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Wetting on Real Surfaces
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Recent advances regarding the measurement and theory of equilibrium contact angles on real surfaces are reviewed. The intrin-
sic contact angle is discussed in terms of the Young equation and the line tension concept. The fundamental question that is
presented and discussed is the relationship between the intrinsic, actual and apparent contact angles. Apparent contact angle
measurement using the Capillary Bridge System (CBS) is explained. The main advantages of this approach are the use of force
measurements rather than direct optical measurements, and the ability to calculate an average apparent contact angle. The
Wenzel equation for rough surfaces and the Cassie equation for heterogeneous surfaces are shown to be true only for drops that
are very large compared to the scale of roughness/heterogeneity. Contact angle hysteresis is explained. Of special interest is the
predicted difference between the drop and captive bubble techniques, which stems from contact angle hysteresis.
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Introduction
Wetting of substrates by liquid drops is one of the key
processes in non-impact printing. The mode of wetting
and the force driving it depend on the nature of the sub-
strate and the liquid. If the substrate is non-absorbing,
wetting occurs on the outer surface of the substrate. If
it is absorbing, like paper, for example, wetting occurs
also by penetration into capillary spaces. The initial
phase of wetting is dynamic, eventually leading to the
final equilibrium situation. The latter is an essential
factor underlying print quality. In addition, wetting
equilibrium measurement is a useful tool for the char-
acterization of printing substrates.

The theory of wetting started many years ago by con-
sidering an ideal solid surface that is perfectly smooth,
chemically homogeneous, rigid, insoluble, and nonre-
active.1 Real surfaces that are encountered in industry
in general, and in the printing industry in particular,
are very far from being ideal. They are usually rough,
chemically heterogeneous and nonrigid. Examples in-
clude all varieties of printing substrates such as paper
(that is an especially complex example because it is ab-
sorbing too), plastic, metal surfaces, etc. People inter-
ested in wetting aspects of printing face two
complementary types of questions: (a) how would a cer-
tain ink behave on a printing substrate, or how would
it interact with components of the printer (for example,
the nozzle plate of an inkjet head)? and (b) how can sub-
strates or printer components be characterized with
respect to their wetting properties?

These seemingly simple questions cannot be fully an-
swered as yet because of the complexity of wetting on
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real surfaces. Specifically, there seem to be two main
reasons for this knowledge deficiency: on the one hand,
experimental techniques are still incapable of locally
characterizing wetting at the microscopic level of con-
tact between the liquid and the solid; on the other hand,
theoretical analysis and calculations for three-dimen-
sional situations that are essential when considering
real surfaces, have just begun to emerge. Moreover, a
fundamental concept such as line tension (to be ex-
plained below), the importance of which increases as
the drop size decreases or as roughness is more pro-
nounced, is far from being understood.

Out of the three major aspects of wetting of interest
to the printing industry (equilibrium wetting, dynamic
wetting, and penetration into porous media), this ar-
ticle reviews recent advances in the theory and mea-
surement of equilibrium wetting. The other aspects will
be reviewed in the future. Emphasis is put on real sur-
faces, which may be rough and chemically heteroge-
neous. On such surfaces, the drop may not possess any
symmetry, therefore previous theories and measurement
techniques had to be extended to three-dimensional situ-
ations. This short review and the cited references de-
scribe the recent work of the author and his co-workers.
The important contributions of other researchers can
be traced through these references.

The Intrinsic Contact Angle
The starting point of the theory of wetting equilibrium
is the well-known Young equation1 for the contact angle
that a liquid forms with an ideal solid surface, when
both are immersed in a fluid (Fig. 1):

cosθY = (σsf - σsl)/ σlf (1)

θY is the contact angle as calculated from the Young equa-
tion, σ stands for interfacial tension, and the subscripts
s,l,f indicate the solid, liquid, and fluid phases, respectively.
The contact angle calculated from the Young equation rep-



resents the state of minimum free energy of the drop on
the ideal surface. The contact angle on an ideal solid sur-
face is called the intrinsic contact angle.

It has been recognized for a long time that the Young
equation for the intrinsic contact angle does not account
for the three-phase molecular interactions at the con-
tact line, namely the line where the solid, liquid and
fluid phases intersect. Following Gibbs, who suggested
the concept of line tension as the one-dimensional ana-
log of surface tension, the equation below was devel-
oped by Veselovski and Pertchov and then independently
by Pethica for the intrinsic contact angle, θi, that a liq-
uid drop makes with an ideal solid surface:2

cosθin = cosθY – τ /(Rσlf) (2)

τ  is the line tension, and R is the radius of the base of
the drop. The order of magnitude of the line tension
has been debated for many years. Various experiments
have yielded values different by almost six orders of
magnitude. Recently, theory and experiment2 seem to
have concluded that the order of magnitude of the line
tension is about 10–9N. This implies that the effect of
line tension on an ideal solid surface is meaningful only
for drop radii of less than about 1 micrometer. In most
situations of interest the drop size is much bigger than
that. However, for non-ideal surfaces (i.e., rough or het-
erogeneous surfaces), the effect of line tension may be
meaningful, because local radii of curvature of less
than a micrometer may exist along the contact line.
This is still an open question that needs to be addressed
in the future.

