABLE Illl. Floyd-Steinberg Error Diffusion Coefficients.
These are called the FS filter coefficients.

7
X —_

16

3 5 1
16 16 16

Figure 1. Dot diffusion with Knuth’s class matrix (8 x 8 class
matrix).

Optimization of the Class Matrix

Knuth introduced the notion of barons and near-barons
in the selection of his class matrix. A baron has only
low-class neighbors, and a near-baron has one high-class
neighbor. The quantization error at a baron is not dis-
tributed to neighbors, and the error at a near-baron is
distributed to only one neighbor. Knuth’s idea was that
the number of barons and near-barons should be mini-
mized. He exhibited a class matrix with two barons and
two near-barons. The resulting halftones still exhibit
periodic patterns similar to ordered dither methods (see
Fig. 1). Knuth has also produced a class matrix with
one baron and near-baron, but unfortunately these were
vertically lined up to produce objectionable visual arti-
facts. In our experience, the baron/near-baron criterion
does not appear to be the right choice for optimization.

Mese and Vaidyanathan
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Figure 2. Perceived halftoning error of an image for a given HVS function.

We used a different criterion for quantifying the qual-
ity of halftone images.* In this criterion, the Human Vi-
sual System (HVS) is taken into account. The images
are passed through a model of the HVS function. Since
our model is linear, we apply the HVS function to the
difference between the original and halftone images. The
energy of the resulting image is defined to be the per-
ceived halftoning error (PHE). The calculation of PHE
of a given image x[m,n] for a given HVS function iA[m,n]
is depicted in Fig. 2. In the figure, the output of the
energy calculator is

€= ST emolelm,n]’.

The image used in the optimization should be chosen
wisely. For example in this article we have chosen a gray
scale ramp because the cost of a gray scale ramp is the
average value of the costs of gray scales which exist in
the gray scale ramp.

We will use a specific HVS model in the optimization.
In the frequency domain the HVS model is defined as
follows:

1 Vu?+v?

H, (u,v) = albe @ cloglli+d

Here, u and v are the frequency variables in cycles/
degree subtended at the retina and L is the average lu-
minance in candela/m?. The quantity

2

u? +v?

is therefore the radial frequency. The quantity @ is the
angular frequency defined as

Q= atan%@

The various constants and the function s(() are defined
as follows:

a =131.6, b =0.3188, ¢ =0.525, d =3.91.

1-w 1+w

where w =0.7.

cos(4 ¢ +

s(p) =

The dependence on radial frequency

2

u? +v?
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Figure 3. Normalized HVS function H(w',w,) for T' = 0.0165
(RD = 300 dpi x 11.5827 in). The axes are

was developed in Ref. 8. Then the angular dependence
of the model, i.e., s(¢) was introduced in Ref. 9 following
Daly’s model.’® We used L = 10 candela/m? in our ex-
periments. With A (x,y) denoting the inverse Fourier
transform of H (u,v), the discretized version hAlm,n] =
h,(Tm,Tn) is used in the calculations. The relation be-
tween H(w,,w,) (the discrete Fourier transform of
hlm,n]) and H (u,v) is as follows:

_ 1 0 0 1~ 27‘& w2 - 271@
H(wl’wQ) TZk——oozl——ooHcQ”27ﬂq ’ ol (3)
Sampling the inverse transform at interval 7' = 0.0165
corresponds to a certain printer resolution, R dpi, viewed
at a specific distance, D inches. Because a length x
viewed at a distance D subtends an angle of © = tan-!(x/
D) = x/D radians for x << D, the spacing of the dots will
be:

T = R%radians = @ %degrees (4)

This clarifies the relation between T, D and R. In par-
ticular, T'= 0.0165 corresponds to RD = 300 dpi x 11.5827
in. In Fig. 3, the normalized HVS function is shown for
this value T.

In the optimization we are looking for a class matrix
that minimizes the cost function. Notice that the opti-
mization is equivalent to finding a combination of num-
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Figure 4. Floyd—Steinberg error diffusion.

bers from 1 to IJJ such that the related cost is minimized.

Because the cost function depends nonlinearly on its pa-

rameters, we will use an optimization procedure to get

the desired class matrix. The choice of the class matrix

that minimizes this cost function was performed using

the pair-wise exchange algorithm!! described below.

1. Randomly order the numbers in the class matrix.

2. List all possible exchanges of class numbers.

3. If an exchange does not reduce cost, restore the pair
to original positions and proceed to the next pair.

4. If an exchange does reduce cost, keep it and restart
the enumeration from the beginning.

5. Stop searching if no further exchanges reduce cost.

6. Repeat the above steps a fixed number of times and
deep the best class matrix.?

Optimization Results

In the optimization we have used a gray scale image.
First, we have done the optimization for 8 x 8 class ma-
trix. We have optimized this class matrix for RD = 300
dpi x 11.5827 in. This class matrix is shown in Table IV.
We have summarized the perceived halftoning errors in
Table V. In this article, perceived errors are normalized
so that perceived error of a gray scale ramp halftoned by
the Floyd-Steinberg error diffusion algorithm is unity.
As it can be seen from the table, our optimized class
matrix achieves 40.04% less PHE than Knuth’s class
matrix and 51.61% more PHE than error diffusion.

