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Simulation of Optical Dot Gain in Multichromatic Tone Production

Li Yang, Sasan Gooran and Björn Kruse
Institute of Science and Technology, Linköping University, Norrköping, Sweden

Optical dot gain (light scattering or Yule–Nielsen effect) is an important effect influencing the quality of tone reproductions. Based on
probability descriptions on the light scattering, a framework is established for describing this effect on the reflectance and color
appearance of a chromatic halftone image. General expressions for the reflectance and CIEXYZ tristimulus values have been derived.
Simulations for images printed with 2 inks have been carried out by applying Gaussian type of point spread function (PSF). Depen-
dence of the optical dot gain on the optical properties of substrate and inks, the dot geometry etc., have been studied in detail.
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inks. In this study, we have assumed that there is no
ink penetration, because as we have shown optically ink
penetration can be equally described by introducing an
extra ink layer while the substrate remains clean.15

Therefore all equations we work out here can directly
be applied to the case where there exists ink penetra-
tion as long as the transmittance is replaced by com-
bined transmittance which is a collective property the
ink and the paper.

Image Printed with Two Inks
Figure 1 is a side view of an image printed with two

inks. The transmittances of the ink layers are, TI and
TII, respectively. The image can be divided into 4 dis-
tinct chromatic regions, denoted as ∑0 through ∑3, which
correspond to white (∑0), primary (∑1,∑3) and secondary
(∑2) color, respectively. If the tonal values of the two inks
are a and b, the area of the ith chromatic region, σi,
depends on the model of color mixture adopted by the
printer. For example, when the ink dots are placed at
random, σi can be computed by

σ0 = (1 – a) (1 – b)
σ1 = a(1 – b)

σ2 = ab
                     σ3 = (1 – a)b (1)

Similarly to the monolayer case,14 we define Pij as prob-
ability that a photon exits the substrate from ∑j if it

Introduction
Optical dot gain refers to the fact that a printed dot ap-
pears bigger than it geometrically is. It is because light that
enters the substrate under the dot can exit from the sub-
strate between dots due to light scattering in the substrate.
It was Yule and Nielsen1 who first interpreted the phenom-
enon and proposed a semi-empirical modification to the
simple Murray–Davies equation.2 Because of this optical
dot gain is also called Yule–Nielsen effect. The optical dot
gain depends on the optical properties of the materials (pa-
per, ink) and geometrical distribution of ink dots (resolu-
tion, location, size and shape). To account for the optical
dot gain is practically important in graphic arts and has
long been an interesting topic of research in theoretical,
simulation and experimental perspectives.1,3–14 However, so
far the studies have mainly been focused on monolayer color
printing processes. Little has been done for the multi-layer
case. Because the multichromatic halftone images consist
of two or more inks which form many distinct chromatic
regions, the behavior of Yule–Nielsen effect becomes com-
plicated and consequently the analysis becomes very diffi-
cult if no theoretical model serves as a guide.

This article contains the following parts. First a frame-
work that accounts for the effects of optical dot gain in
multi-chromatic tone reproduction is worked out. Then
the present approach is illustrated by applying it to some
examples. Finally discussions about optical dot gain in
optical and chromatic perspectives are given.

A Model for Multichromatic Tone Reproduction
A chromatic halftone image usually consists of 3 or

more inks, which form many distinct color regions cov-
ered by none, one or a few ink layers. We start our study
from an image printed with 2 inks and then generalize
the framework to an image consisting of any number of

Figure 1. A side view of a multilayer halftone image.
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enters the substrate at ∑i. If the image is uniformly il-
luminated by light of intensity I0 the outgoing flux of
the light from ∑j due to scattering of the incident light
at ∑i may be written as,

Jij = I0TiTjPijσI   (i,j = 0,..,3) (2)

where Ti is the combined transmittance values describing
the transmittance of the ink layer(s) and ink penetration
of the region ∑i, for example, T0 = 1, T1 = TI, (T3 = TII) and
T2 = TITII. Similar to the monolayer system,14 it is easy to
show that the probabilities Pij (j = 0–3) are constrained by
the reflectance of the substrate, i.e.,