Actual and Apparent Contact Angles
When real surfaces are considered, one should distinguish
between two additional definitions of contact angles: the
actual and the apparent.3 The actual contact angle (Fig. 2)
is the angle between the direction of the tangent to the
solid surface at a given point and the direction of the
tangent to the liquid-fluid (lf) interface at that point. The
usual optical methods for measuring contact angles yield
the apparent contact angle (Fig. 3). This is the angle be-
tween the direction of the tangent to the seemingly
smooth solid surface, as seen by using relatively low
magnification and the direction of the tangent to the lf
interface. On perfectly smooth solid surfaces, the appar-
ent contact angle is identical with the actual one. On
rough surfaces, they may be very different.

The fundamental question that needs to be answered
is what is the relationship between the intrinsic contact
angle, which is characteristic of the material properties
of the system, and the measurable contact angle? The
contact angle that is currently accessible to experimen-

Figure 1. The intrinsic contact angle
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tal measurement is the apparent contact angle. Most of
the following discussion will be devoted to describing
what is known about the relationship between the ap-
parent and intrinsic contact angles. However, it should
be mentioned at this point that the relationship between
the actual contact angle and the intrinsic one has been
recently explained.4,5 It turns out that when line tension
effects are negligible, the actual and intrinsic contact
angles should be equal, even under the most complicated
three-dimensional situations. If line tension effects are
meaningful, the problem becomes much more complex.
Initial attempts in this direction have been made.4,5

If the drop is axisymmetric, the apparent contact angle
has a unique value. However, on real surfaces, where
the local topography and chemical nature may vary from
point to point, the apparent contact angle may also vary
along the contact line. Thus, two types of problems need
to be solved in order to answer the fundamental ques-
tion: (a) how can the apparent contact angle be mea-
sured? and (b) how should the measurements be
interpreted? The following sections summarize the cur-
rent state of knowledge on these topics.

Measurement of the Apparent Contact Angle
When the apparent contact angle has a unique value,
namely when the drop is axisymmetric, it can be easily
measured by direct optical techniques. The classical
method of using a goniometer has been replaced in re-
cent years by video and image processing techniques.
However, if the drop does not have a smooth, axisym-
metric contact line, the apparent contact angle needs to
be measured at each point along the contact line. In
principle, this can be done by using suitable scanning
techniques, however it is not simple, and has not yet
been performed for practical cases.

Another approach is to measure the average appar-
ent contact angle along the contact line. This can be done
by using the Capillary Bridge System (CBS).3 This sys-
tem (Fig. 4) uses a liquid drop in-between two surfaces
(capillary bridge). The two surfaces may be identical,
or one of them may be a well-characterized reference
surface. During an experiment the volume of the capil-
lary bridge, the distance between the surfaces, and the

Figure 2. The actual contact angle

Figure 3. The apparent contact angle
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force exerted by the bridge on the lower surface are ac-
curately measured. These data allow the calculation of
the average apparent contact angle, assuming that the
capillary bridge is axisymmetric.

Interpretation of the Apparent Contact Angle
The Young equation predicts a single value for the con-
tact angle. This is so, because the free energy curve of
a system that consists of a drop on an ideal surface
has a single minimum (curve a in Fig. 5). In contrast,
many minima points characterize the free energy curve
for a drop on a real surface. For example, curve b in
Fig. 5 shows the free energy calculated for a two-di-
mensional drop on a periodically heterogeneous sur-
face. Each minimum corresponds to a metastable
equilibrium state, so there is a multitude of possible
values for the apparent contact angle. The lowest (glo-
bal) minimum corresponds to the stable equilibrium
state. The problem of interpretation of apparent con-
tact angles can thus be divided into two sub-problems:
(a) How can one identify the most stable contact angle
that corresponds to the global minimum in the free en-
ergy, and what can one deduce from it? (b) What is the
range of possible apparent contact angles? The former
question was partially answered many years ago by
Wenzel6 and Cassie.7 The first subsection will explain
the recent understanding of these old contributions.
The latter is related to the problem of contact angle
hysteresis. This important topic will be discussed in
the second subsection.

The Wenzel and Cassie Equations
Many years ago, Wenzel6 developed the following

equation for the contact angle, θW, on rough surfaces:

cosθW = rcosθY (3)

where r is the roughness ratio (the ratio of the true sur-
face area of the solid to its nominal surface area). This
equation was actually developed for an unrealistic pic-
ture of a drop sitting on an ideal surface, the surface
area which is bigger by a factor of r than that of the
nominal surface area. In modern terminology, θW was
meant to describe the apparent contact angle corre-
sponding to the global free energy minimum.

