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Color Correcting Uncalibrated Digital Images
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Color images often must be color balanced to remove unwanted color casts. Color balancing uncalibrated images (e.g. down-
loaded from the Internet or scanned from an unknown film) adds additional challenges to the already difficult problem of color
correction because neither the pre-processing to which the image was subjected, nor the camera sensors or camera balance are
known. In this article, we propose a framework for dealing with some aspects of this type of image. In particular, we discuss the
issue of color correcting images where an unknown ‘gamma’ non-linearity may be present. We show that the diagonal model,
used for color correcting linear images, also works in the case of gamma corrected images. We also discuss the influence that
unknown camera balance and unknown sensors have on color constancy algorithms. To perform color correction on uncalibrated
images, we extend previous work on using a neural network for illumination, or white-point, estimation from the case of cali-
brated images to that of uncalibrated images of unknown origin. The results show that the chromaticity of the ambient illumina-
tion in uncalibrated images can be estimated with an average CIE Lab error around 5∆E. Comparisons are made to the grayworld
and white-patch methods.
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Introduction
The color of a surface appearing in an image is deter-
mined in part by its surface reflectance and in part by
the spectral power distribution of the light illuminat-
ing it. Thus, as is well known, a variation in the scene
illumination changes the color of the surface as it ap-
pears in an image. This creates problems for computer
vision systems, such as color-based object recognition1,2

and digital cameras. For a human observer, however,
the perceived color shifts due to changes in illumina-
tion are relatively small. In other words, humans ex-
hibit a relatively high degree of color constancy.3

From a computational perspective, we define the goal
of color constancy to be the computation of an image
with the same colors (RGB pixel values) as would have
been obtained by the same camera for the same scene
under a standard ‘canonical’ illuminant. We see this as
a two-stage process: (1) estimate the chromaticity of the
illumination; (2) correct the image colors based on this
estimate.

Illumination estimation in this sense is also commonly
referred to as white-point estimation. Even when the im-
aging device’s characteristics are fully known, accurate
illumination estimation for color cast removal has proven
difficult, but there has been progress.4–10 One simple, but
often impractical way to estimate the illumination is to
have a white patch in the image; the chromaticity of the
patch as seen in the image will then be the chromaticity
of the illuminant. Other more sophisticated color con-
stancy methods will be discussed below.
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After estimating the actual illuminant’s chromaticity,
the image colors can be ‘color corrected’, that is adjusted
to be approximately what they would have been under
the canonical illuminant, as shown in Color Plate 5 (p.
378). Color correction is based on a diagonal, or coeffi-
cient-rule, transformation. The coefficients of the trans-
formation are computed by comparing the chromaticities
of the estimated actual and canonical illuminants.

Color constancy is an under-determined problem and
is thus impossible to solve in the most general case. In
general, existing color constancy algorithms4–10 rely in
one way or another on accurate camera calibration, as
well as on assumptions about the statistical properties
of the expected illuminants and surface reflectances. In
the case of digital photography images, the camera can
be calibrated so that the sensor sensitivities as a func-
tion of wavelength are known. As well the sensor re-
sponse as a function of intensity can be determined.
However, in many situations, full calibration is not pos-
sible. For example, with images downloaded over the
Internet or scanned from film, the imaging characteris-
tics are either unknown or else, as in the case of film,
very difficult to control.

Estimating the chromaticity of the illumination in an
image of unknown origin poses additional challenges.
First of all, not knowing the sensor sensitivity curves of
the imaging device means that even for a known surface
under a known illuminant, we will not be able to predict
its RGB value. Figure 1 shows how much the
chromaticities in the rg-chromaticity space (r=R/[R+G+B]
and g=G/[R+G+B]) can vary between two cameras. It
shows the chromaticities of the Macbeth Colorchecker

patches that would be obtained by a SONY DXC-930 and
a Kodak DCS460 camera, both color balanced for the same
illuminant. The data for Fig. 1 were synthesized from
the known camera sensitivity curves to avoid the values
being disrupted by noise or other artifacts.11,12 Although



the white values coincide–as they must, given that cam-
eras were balanced identically–there is a substantial
chromaticity difference between the chromaticities from
the two cameras for many of the other patches.

A further problem for color constancy on uncalibrated
images, is that we do not know the illuminant for which
the camera was balanced. Even if two images are taken
with the same camera, the output will be different for
different color balance settings.

Yet another complication is the question of camera
‘gamma’. Cameras whose images are expected to be
viewed on a CRT monitor, generally provide output val-
ues which are non-linear with respect to the input in-
tensity. The camera non-linearity offsets the CRT
non-linearity so that in combination the two non-
linearities generate a screen luminance directly propor-
tional to the scene luminance. We must understand the
effect this non-linearity has on color correction if we are
to handle images of unknown origin.