    
P R iij g

j
= =

=
∑ ( ,... )0 3

0

3

(3)

In addition, the probability Pij and its counterpart Pji

fulfil the following correlation relation,

Pij σi = Pji σj (i,j = 0,...,3) (4)

Due to light scattering, photons enter the substrate
at ∑i can exit from ∑j. Thus the total flux of the light
outgoing from ∑j may be expressed as

      
J j ij

i
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Applying the constraint conditions and the correla-
tion (Eqs. 3 and 4), one can further write the flux as
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Accordingly the reflectance of the ∑j region is calcu-
lated by
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,
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Thus the regional reflectance Rj depends directly on the
transmittance (Tj) of the ink layer. It depends also on
differences of the transmittances between the incident
and exit regions, (Tj – Ti), and the probability of the light
transfer between the two regions, (Pji).

Knowing the reflectance, Rj, one can further calcu-
late the average reflectance of the image, by
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where the first term is the reflectance of the halftone im-
age under the Murray–Davies assumption, and the sec-
ond is due to the light scattering.

Image Printed with Multiple Inks
The framework established above can be directly gen-

eralized to a printed image involving many inks. If the
image consists of N distinct chromatic regions, (N ≤ 8
or 16, for images containing 3 or 4 inks, respectively),

the regional reflectance of the region ∑j can be com-
puted by

    
R T R T T T P j Nj j g

i i j

N

j j i ji= − − = −
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,
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The overall reflectance of the whole image is given by

R = RMD – ∆R (10)

where

    
R T RMD

j

N

j g j=
=

−

∑
0

1
2 σ (11)

is the reflectance of the halftone image under Murray–
Davis assumption, and

    
∆R T T P
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is a term corresponding to the so called Yule–Nielsen
effect or optical dot gain. From these one can draw the
conclusion that optical dot gain is a general phenom-
enon in multichromatic tone reproduction. Because ∆R
is a non-negative quantity, Eq. 10 means that the real
reflectance of the halftone image, R, is smaller than that
predicted by applying Murray–Davies assumption.

It is worth to notice that it is not the ink dots but the
distinct chromatic regions that are directly related with
the color appearance of the image. Therefore the term
for optical dot gain becomes no longer intuitively clear
as it was for monochromatic case, because the distinct
regions are not necessarily bigger optically than they
are geometrically. For example, due to light scattering
from ∑1 into ∑0, ∑1 appears to be extended towards ∑0

along ∑0/∑1 border (see Fig. 1). However ∑1 appears to
be compressed due to the light scattering from ∑2 into
∑1 (i.e., the region of ∑1 close to ∑2 appears as if it is of
the secondary color). The total effect of the light scat-
tering on the regional reflectance of ∑1, R1, is a combi-
nation of these opposite contributions. This is why the
term (Tj – Ti) comes into Eq. 9. Therefore the term for
optical dot gain should refer to the image as whole rather
than any individual chromatic region.

Simulation of Multilayer Color Image
The model presented above shows that all the regional
reflectance values, Rj, the overall reflectance value of
the image, R, and the corresponding optical dot gain,
∆R, depend on a set of independent probabilities Pij

which is N(N – 1)/2 in number, where N is the number
of the distinct color regions. For example, in two inks
case there are 6 independent probabilities,
P01,P02,P03,P12,P13 and P23.

As defined in Eq. 2, Jij represents the flux of light
that enters the substrate in the region, ∑i, and then is
scattered into ∑j. By the definition of the point spread
function, Jij can also be written as,

    
J I T T p x x y y d dij i j i j i j i j

ji

= − −
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Comparing Eq. 2 with Eq. 13 one gets
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Because the PSF is closely related to the optical prop-
erties of the substrate, the quantity Pij depends on these
properties as well. For example, if the PSF is Gaussian,

    p x x y y ei j i j
x x y yi j i j( , )

