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Constraint Solving for Inkjet Print Mask Design
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We present results in a constraint solving approach for automatic generation of Inkjet print masks. Print masks are used to
control the firing of the nozzles, that is, to determine which nozzles on an Inkjet printer cartridge are to spit an ink droplet at
each particular instant in a multiple-pass print mode. Many design rules for print masks can be modeled in terms of constraints
and cost functions. For example, if adjacent nozzles are fired simultaneously, printing artifacts often result. Therefore, spatial
adjacency constraints with respect to horizontal, vertical and diagonal neighbors are modeled with various cost functions. Mini-
mizing the associated, total costs then generates the print masks. Initial solutions are found by a greedy algorithm with some
randomization; then neighborhood search techniques are applied to find local near-optima. Our approach can generate masks for
Inkjet printers in multiple-pass print modes for multiple-level, multiple-drop technologies. It has been used to help design the
print masks for Hewlett Packard’s wide format printers (DeskJet 2500C and 2500CM). This approach can shorten the turn-
around time for print mask design in a systematic and methodical way.
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Introduction
In the thermal inkjet printer technology, an inkjet
printer cartridge, an inkjet pen, contains arrays of
nozzles such that an ink droplet is spit from each nozzle
when a micro explosion occurs if the ink chamber is
heated. Print masks are used to control the firing of the
nozzles, i.e., to determine whether one particular nozzle
is to spit an ink droplet at one particular instant.

There are various kinds of print mode in thermal
inkjet printing technology. The most basic one is the
single pass, single drop print mode. The pen sweeps
across the media and puts a drop on the pixel if and
only if there is a data point at the pixel location that
needs to be marked. Afterwards the media is advanced
exactly the pen length. Therefore, there is only one
chance that the pen visits each pixel location. Further-
more, there is at most one drop to be put on the media
per visit. Therefore, it is a single level printing. In this
type of print modes, there is no need for extra control
logic to control the firing of the nozzles.

However, many things can go wrong. For example, the
media advance error can produce misalignment in the
output. Ink coalescence can be an unpleasant artifact that
is caused by the fact that ink may migrate before it is
completely dried. Firing the nozzles at higher frequency
than they can handle may cause puddling around the
nozzle opening that can create the satellites. Multiple-
pass print modes are usually used to avoid these print-
ing artifacts. In a multiple pass print mode, the pen visits
each pixel location more than once. Therefore, extra logic
control is required to determine whether the pen should
put a drop in this pass when this pixel location is to be
marked. Print masks are applied to provide this extra
logic. They are usually coded in an array of 0’s and 1’s. 1
indicates firing the nozzle if there is a data point needs
to be marked. 0 means no firing regardless if there is a
391



392 
Figure 1. A two-pass print mask

Figure 2. Problem formalization
data point. The size of the array varies from one pen ar-
chitecture and writing system to another. The arrays tile
up to cover the printable area of the media. Each array
element has direct correspondence to a particular pen
nozzle in a particular pass, controlling the firing as the
column of pen nozzles sweeps across the media.

Figure 1 shows an example in a two-pass print mode,
with print mask width four and length eight. As this
mask array is tiled over the media, the pen sweeps
across the media and marks every other pixel location
if there is a data point there, in a checkerboard pat-
tern. This alternating fashion is to avoid consecutive
firing of the same nozzle. Afterwards the media is ad-
vanced half of the pen length and the printing resumes.
Notice if we label the lower half of the array as M1 and
the upper half M2, then M1 and M2 should be comple-
mentary to each other. In other words, all the entries
that are missed by M1 the first time when the pen
sweeps along are picked up by M2 during the second
time when the pen visits again.
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The print masks are important because they directly
affect the print quality. They provide the necessary logic
control in multiple-pass print modes. They enforce hard-
ware limitations on firing frequency. This can be mod-
eled as a spatial adjacency problem. In case one wants
to further avoid the adjacency between different passes,
then it is a temporal adjacency problem. If there is a
defective nozzle, one can shift its printing responsibil-
ity to another nozzle by specifying exactly that in the
print masks. More aggressively, we have proposed to
apply halftone patterns for print masks.1 By introduc-
ing an invisible halftone pattern or a less objectionable
pattern, one can disrupt the unpleasant, existing pat-
tern, or cover up by the new pattern.