Of course, in principle, the camera response as a func-
tion of intensity could be arbitrary so some assumptions
must be introduced. Certainly we can expect the re-
sponse to be monotonic. We will restrict our attention
to “gamma” functions of the form:

  I S D= ⋅ γ (1)

where I is the resulting pixel value, S is the camera
gain, and D is the light intensity value, scaled in the
0.1 range. A typical value of γ is 0.45, however, the re-
sults below apply for any value of γ.

Poynton13 discusses gamma in imaging systems in de-
tail. In what follows, we assume that any non-linearity
in the sensor response has been created by a function of
the form given in Eq. 1, but that the precise value of the
parameter γ is unknown because γ may differ between
imaging systems. We will term images for which gamma
does not equal unity to be ‘gamma-on’ images. Linear
images are ‘gamma-off ’ and have γ = 1.

Changing γ shifts most chromaticities, with the gen-
eral effect being desaturation. Usually r ≠ rgamma and g ≠
ggamma after the transformation:
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Grays of the form R=G=B, and completely saturated
colors such as R=.5, G=B=0, of course remain unchanged
by Eq. 2.

The Effect of γ on Color Correction
In terms of the effect of γ on color correction, a crucial

question is whether or not the diagonal model, which
has been shown to work well on linear image data,14 still
holds once the non-linearity of γ is introduced? We ad-
dress this question both empirically and theoretically.

Consider an n-by-3 matrix, Q1, of RGBs from an im-
age of a scene illuminated by E1, and a similar matrix,
Q2, containing RGBs from the corresponding image of
the same scene but illuminated by E2. In the case where
the diagonal model of illumination change holds exactly
(see Refs. 14 and 15 for a discussion of the conditions in
which this is the case) then there exists a diagonal ma-
trix M such that
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    Q M Q1 2⋅ = (3)

M depends only on illuminants E1 and E2 and does
not depend on the RGB values in the images. The di-
agonal terms of M can be computed by comparing the
RGB of any reflectance under the two illuminants for
which {R,G,B}> 0. In particular, if (R1, G1, B1)wh is the
value of a white reflector under illuminant E1 and (R2,
G2, B2)wh is the corresponding value of the same white
reflector under illuminant E2, then M is given by
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Let Mγ denote element-by-element exponentiation of
the elements of matrix M. When the diagonal model M
holds exactly for a linear image (γ = 1), then it will also
hold exactly for the same image after a transformation
of the form of Eq. 1 with γ ≠ 1. In this case, the diagonal
transformation matrix becomes Mγ:

    
Q M Q

1 2
γ γ γ⋅ = (5)

This equality becomes obvious if we expand it:
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which is true, because:

    R Rk R k1 2
γ γ γλ⋅ =  and     G Gk G k1 2

γ γ γλ⋅ =   and     B Bk B k1 2
γ γ γλ⋅ = (7)

where k is a row index in matrices Q1 and Q2 and λ is an
element of the diagonal matrix M.

In practice, the diagonal model is not perfect, so the
transformation matrix will also contain small off-diago-
nal terms.14,15 Introducing γ amplifies these off-diago-
nal terms. To explore the effects of γ on the off-diagonal

Figure 1. Variation in chromaticity response of two digital
cameras.
Vol. 44, No. 4, July/August 2000  289



terms, we synthesized two images under different
illuminants and evaluated the accuracy of the diagonal
transformation in mapping between them. The two im-
ages were generated using measured spectral
reflectances of the 24 patches of the Macbeth
Colorchecker. One image was synthesized relative to CIE
illuminant A and the other relative to D65, both using
the spectral sensitivities of the SONY DXC-930 camera
scaled so the resulting RGBs fall in [0...1].

If A is the matrix of synthesized RGBs under
illuminant A and D is the matrix of corresponding RGBs
under illuminant D65, the transformation from matrix
D to A is given by

  D M A⋅ = (8)

For linear image data, the best (non-diagonal) trans-
formation matrix M and the best diagonal matrix MD

(in the least square errors sense) are found to be:
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These transformation matrices are computed to mini-
mize the mean square error using the pseudo-inverse:

    M D A= ⋅* , (10)

where “*” denotes the pseudo-inverse of the matrix.
The accuracy of the matrix transformation is mea-

sured by comparing the estimated RGBs, E = DM, with
A, the actual RGBs under illuminant A. For the non-
diagonal case, the average error µlinear = 0.0088 and the
standard deviation σlinear = 0.0061. In the perceptually
uniform CIE Lab space the average ∆ΕLab error ob-
tained from the same matrix transformation is µLab =
2.14, with standard deviation σLab = 1.56.