Recent detailed analysis8 has shown that, in general,
the Wenzel equation is not accurate. However, it has
been mathematically proven that the Wenzel contact

Figure 4. The Capillary Bridge System (CBS)
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angle becomes an excellent approximation to the appar-
ent contact angle, corresponding to the global minimum
in free energy, when the size of the drop becomes very
large compared with the scale of roughness. Moreover,
it has been shown8 that the drop becomes more axisym-
metric as its size (normalized to the scale of roughness)
increases. Thus, for a rough surface, one should use
sufficiently large drops for contact angle measurements.
Axisymmetry may serve as a good indication of the drop
being sufficiently large. Then, if one is able to identify
the most stable situation of the drop, Eq. 3 may yield
the Young contact angle if the roughness ratio is known.
It should be noted, however, that the problem of identi-
fying the most stable situation is still an open ques-
tion.

The Cassie equation for heterogeneous surfaces7 is the
conceptual equivalent of the Wenzel equation. It states
that the cosine of the contact angle on a heterogeneous
surface is the weighted average of the cosines of the
contact angles on the various heterogeneous patches on
the surface. The status of the Cassie equation is simi-
lar to that of the Wenzel equation, as demonstrated
below. Curve b in Fig. 5 shows an example calculated
for a two dimensional case. The solid surface is assumed
to be heterogeneous in a smooth periodic way, such that
its intrinsic contact angle varies with the distance from
the center of the drop, x, according to

cosθin = cosθav + ϕcos(2πx/l) (4)

θav is the average contact angle, ϕ is the amplitude of
the variation, and l is the wavelength of the heteroge-
neity. According to the Cassie equation the contact angle
should equal θav.

It is clearly seen in Fig. 5 that the global minimum is
not at the average contact angle, which was 30° in this
calculation. However, for the case shown in Fig. 6 the
position of the global minimum is much closer to 30°.
This is so, because the drop size (compared with the wave-
length of heterogeneity) in this case is bigger (by a fac-
tor of √10) than for the case shown in Fig. 5. Three
dimensional calculations that are being done confirm this
conclusion, thus supporting the general statement that

Figure 5. Free energy versus apparent contact angle for a two-
dimensional example
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as the drop is getting bigger compared with the scale of
heterogeneity, the Cassie equation becomes a better ap-
proximation for the most stable apparent contact angle.

Therefore, if one uses a sufficiently large drop, it may,
in principle, be possible to identify the most stable situ-
ation on a heterogeneous surface. The apparent contact
angle corresponding to this state is the average of the
intrinsic contact angles characterizing the surface. How-
ever, this information is not sufficient for elucidating
the distribution of heterogeneity on the surface.

Contact Angle Hysteresis
As mentioned above, there is no unique value of the con-
tact angle for a drop on a real surface. Rather, there is a
range of possible contact angles, as demonstrated, for
example, by the minima in Fig. 5. It is well known in
practice that if the drop volume is increased, the appar-
ent contact angle also increases, until a maximum value
is reached. This is called the “advancing” contact angle.
Similarly, when the drop volume is decreased, the ap-
parent contact angle decreases, until a minimum is
reached. This minimum contact angle is the “receding”
one. The path followed by the contact angles when the
volume is increased is different from that followed when
the volume is decreased, hence the term contact angle
hysteresis.

The reason for the existence of a finite range of con-
tact angles (the hysteresis range) can be explained as
follows. As the apparent contact angle gets further away

Figure 6. Free energy versus apparent contact angle for a drop
bigger than in the case presented in Fig.5.
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from the global minimum, the minima become shallower.
This is clearly seen in Fig. 5. Eventually, instead of a
minimum there exists an inflection point. Beyond the
inflection points there are no local minima any more.
So the highest contact angle for which there is an in-
flection point is the advancing contact angle, and the
lowest corresponds to the receding contact angle.

The existence of multiple minima within a finite range
of contact angles explains the existence of a range of meta-
stable contact angles, as shown in the pioneering works
of Johnson, Jr. and Dettre, Good, and Neumann.9 This,
however, is not sufficient to explain hysteretic behavior.
The sufficient condition turns out to be the dependence
of the locations of the minima on the drop volume.9,10 An
important outcome of this analysis is that contact angle
measurements may strongly depend on the system used.11

While the values of the advancing and receding contact
angles are independent of the method of measurement,
the practical possibility of reaching these values does de-
pend on the method. The theory and calculations of hys-
teresis for three-dimensional situations12 is still in its
infancy. Much more is needed to be learned in order to be
able to fully and correctly interpret contact angle mea-
surements on real surfaces.

Conclusions
The following conclusions summarize the main points
emphasized in this discussion:
1. Line tension is important when local radii of

curvature are smaller than about 1 micrometer.
2. The CBS enables measurement of average apparent

contact angles.
3. The Wenzel and Cassie equations for the most stable

apparent contact angle become more accurate as the
size of the drop increases compared with the scale of
roughness or heterogeneity.

4. Understanding contact angle hysteresis is essential
for the correct interpretation of contact angle
measurements. These measurements may depend on
the system that is used.    
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