( ) ( ) /
− − =

− − + −[ ]κ δ2 2 2

(15)

the optical properties of the substrate is characterized
by the Gaussian parameter δ (k is a factor of normal-
ization). This kind of PSF has been proven to fit the
experimental data of Yule and co-workers quite well.4,16

Because variables of the PSF, (xi – xj) and (yi – yj), are
related with the relative position between regions ∑i

and ∑j, Pij depends on the spatial distribution of the
printed ink dots. Furthermore the integrated value, Pij,
depends on the size and shape of the integration areas
(∑i and ∑j). Finally the magnitude of optical dot gain
depends on the combined transmittance values of re-
lated regions and their difference, (Ti – Tj)2, as can
clearly be seen from Eq. 12. To examine to what extent
these factors affect the computed reflectance values,
simulations have been carried out by applying
Gaussian type of point spread function to images
printed with two inks.

Two Inks Printed with Round Dots
For simplicity, we first assume that the ink dots are

coaxial in position (dot on dot) and round in shape.
The simulations are carried out by choosing a mask
that contains 3 × 3 halftone dot cells (see Fig. 2), there-
fore influences to the convolution (Eq. 14) from the

nearest neighbor dots have been included. Fig. 3 and
4 are the demonstrations of computed reflectance
value (RMD) under Murray–Davies assumption and
optical dot gain (∆R). The printed image consists of
four ink spots, white, two primary colors (substrate
covered by either ink 1 or 2) and one secondary color.
The transmittance values corresponding to these re-
gions are collected in Table I. Because the reflectance
value computed according to Murray–Davies model,
RMD, is a bi-linear function of the tonal values, a and
b, it has a roof like structure with maximum along
the line a = b (see Fig. 3).

Figure 4 presents the computed ∆R with respect to
different values of Gaussian parameter, δ. For general-
ity, the length (or width) of a halftone cell, Lc, has been
chosen as a unit (ruler) of the parameter δ. Figures 4a
through 4c correspond to δ = 0.07Lc, 0.12Lc and 0.20Lc,
respectively. An extreme case, δ = ∞, is given in Fig. 4d)
as well. The following facts are observed,
1.∆R has local maxima when the printed dots have iden-

tical sizes, a = b (ie. they completely overlap with each
other).

2.The local maxima become wider and therefore less
prominent when the Gaussian parameter, δ, gets big-
ger or equivalently the PSF becomes broader and more
flat.

3.The magnitude of R becomes bigger when δ is bigger
(Observe that scales of the subfigures are different).

The appearance of the local maxima is a hybrid of the
difference of the transmittance values between adjacent
regions and the effective extension of the PSF in space.
For simplicity of explanation, we assume that the area
covered by ink 1 (∑1) has a fixed radius, r1 (Fig. 5). Now
we examine the process when the radius of the area cov-
ered by ink 2 (∑2), r2, increases from r2 = 0 through r2 =
r1. From this viewing point, we are actually looking at a
cross section of ∆R surface cut by a plane, say a = con-
stant. According to Eq. 12 ∆R consists of 3 terms,
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Figure 2. A mask contains 3 halftone cells. Contributions from
the neighbor dots to the center one are included in convolution
(see Eq. 14).

Figure 3. Computed RMD, two inks, dot on dot, Rg = 0.87, TI =
0.35, TII = 0.45.

TABLE I. Transmittance of Distinct Chromatic Regions

Regions ∑0 ∑1(∑3) ∑2

Transmittance 1 TI(TII) TITII
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Clearly, the first term comes from light scattering
between regions ∑0 and ∑1, the second term from that
between ∑1 and ∑2 and third between ∑0 and ∑2. Be-
cause we have assumed that r1 is fixed in the current
consideration, the first term remains constant. Consid-
ering a photon that enters the substrate at (x,y) in ∑2

(region producing secondary color), the PSF that de-
scribes the probability of finding the photon at a point
(x’,y’) becomes very small when