Example: The 512 x 512 continuous tone peppers im-
age was halftoned by using Knuth’s class matrix (Fig.
1, PHE = 30.77), and by the optimized 8 x 8 class ma-
trix (Fig. 5, PHE = 30.35).f The images in this article

1 Note that pair-wise exchange algorithm yields a local minimum of
the cost function. We begin the pairwise exchange with a number of
random class matrices and take the class matrix having the least
local minimum in order to get closer to the global minimum. Global
minimum is not guaranteed.

+ We observed that the enhancement step in dot diffusion is the cause
of higher PHE values. In the next section, enhancement step will be
removed from dot diffusion algorithm.
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Figure 5. Dot diffusion with HVS optimized 8 x 8 class
matrix and enhancement.

TABLE IV. 8 x 8 Optimized Class Matrix.

37 41 34 14 60 61 7 9
16 12 36 59 46 17 50 24
45 27 33 58 5 3 42 48
29 2 57 30 43 15 20 1
26 18 55 49 4 32 10 54
25 21 53 40 38 6 64 52

8 28 35 13 39 22 63 56
51 44 19 23 31 62 1 47

TABLE V. Perceived Halftoning Errors (PHE) for 8 x 8 Class
Matrices.

Halftoning Dot Diffusion Dot Diffusion Error Diffusion
Method ~ Kmuth's Class Matrix ~ Optimized Class Matrix (Floyd—Steinberg)
Perceived
Halftoning
Error 2.53 1.52 1.00

are printed out with R = 150 dpi, thus they should be
viewed from a distance D = 23 inches. It is clear that
the dot diffusion method with the optimized 8 x 8 class
matrix is visually superior to dot diffusion method with
Knuth’s class matrix. In fact, dot diffusion with the op-
timized 8 x 8 class matrix offers a quality comparable
to Floyd-Steinberg error diffusion method (Fig. 4, PHE
= 3.86). Note that, we cannot use the PHE values of
error diffused images and images obtained by dot diffu-
sion with enhancement to compare the visual quality of
these two methods because of the enhancement step.
Thus visual inspection is necessary. Error diffused im-
ages suffer from worm-like patterns which are not in
the original image, whereas dot diffused halftones do
not contain these artifacts. Notice that the artificial
periodic patterns in Fig. 1 are absent in Fig. 4 and in
the dot diffusion with the optimized 8 x 8 class matrix
(Fig. 5).

Mese and Vaidyanathan




TABLE VI. 16 x 16 Class Matrix

202 1 14 18 51 56 45 105
4 7 24 37 57 52 66 88

8 15 25 38 68 70 87 6
16 27 44 54 29 102 116 132
23 40 53 72 85 104 165 136
41 86 73 84 114 118 168 134
48 121 55 106 124 133 147 177
77 82 128 110 139 135 179 182
81 100 113 148 143 172 178 204
109 108 141 151 186 164 208 218
111 142 89 76 176 206 215 235
112 149 161 175 205 216 236 241
152 160 190 191 209 217 237 240
157 189 192 210 214 238 239 30
188 195 199 213 10 11 31 36
194 211 212 9 12 28 35 58

74 98 75 145 150 170 171 173
146 103 138 159 183 185 198 222
107 153 144 166 184 193 225 2
140 137 167 120 196 224 227 5
158 174 131 200 223 226 228 17
169 181 201 220 232 229 13 22
180 203 221 231 246 3 21 42
207 197 230 245 247 20 43 50
219 233 244 250 248 34 49 69
234 243 249 256 19 46 71 80
242 251 255 39 47 78 117 101
252 253 254 62 63 94 95 126

26 32 61 83 93 96 125 115

33 60 65 92 119 79 129 156

59 64 91 97 123 130 155 162

67 90 99 122 127 154 163 187

Figure 6. Dot diffusion with HVS optimized 8 x 8 class matrix
and no enhancement.

Dot Diffusion Without Enhancement

If we compare the halftone images obtained with en-
hancement (Fig. 5, PHE = 30.35) and without enhance-
ment (Fig. 6, PHE = 6.90), we can conclude that the
enhancement step reduces the periodic structures in the
halftone image, but it might be objectionable in some
applications because of its very visible sharpening ef-
fect (e.g., see Fig. 5).