In Eq. 9, the diagonal elements of MD resemble those
of M, but do not equal them. The differences compen-
sate for the effect of constraining the non-diagonal terms
to 0. Of course, when we are restricted to a diagonal
matrix we expect the error to be somewhat larger than
when using a non-diagonal matrix. Using MD, the aver-
age error µ’linear=0.0192 and the standard deviation σ’linear

= 0.0128. In CIE Lab space the average error µ’Lab=3.36
and the standard deviation σ’Lab=2.30. Although these
errors are almost twice as large as for the full non-di-
agonal linear transformation, they are still quite small
and show that a diagonal transformation provides a good
method of predicting the effects of an illumination
change on an image.

 To determine the effect of γ on the effectiveness of the
diagonal model, we took the previously synthesized data
and applied γ of 1/2.2. In this case the best transforma-
tion Mγ and the best diagonal transformation MDγ  are
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and
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The average error in RGB using the full 3-by-3 trans-
formation, Mγ, is µgamma = 0.0067 with standard devia-
tion σgamma = 0.0037. In CIE Lab the average ∆ΕLab error
is µγLab = 1.06 with standard deviation σγLab = 0.69. The
average error in RGB when restricted to the diagonal
transformation, MDγ, becomes µ’gamma = 0.0180 with stan-
dard deviation σ’gamma = 0.0103. In CIE Lab space the
average ∆ΕLab error is µγ’Lab = 2.04 with standard devia-
tion σγ’Lab = 1.39. The magnitude of these errors for the
gamma-on case is comparable to those of the linear,
gamma-off case above.

The above results are summarized in the charts of
Figs. 2 and 3. From these charts it is clear that the di-
agonal model still holds for images to which a non-lin-
ear γ has been applied even where the diagonal model
in the linear case provides only an approximate model
of illumination change. Transformation errors for non-
linear images are smaller than for linear ones.

Another issue that must be considered in terms of
color correcting images of unknown γ has to do with the
effect that a scaling in brightness of the form (R,G,B) to
(kR,kG,kB) might have. A brightness scaling may result
from a change in incident illumination or a change in
camera exposure settings. Also the image intensities
may have been scaled by a user simply to make it look
better.

Whatever the cause, it turns out that a brightness
change does not affect a pixel’s chromaticity even in the
case of gamma-on images. Consider a pixel (R,G,B) from
a linear image with red chromaticity of r = R/(R + G +
B). After γ, its red chromaticity will be:

  
r R R G Bgamma = + +( )γ γ γ γ (12)

In the linear case, any brightness scaling leaves the
chromaticity unchanged. In the non-linear case, the red
chromaticity of the pixel will be:

    

r R) /((kR) G) B) )

R /(R G B ) r
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( ( (k k kγ γ γ γ

γ γ γ γ (13)

Similar results hold for other chromaticity channels,
so brightness changes do not effect the chromaticities
in gamma-on images. Note, however, that this does not
mean that the chromaticity of a pixel is the same before
and after the application of γ.

Color Correction on Non-Linear Images
We have shown thus far that for both linear and non-

linear image data the diagonal model approximation
holds and that changing intensity does not affect chro-
maticity in either case. In what follows, we will address
the commutativity of γ and color correction. Given an
image I, represented as an n-by-3 matrix of RGBs, we
define two operators on this image. Γ(I) denotes the
application of γ and C(I,M) denotes the color correction
operator:

Γ(I) = Iγ and C(I,M) = I • M. (14)
          Cardei and Funt



We wish to find out if the two operators commute,
i.e. if

    C I M C I MΓ Γ( )( ) = ( )( ), , . (15)

The diagonal transformation matrix M depends on the
image I and the illuminant under which it was taken.
This transformation maps pixels belonging to a white
surface in the image into achromatic RGB pixels
(N,N,N).

If (Rwh, Gwh, Bwh) is the color of the illuminant (i.e.,
the camera’s response to an ideal white surface under
that illuminant) for image I and (R, G, B) is an arbi-
trary pixel in I, then
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is the transformation to be used on images with
gamma-on.