    ( ' ) ( ' ) .x x y y− + − ≥2 22 2δ

Therefore only when the photon strikes the substrate
at a point in ∑2 close enough to the ∑2/∑1 border (inside
the region marked by dot line circles), is there remark-
able probability to find it in the adjacent region ∑1. In
the other words, the main contribution to the second
term is from photons that hits the region between the
dot line circles. At the same time, there is little chance
for the photon to exit the substrate from the non-inked
region (∑0) i.e., the third term is negligible, if r2 << r1

and d <<|r1 – r2|. However the third term grows when
r2 is approaching r1 (or a → b). Considering the fact
that ∆R is proportional to the quantity (Ti – Tj)2 (see
Eq. 16 which has the biggest value in the third term

Figure 4. Computed (∆R) for different Gaussian parameters δ, two inks, dot on dot, Lc the length (width) of a halftone cell. Rg = 0.87,
TI = 0.35, TII = 0.45.

Figure 5. A systematic diagram for point spread function and
dot geometry; Lc is the length (width) of the halftone cell.
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(i.e., (1 – T1)2 > (T1 – T2)2), ∆R grows at a quicker pace
when r2 is close to r1 (r1 → r2). After r1 = r2, however, if r2

continuously increases (r2 ≥ r1), ∆R falls again. Thus ∆R
reaches its maximum when a = b. This explanation is
consistent with that of fact No. 2. When δ gets bigger,
the PSF becomes broader and more flat. Correspond-
ingly the area marked by the dot line circles becomes
wider and therefore the local maxima of ∆R become
broader and (relatively) less prominent, although its ab-
solute quantity increases. Because there is a higher
probability that the photon enters the substrate in one
region and exits from the other (or even others) in the
case of having a large Gaussian parameter, δ, ∆R be-
comes larger. An extreme case is when δ → ∞ . In this
case the PSF becomes constant (Pij as well) over the
whole paper. It means that the photon has an equal prob-
ability to be found anywhere on the paper, no matter
where the photon enters the paper. Therefore the pho-
ton is said to be “completely scattered”.7 Then the local
maxima disappear and only a global maximum is built.
As shown in the figures the location of the global maxi-
mum moves towards a = b = 50% when the Gaussian
parameter (δ) increases.

It is a common practice in the printing industry that
the inks are not printed one on top of the other. Some-
times it is on purpose to avoid overlap as much as pos-
sible in order to achieve larger color gamut.17 To simulate
such a printed image, we set the centers of the dots
(round dots) at different positions and then evaluate the
optical dot gain regarding to the area of each dot. The
simulation of the optical dot gain of such a system, is
shown in Fig. 6. Because the dots are located at differ-
ent positions, they have no overlap when they are small
in size and the image consists of paper and primary col-
ors only. After the dot sizes increase to some extent,
these dots start overlapping and the secondary color
emerges. Because the overlap depends on the size of the
dots and the separation of dots’ centers in space, the
optical dot gain funtion has a complicated shape.

Two Inks Print with Square Dots
To study the shape dependence of the printed dots

(tonal values), simulations to images printed with
square dots have also been carried out. Unlike the print

with round dots, color appearance of the print with
square dots depends not only on the areas of ink dots
but also on the angles, α , between the screen lines of
the ink dots. Figure 7a is a prototype of the geometric
formation for square dots, where each solid line square
represents a square dot with area a or b. Figure 7b cor-
responds to the case where there is a screen angle be-
tween the dots. Naturally, to clarify the dependence of
Yule–Nielsen effect (∆R) on the dot shapes, comparisons
will be made to images printed with round dots. For
easier comparison, the identical Gaussian parameter, δ
= 0.12Lc, has been used in the simulations, where Lc is
the length of a halftone cell as defined before. Further-
more dependence of Yule–Nielsen effect on the angle
between the screen lines will also be explored, by choos-
ing different α  values.

Figures 8a through 8d are the computed ∆R corre-
sponding to α  = 0°, 15°, 30°, and 45°, respectively. Com-
paring this to the case of round dots (Fig. 4b), little
difference has been observed when α  = 0. However ∆R
appears remarkably different when α = 15° and the dif-
ferences become even bigger for bigger screen angle, α.
The differences can be summarized as

1. the local maxima along the diagonal a = b, which is
prominent in the round dots case, becomes broader
and much less evident.