Problem Formulation
Mask arrays are used to tile up the entire printable

area on the media. Because the logic in 1 means firing
at this pixel location when the pen sweeps across the
media, we could have marked the non-zero entries by
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Figure 3. Constraint Matrix

Figure 4. A multi-level example
the pass number instead of 1. Looking from the pixel’s
point of view, these two have one-to-one correspondence.
Furthermore, we could combine the upper and lower into
one because they are complementary. And these two
have one-to-one correspondence. This representation is
more compact and yet complete (Fig. 2).

Now the task for mask generation is to fill up the mask
array with numbers subject to the adjacency constraint.
The notion of a Constraint Matrix was invented for this
purpose (Fig. 3).2 Each time when we are to decide the
number to be filled in this entry, we know that it has to
be at least a distance away from its left neighbor, b dis-
tance from its upper neighbor and c distance from its
upper left neighbor, and so on; x’s are don’t-care’s. This
representation is simple and effective. The masks gen-
erated by this method have been used in HP’s large for-
mat printers.

All these have worked well in single-level printing.
Now we have to extend it to handle multiple-level print
modes. The difference here is that in single level print-
ing, among multiple visits of the pen over the media, on
one, and only one of the visits will the pen put a drop on
the pixel location. However, with diluted ink, or smaller
traint Solving for Inkjet Print Mask Design
drop volume, one could put a drop for more than one of
the visits during multiple passes.

Here is a practical example (Fig. 4). We conduct our
feasibility test on one of HP’s prototype printers that uses
the 64-nozzle color pen. The print mask has length 8 and
width 4. In one particular print mode, it is 8-pass, with 3
levels. For example, if the image data at the pixel loca-
tion corresponding to the first entry is level 1, then the
pen puts one drop, in pass 2. If the image data here is
level 2, then the pen puts three drops, one in pass 2, one
in pass 4 and one drop in pass 7. If the image data here
is level 3, then the pen puts eight drops, one drop for
each pass (there is no need for logic control in level 3).

Constraint Modeling
The entry of the mask array is extended to a cell (Fig.

5). In the previous example, all the pass number ap-
pears in the top row in level 1 are always included in
the second row in level 2. This dependency property is
not unusual in many practical cases. It is also possible
that same pass number may appear more than once
within a row. The repetition of the same pass number
actually means more than one drop can be fired at each
Vol. 44, No. 5, September/October  2000  393



pixel location per pass. This is called the multiple-pass,
multiple-drop, multiple-level print mode.

Therefore, a cell is a structure such that there are at
most DPP rows, where DPP stands for drop-per-pixel.
Each row is a bag, a collection of pass numbers in which
some of them may repeat up to MFP times (Maximal
Firing Per pixel per pass). The dependency in the pre-
vious example can be achieved by assigning portion of
the solution as input to the constraint solver.

The total cost will be the composite costs of the adja-
cency constraints, the evenness of the mask, and the
halftone coherence. The cost of the adjacency constraints
is the sum of the costs of the constraints that are false
in the mask. The evenness encourages the number of
occurrences of values to be as even as possible. The cost
associated with the halftone coherence is intended to
disrupt the halftone pattern in the output.

We now have a list of the input parameters. P is the
number of passes. The dimension of the mask array is
the pen length divided by P. The width is a user input,
dependent on the particular writing system. It can be a
two-dimension mask array, one for each particular color.
It can also be layers of mask arrays such that we may
or may not want to enforce constraint across the layers.
The DPP, drop per pixel, corresponds to the number of
levels. The MFP is the maximal firing per pass per pixel.
A set of weight tables defines the costs. A partial as-
signment (maybe a halftone pattern) to the solution may
also be specified.

The solution is a mask array of given dimension such
that each entry is a cell. A cell contains DPP bags of
different size. Each slot of the bag is assigned an inte-
ger between 1 and P such that there are MFP occur-
rences of any integer in the bag. The mask array is a
near-optimal solution to the global minimization of the
total cost.