If we know the color of the illuminant, the diagonal
elements of Mγ can be computed from the following
equation:
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Thus, the transformation matrix becomes:
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Figure 2. Error in predicting the effects of illumination change
on image data in RGB space for both linear and non-linear
image data comparing general 3-by-3 matrices to diagonal ones.
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We can rewrite Eq. 16, as a function of (R,G,B) and
(Rwh, Gwh, Bwh):
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The right hand side of Eq. 15 can be written as:

    
Γ ΓC I M m R m G m BR G B, , ,( )( ) = [ ]( )  , (21)

where mx are the diagonal elements of matrix M.
Because M maps a white surface into white, we can

write M as:
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Thus, Eq. 21 can be rewritten as:
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From Eqs. 20 and 23 it follows that Eq. 15 is true for
any pixel in I, i.e., that color correction and γ applica-
tion are commutative. As a result, we can color correct
gamma-on images in the same way as linear images.

In the equations above we assumed that there is a
perfect white surface in the image I or, equivalently, that
the color of the illuminant is known. Given knowledge
of the illuminant, the color correction method is the same
for gamma-on and gamma-off images, although the pa-
rameters of the transformation differ. Color constancy
methods used to determine the illumination, however,
must change, because γ affects a pixel’s chromaticity. In
general, applying γ results in a more desaturated color.

Figure 3. CIELAB ∆ΕLab error in predicting the effects of
illumination change on image data for both linear and non-
linear image data comparing general 3-by-3 matrices to diago-
nal ones.
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The difference in chromaticities throughout an image
will result in a different statistical distribution of
chromaticities. This change in the distribution of
chromaticities can adversely affect those color constancy
algorithms that rely on a priori knowledge about the
statistics of the world.5–9

Color Correcting Images from Unknown Sensors
There are two aspects related to unknown sensors:

the color balance of the camera and the sensor sensitiv-
ity curves. In most cases, the color balance is determined
by scaling the three color channels according to some
predetermined settings. The goal of color balance is to
obtain equal RGB values for a white patch under a ca-
nonical light. In this case, we say that the camera is
calibrated for that particular illuminant. Color correct-
ing images taken with an unknown balance does not
pose a problem, because the calibrating coefficients can
be absorbed in the diagonal transformation that per-
forms the color correction. However, finding the diago-
nal transformation might prove difficult for stochastic
algorithms5–9 that can have difficulties in generalizing
their estimates if they fall outside the illumination
gamut for which they were trained.

If the spectral sensitivities of the camera sensors are
unknown, many color constancy algorithms will have
difficulty providing reasonable estimates of the scene
illumination. As described in the next section, we tested
several algorithms on uncalibrated image data and
found that the neural network approach works quite
well.

Illumination-Estimation Algorithms
We test several different illumination-estimation al-

gorithms on a database of ‘uncalibrated’ images. The
images are uncalibrated in the sense that the imaging
characteristics are not provided to the algorithms, even
though we have the calibration parameters available so
that we can evaluate the results. In particular, we test
the white patch algorithm (WP), a version of the
grayworld algorithm (GW) and two neural-network-
based methods. The gamut-constraint methods6,7 were
not tested because they require information about the
expected gamuts of reflectances or illuminants. This in-
formation can not be obtained without knowing the sen-
sor sensitivity functions of the devices that acquired the
images.

 The image database contains 116 images taken with
a Kodak DCS-460 camera and 67 images scanned with
a Polaroid Sprintscan 35+ slide scanner from various
film types: Kodak Gold, Kodak Royal, Agfa Optima,
Polaroid HiDef and Fuji Superia. The photographs were
scanned using a ‘generic’ pre-defined scanner setting.
This setting is consistent with the assumption of un-
known pre-processing. Using the manufacturer ’s opti-
mal setting for each specific film type would have
allowed the scanner driver to accommodate partially for
the differences in film.

We divide the image database into two sets, the first
for training and the second for testing. The training set
contains 102 images and is used for training the neural
network and computing the average color for use in the
database grayworld algorithm. The test set contains the
other 81 images (57 DCS images and 24 slides).

For the GW algorithm, the chromaticity of the
illuminant is determined from the average of all the pix-
els in an image. GW assumes that the average color of
the scene is gray and that any departure from this av-
erage in the image is caused by the color of the
292  Journal of Imaging Science and Technology®
illuminant. The average is computed relative to the av-
erage chromaticity computed using all pixels in the
training database. Using the database average as the
definition of gray compensates for the fact that gray may
not have exactly equal r and g chromaticities. Nonethe-
less, GW’s performance will be poor when a test image
has a different average distribution than the images
used for computing the database average.

The WP algorithm determines white, and hence the
illuminant color, as the maximum R, maximum G and
maximum B found in the image. The WP algorithm has
roots in the family of retinex algorithms,4 but it is only
equivalent to it under restricted circumstances.