2. the global maximum which is a sharp peak in the case
of round dots becomes a broad plateau for the square
dots case (where α  ≠ 0).

Because the point spread function has a limited ef-
fective extension (characterized by Gaussian param-
eter δ, as shown in Fig. 7a), there is no significant
probability for a photon to be scattered from one re-
gion (say ∑2) into another (say ∑1), unless the photon
hits the substrate at a point close enough to the bor-
der of the incident region (marked by a dotted line
square). In the case of α  = 0°, there is little probability
for the photon to transfer from ∑2 into ∑0 or vice versa,

Figure 6. Computed ∆R for two inks, dot off dot (separation of
the dot centers = 0.35Lc), Gaussian parameter δ = 0.12Lc, Rg =
0.87, TI = 0.35, TII = 0.45.

Figure 7. Two inks print, solid line squares represent two ink
dots (areas a and b).

α
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if a ≠ b. In other words, it happens only when the two
ink dots have similar areas (b ≈ a). Correspondingly
narrow local maxima appear along the diagonal a = b,
as shown in Fig. 8a. However when α  ≠ 0, if a photon
strikes the substrate near a corner of the inner square,
the photon has a better chance to be scattered from ∑2

into ∑0 or vice versa, even though the areas of the ink
dots are not similar (see Fig. 7b). (Note that the ro-
tated square has the same size as that in Fig. 7a) There-
fore the local maxima become broader and more flat
and therefore less prominent. This argument holds also
for the broader appearance of the global maximum
which appears to be a flat plateau. The simulations
also  show that the quantities of computed ∆R decrease
as the screen angle, α , increases. Therefore increasing
the screen angle may be helpful for reducing the opti-
cal dot gain.

The Effects of Optical Dot Gain on Color
Reproduction

The effects of optical dot gain on the color appearance
of printed images can readily be seen from their
tristimuli. According to definition, CIEXYZ tristimulus
values can be computed as

    

X R S x d

Y R S y d

Z R S z d

=

=

=
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∫
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where S(λ) is the energy distribution of the illumination
and     x y z( ), ( ), ( )λ λ λand  are the tristimulus functions. The
reflectance value, R(λ), has been explicitly denoted as a
function of the wavelength of the light. Substituting R(λ),
using Eq. 9, one can further express the tristimuli as

  

X X X

Y Y Y

Z Z Z

MD

MD

MD

= −
= −
= −

∆
∆
∆

(18)

where XMD, YMD and ZMD are the tristimulus values com-
puted according to the Murray–Davies assumption and
∆X, ∆Y, ∆Z are the contribution from light scattering or
optical dot gain. Their expressions are, for example,

    

X R S x d

X R S x d

MD MD=

=

∫
∫
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λ λ λ λ
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Figure 8. Computed (∆R) for different screen angles, α = 0°, 15°, 30°, 45°, δ = 0.12Lc, square dots (dot on dot).
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If the tristimuli of the unprinted paper are (X0, Y0,
Z0), due to the non-negativity of ∆X, ∆Y and ∆Z, there
are the following inequalities:

X0 – X ≥ X0 – XMD

Y0 – Y ≥ Y0 – YMD (20)
Z0 – Z ≥ Z0 – ZMD

Therefore the present model predicts more saturated color
than does the Murray–Davies assumption. This is actu-
ally the chromatic consequence of light scattering or the
Yule–Nielsen effect.

Summary
We present a model to simulate the multichromatic tone
reproduction, which allows us to analyze properties of
images printed with any number of inks and in any half-
tone scheme. By applying Gaussian type of point spread
function (PSF) the Yule–Nielsen effect has been simulated
for images printed with 2 inks and different dot geom-
etries (round dots and square dots). The Yule–Nielsen ef-
fect shows a strong dependence on the optical properties
of the substrate and ink, and on the geometric distribu-
tions of printed dots (shape, size, location and relative ori-
entation of the dots). The present model is independent of
the halftone scheme, and therefore it is applicable to im-
ages produced with any kind of halftone algorithm.
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