Constraint Solving
The constraint solving strategy is based on a greedy, ran-
domized, adaptive search procedure (GRASP)3 followed
by a repair phase. The greedy phase computes a solution
by filling in one cell at a time while minimizing the accu-
mulated cost. Alternative values are chosen with a prob-
ability that is proportional to their benefit to the total
solution. The user can tune the degree of randomness.

The repair phase uses the solution computed by the
greedy phase as a starting point for a neighborhood

Figure 5. A cell
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search. We have currently implemented a simple hill-
climber that stops when it has found a solution with
locally minimal cost, but other options are possible, e.g.
simulated annealing or taboo search.

By repeating the greedy and repair phases, the con-
straint solver generates a stream of proposed, locally
optimal solutions. An interesting idea is to use the
greedy phase to produce an initial population of solu-
tions, and then use a genetic algorithm to let the popu-
lation evolve towards better fitness values.

Details on the constraint modeling and the constraint
solving are described in Appendix A.

The Results
We have implemented a constraint solver, in TCL/TK, a
script language, as the input interface, and a text file
as the output.

An input script file in TCL can be found in Appendix
B. The programmable support routines are included in
the file “support.tcl”. A random seed is generated for
each instance. By recording this seed and setting the
random seed accordingly, one can repeatedly generate
the same mask array. This example is a spatial adja-
cency problem (SAP) with a mask array, of width 4 and
height 8, one layer (one color plane), for an 8-pass, 3
drops-per-pixel (3-level), single-drop technology. The
evenness is in full weight (1.0) and the attenuation about
the halftone coherence is set to be 50%. The mask array
should be considered as wrapped-around in all direc-
tions because, for example, its top most row is actually
immediately adjacent to its bottom most row when it is
used to tile up the image. The default cost is ranged
from 0 and 15. No horizontal adjacency is allowed, i.e.,
the cost is infinity if the left neighbor is the same as the
current entry. Vertical or diagonal adjacencies are al-
lowed, but not without some penalty. Some GRASP se-
lections can be specified also, for instance, greedy search
and hill climber, and so on. A sample output can be found
in Appendix C. Sometimes one has to translate the mask
array into an internal hexadecimal representation that
is specific to the prototype printers to be tested. A num-
ber of enhancements and extensions have been made
due to the preliminary implementation. For example, a
newer version of our constraint solver handles a special
variation, i.e., using print masks in 300 dot-per-inch
(dpi) resolution for printing 600 dpi data by extending
each pixel into four quadrants.

Summary
Print masks are always among the last to be finalized
before the manufacturing release. They are always un-
der severe limitations. However, miracles are always ex-
pected to fix problems at the last moment and miracles
are always expected in a very short time. The main ob-
jective of this work is to shorten the turn around time
for print mask design.

Not all of the desirable characteristics can be modeled
as constraints and cost functions easily, if at all. There
are still too many possibilities to test. A strategy is needed
to produce a collection of representative masks within
the solution space. It is fully understood that there will
always be inconsistency across pens and across different
printers. Therefore, even optimal solutions are never
guaranteed to produce the best print quality.

More and more complicated pen architecture will be
introduced. The expected life span of pens will be much
longer with the new, off-axis-ink technology. Manufac-
turing cost cutting will end up with less expensive and
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less accurate parts such that error hiding will be more
and more important. Therefore there is a need for an
automated tool for print mask design. We believe that
constraint solving suits this type of problems.    

Appendix A: A Spatial Adjacency Problem
Constraint Model

In its basic form, the problem consists of finding an
array A such that each entry A[ij] has an integer value
in 1..p, p ≤ 32, subject to a number of disequality con-
straints A[ij] ≠ A[i’j’].

There are three extensions to the basic problem
specification:

Soft Constraints
Each constraint is associated with a cost that is a float-

ing-point number in [0, ∞]. 0 denotes that the constraint
is disabled; ∞ denotes that it is mandatory. The total
cost of an array A is defined as the sum of the costs of
the constraints that are false in A. Furthermore, it is
desirable to have the number of occurrences of values
in 1..p as even as possible; deviations from the mean
value contribute to the cost function too. The problem
thus becomes a Constraint Satisfaction Optimization
Problem (CSOP) whose objective is to find an array with
minimal cost, subject to the mandatory constraints.

Three-Dimensional Constraints
The array A is generalized to be three-dimensional.