It turns out that we can get good halftones without
use of the enhancement step provided we make the class
matrix larger than the standard 8 x 8 size. The price paid
for the larger class matrix is that the parallelism of the
algorithm is compromised. However, in practice, even
with a 16 x 16 class matrix, we have plenty of parallel-
ism for any desktop printing implementation: Assume
that we want to render the image at 600 dpi, and process
16 rasters (lines or rows) of an 8.5 x 11 inch square page
simultaneously. Then we will have 600 x 8 x 16)/256 =
300 pixels that can be processed simultaneously.! The

§ The number 8 in the numerator of this expression is based on the
assumption of an 8 inch wide active printing area.

Properties of Improved Dot Diffusion for Image Halftoning

Figure 7. Dot diffusion with HVS optimized 16 x 16 class ma-
trix and no enhancement.

real disadvantage of increasing the size of the class ma-
trix is the fact that the number of rasters that must be
processed at the same time increases.

We found that if a 16 x 16 matrix is used, the halftone
images resulting from the optimization of this matrix are
very good even without the enhancement step. (For com-
parison we note here that whenever enhancement is used,
the class matrix can be as small as 5 x 5 without creat-
ing noticeable periodicity patterns.) Such optimization
was carried out using a fray scale ramp as the training
image. The HVS function was used in the optimization,
and the associated cost was optimized using the pair-wise
exchange algorithm. The 16 x 16 optimized class matrix
is shown in Table VI. The PHE of a gray scale halftoned
by dot diffusion with 16 x 16 optimized class matrix is
1.19. We can compare this PHE value with the PHE val-
ues in Table V. The PHE for optimized 16 x 16 class ma-
trix is only 19.38% worse than the error diffusion. Also,
the PHE for optimized 8 x 8 class matrix is 27.00% worse
than the PHE for optimized 16 x 16 class matrix.

The peppers image halftoned with the resulting class
matrix is shown in Fig. 7 (PHE = 5.90). There are no

Vol. 45, No. 3, May/June 2001 295



periodic artifacts in these results. While the overall vis-
ible noise level appears to be higher than for error dif-
fusion, the problematic halftone patterns of error
diffusion in the mid gray level are eliminated here. (Ex-
amine the body of the middle pepper in Fig. 4). By com-
paring Figs. 1 and 7 we see that 16 x 16 dot diffusion
without enhancement is also superior to 8 x 8 enhanced
dot diffusion using Knuth’s matrix because there are
no noticeable periodic patterns any more, and there are
no enhancement artifacts.

Conclusion

Dot diffusion offers more parallelism than error diffu-
sion and the method has been optimized in order to re-
move the periodic artifacts. The enhancement step prior
to dot diffusion was preserved in previous optimizations.
Because the enhancement can be objectionable in some
cases, the method has been improved by optimizing a
larger class matrix. Furthermore, we have shown that
error diffusion and binary quantization are special cases
of dot diffusion. /&

Acknowledgment. This work was supported by the Na-

tional Science Foundation under Grant MIP 0703755 and
Microsoft Research, Redmond, VA.

296 Journal of Imaging Science and Technology®

References

1. M. Mese and P. P. Vaidyanathan, Optimized halftoning using dot
diffusion and methods for inverse halftoning, /IEEE Transactions
on Image Processing 9, 4, 691-709 (2000).

2. R. Floyd and L. Steinberg, An adaptive algorithm for spatial
greyscale, Proc. SID, pp. 75-77, 1976.

3. D. E. Knuth, Digital halftones by dot diffusion, ACM Tr. on Graph-
ics, 6, pp. 245-273 (1987).

4. M. Mese and P. P. Vaidyanathan, Image halftoning using optimized
dot diffusion, Proc. of EUSIPCO, Rhodes, Greece, 1998.

5. M. Mese and P. P. Vaidyanathan, Image halftoning and inverse
halftoning for optimized dot diffusion, Proc. ICIP, Chicago, IL, 1998.

6. M. Mese and P. P. Vaidyanathan, A mathematical description of
the dot diffusion algorithm in image halftoning, with application in
inverse halftoning, Proc. of ICASSP, Phoenix, AZ, 1999.

7. M. Mese and P. P. Vaidyanathan, Improved Dot Diffusion for Im-
age Halftoning, Proceedings of IS&T’s Conference on Digital Print-
ing Technologies, NIP14, I1S&T, Springfield, VA, 1999.

8. R. Nasanen, Visibility of halftone dot textures, IEEE Transactions
on Systems, Man and Cybernetics 14, No. 6, pp. 920-924, 1984.

9. J. P. Allebach, FM screen deisgn using DBS algorithm, Proc. of
ICIP, Vol. 1, Lausanne, Switzerland, 1996, pp. 549-552.

10. S. Dally, Subroutine for the generation of a two dimensional hu-
man visual contrast sensitivity function, Eastman Kodak Tech. Rep.
No. 233203.

11. J. P. Allebach and R. N. Stradling, Computer-aided design of dither
signals for binary display of images, Appl. Opt. 18, 2708-2714
(1979).

Mese and Vaidyanathan