Composite Constraints
Each entry of the array A is extended into a cell con-

taining some number of bags of different sizes s1 <…<sn.
All cells have the same number of bags of the same sizes.
A bag of size si is said to be at level i.

Each slot in a bag should be assigned an integer in
1..p, such that there are at most mfp occurrences of any
integer in the bag, where mfp is a problem parameter.

A constraint on two cells Axyz and Ax’y’z’ with weight w
is interpreted as the conjunction of the following, where
b ≅  0.5 is a problem parameter:

• All disequalities with weight w between some slot at
level i of Axyz and some slot at level i of Ax’y’z’.

• All disequalities with weight bw between some slot
at level i of Axyz and some slot at level i – 1 of Ax’y’z’.

• All disequalities with weight bw between some slot
at level i of Axyz and some slot at level i + 1 of Ax’y’z’.

Cost Function
Let #(v,A) denote the number of occurrences of a value

v in the array A, let #(v,i,C) denote the number of oc-
currences of a value v at level i in cell C. Then the cost
of a solution instance A is defined as the sum of the
following terms:

• For all X coordinates x,x’, Y coordinates y,y’, Z
coordinates z,z’, levels i, and values v in 1..p, such
that (x,y,z) is lexicographically smaller than (x’,y’,z’):

       bw × #(v,i,Axyz) × #(v,i-1,Ax’y’z’) +
       w × #(v,i,Axyz) × #(v,i,Ax’y’z’) +
       bw × #(v,i,Axyz) × #(v,i+1,Ax’y’z’)

where w is the weight associated with the constraint on
Axyz and Ax’y’z’.
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• For all values v in 1..p:

e ×  #(v,A) –  S/p  

where e is a problem parameter denoting the relative
importance assigned to evenness and S is the total num-
ber of slots.

• For all X coordinates x,x’, Y coordinates y,y’, Z coordi-
nates z,z’, such that (x,y,z) is lexicographically smaller
than (x’,y’,z’):

c × ∑i ∑j P(i, j, Axyz, Ax’y’z’) × D(i, j, Axyz, Ax’y’z’)

where c is a problem parameter denoting the relative
importance assigned to halftone coherence. Setting it
to zero removes the halftone coherence completely from
the cost function;

P(i, j, Axyz, Ax’y’z’) is the probability that level i occurs in
the halftoned images at the cell Axyz and level j occurs
at the cell Ax’y’z’.. Alternatively, we can replace this term
by its reciprocal to disrupt the halftone patterns;

D(i, j, Axyz, Ax’y’z’) is a function of the distance in pass
number between level i in cell Axyz and level j in cell
Ax’y’z’. Let I be the set of all pass numbers to print level
i in cell Axyz and J be the set of all pass numbers to
print level j in cell Ax’y’z’, then the distance in pass num-
ber is defined to be

min u in I, v in J { |u-v| }.

Partial Assignments
For selected slots, a value that must not be changed

by the algorithm, or a set of values that must not be
assigned by the algorithm, can be chosen.

Problem Parameters
Summarizing, a problem instance is completely de-

fined by the following parameters:

• an integer p defining the domain of all slots,

• three integers Dx,Dy,Dz defining the size of the three-
dimensional array,

• a set of disequality constraints, each specified as two
array coordinates and a weight, i.e., as a triple

<(x,y,z), (x’,y’,z’), w>

where w is a floating-point number,

• an integer DPP, and some integers s1<…<sn = DPP
denoting the relevant bag sizes and levels,

• an integer MFP, denoting the maximum number of
occurrences of any integer in any bag,

• a floating-point number b denoting the attenuation
factor in adjacent layer constraints,

• a floating-point number e denoting the evenness
contribution to the cost function, any pre-assigned
or forbidden values for selected slots

Convenience. For convenience, a number of alterna-
tive ways of specifying the input constraints have been
Vol. 44, No. 5, September/October  2000  395



defined. Let the three Boolean parameters Tx, Ty, Tz de-
note whether the array “wraps around” the respective
dimension in the following description:

Repetitive Constraints
These are interpreted as follows: For each cell c, a

constraint between c and another cell located at a fixed
3-D offset from c. The treatment of cells near the bor-
ders depends on the tiling parameters.

A repetitive constraint is defined as a tuple

<(δx, δy, δz), (l,u)>

where δx, δy, δz are integer offsets and l ≤ u are floating-
point weights denoting that the weight of each individual
constraint shall be a random number in [l,u].

Specific Constraints
These are specific constraints on coordinate pairs.
A specific constraint is defined as an triple

< (x,y,z), (x’,y’,z’), (l,u) >

where (x,y,z) and (x’,y’,z’) denote two matrix locations and
l, u are as above.

Default Constraints
These are interpreted as follows: For each pair of cells

that is not otherwise constrained, a constraint may be
imposed whose weight depends on the distance between
the cells.

A default constraint is defined as a pair (l,u). The
weight of each constraint is defined as r/d where r is a
randomly chosen number in [l,u] as described above and
d is the distance between the two cells, taking wrap-
around into account.

The offset in any dimension between two indices i and
i’, with array size s along the chosen dimension, is de-
fined as:

       |i-i’| without tiling, or
       min(|i – i’|, s –|i – i’|) with tiling.

The distance between two matrix locations at a 3-D
offset δx, δy, δz is defined as:

 
    

δ δ δx y z
2 2 2+ +

Implementation
The implementation consists of three parts:

• An initialization module that initializes the matrix,
sets up the constraints and computes initial
solution(s), using a greedy algorithm.

• An optimization module that improves the initial
solution(s), using neighborhood search methods and/
or a genetic algorithm.

• A harness module whose task it is to perform I/O and
to combine the other modules.

Requesting specific heuristics can control each module.

The Initialization Module
The greedy algorithm computes an initial solution with

reasonably low cost. The algorithm traverses the matrix,
assigning one cell slot at a time. For each cell slot, the
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algorithm chooses the value that minimizes the cost so
far, combined with an element of random choice so as to
provide randomized solution sample for input to the op-
timization module.

Two parameters Gc and Gr in [0, ∞] are introduced, de-
noting the relative importance of these heuristics. The
greedy algorithm chooses for cell slot x the value v that
minimizes:

(δcost(v) + Gc) * (random(v) + Gr)

where δcost(v) is the contribution to the cost function if x
is assigned to v, and random(v) is a random number in
[0.0,1.0]. For example, Gc =Gr=0 yields a choice of value
with probability proportional to δcost(v); Gc = Gr > 0 makes
the choice depend almost entirely on δcost(v); Gc >0 Gr = 0
makes the choice almost random.

The Optimization Module
Starting from the solution produced by the greedy al-

gorithm, this module performs a neighborhood search for
better solutions until a local cost minimum is found.

The Harness Module
This module provides an iterative randomized sam-

pling of solutions by repeatedly invoking the initializa-
tion and optimization modules.

Appendix B: A Sample TCL Script

#!/bin/sh
# Switch to Tcl/Tk \
exec ./hpcs -f $0

#supporting stuff in tcl
source support.tcl

#find a random number
set random [expr int(rand( ) * 100000000)]
SetRandomSeed $random #set the random seed

# Create a problem instance. Syntax:
# SAP <name> <width> <height> <depth>
# <#passes> <list of levels> <mfp>
# <evenliness> <attenuation>
# <wrapx?> <wrapy?> <wrapz?>
SAP sap 4 8 1 8 {3} 1 1.0 0.5 yes yes yes

#set a range for the default cost
sap default 0 15
# forbid horizontal adjacencies:
sap repetetive –1 0 0 inf
# avoid other adjacencies:
sap repetetive –1 –1 0 1  5
sap repetetive  0 –1 0 3 10
sap repetetive –1  1 0 1  5

# Create a printmask
Printmask printmask sap
Greedysearch printmask
Hillclimber printmask
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# Print output
set output [printmask get]
PrintMatrix $output$

Exit

Appendix C: A Sample Output Mask

8 2 4 5
148 257 148 357
3 2 5 6
357 246 357 168
6 2 3 5
367 245 136 258
1 2 7 3
167 248 167 358
4 3 6 7
468 357 168 237
8 4 1 2
138 247 158 246
4 3 1 6
247 356 124 368
6 1 4 5
346 125 347 158
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