Two differently trained neural networks were used for
illumination estimation. The network architecture was the
same in both cases; namely, a Perceptron with two hidden
layers as we have previously described.8,11,17 The networks
are trained to estimate the chromaticity of the illuminant
based on the binarized rg-chromaticity histogram of an
input image. The 3600-node input layer is fed binary val-
ues representing the presence or absence of chromaticities
falling within a particular chromaticity bin. The first
hidden layer contains 50 neurons and the second layer
20 neurons. The output layer consists of only two neu-
rons representing the chromaticity of the illuminant.
All neurons have a sigmoid activation function.

Both neural networks were trained using back-propa-
gation. The error function for training and testing is
the Euclidean distance in rg-chromaticity space between
the actual illuminant and its estimate.

The difference between the training of the two net-
works concerns the method of determining the actual
illuminant. For the first network, the illuminant chro-
maticity is simply measured from the reference white
standard that was placed within each image. This ref-
erence white was manually removed from the images
before testing the color constancy algorithms. It pro-
vides an accurate value for the illuminant’s chroma-
ticity. For the second network, a less accurate method
is used, which we have called the bootstrapping
method.17 The bootstrapped network uses the GW al-
gorithm to “measure” the chromaticity of the illuminant
for training. Clearly, the illuminant value determined
by GW will only be approximately correct; nonetheless,
previous experiments with calibrated image data
showed that the network “learned” to make a better
estimate than the simple GW algorithm used to train
it. Our new experiments described below show that
bootstrapping works even for the more general case of
non-linear images acquired from various sources. This
approach allows us to train a neural network for a
range of uncalibrated cameras and scanners, without
having to explicitly measure white patches in the set
of training images.

Experimental Results
The algorithms presented above were tested on an im-
age database containing 81 images. Figures 4 and 5
show the relative performance of the color constancy
algorithms. The figures show the average errors over
the whole test set as well as for each type of input (i.e.
for DCS images and slides). In Fig. 4, the average er-
rors are computed in the rg-chromaticity space, the
same space in which the neural network was trained.
“Nothing” refers to the assumption that the illuminant
is the one for which the device is calibrated and re-
f lects  the variation in the chromaticity of  the
illuminant across the test set of images, relative to
          Cardei and Funt



Color 
Figure 4. Average errors measured in rg-chromaticity space.

Figure 5. Average CIE Lab ∆E space between actual and estimated illuminant fixed to the same L* value.

Figure 6. Average error in rg space when the training and test data come from the same uncalibrated source.
white (located at r=g=1/3 in rg-chromaticity space).
“NN” refers to the neural network trained with accu-
rately measured illumination data, while “Boot-
strapped NN” refers to the same network trained using
GW illumination estimates.

Figure 5 presents similar results, but with the error
measured in CIE Lab space. The conversion from the
RGB space to CIE Lab assumes the images are to be
viewed on a sRGB-compliant16 monitor.

Figures 6 and 7 compare the results of neural net-
works trained on images from a single uncalibrated de-
vice (i.e., camera or scanner) with the other algorithms.
Correcting Uncalibrated Digital Images
The results show that in this case, the accuracy of the
neural network is much better than when the device
type varies.

Discussion
We presented a framework for dealing with a quite gen-
eral case of color correction; namely, that of images for
which both the spectral sensitivity of the sensors and γ
setting are unknown. One conclusion is that for images
to which γ has been applied, it is possible to perform
color correction by a diagonal transformation without
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Figure 7. Average CIE Lab ∆E space between actual and estimated illuminant fixed to the same L* value when the training and
test data come from the same uncalibrated source.
first linearizing the image data. The off-diagonal ele-
ments of the general image transformation are larger
with respect to the diagonal elements when γ has been
applied and thus the average error of a diagonal trans-
formation (which ignores the off-diagonal terms) will
increase. However, the perceptual error is still very
small and the diagonal transformation thus remains a
good model of illumination change.

In the case of unknown sensors, as we saw in Fig. 1
there are large differences in sensor response, even for
cameras balanced for the same illuminant. This varia-
tion in the distribution of sensor responses can adversely
affect color constancy algorithms that rely on assumed
distributions of sensor responses.

Previous studies8,11,17 based on calibrated, linear im-
age data have shown that a neural network can accu-
rately estimate the illumination chromaticity. Often
we must work with uncalibrated image data, so we
trained and tested several algorithms on uncalibrated
data, but in a controlled manner. On this test data,
the neural net average error is 5.14∆ELab. We believe
this to be useful for removing color casts from images
of unknown origin. In the tests with the bootstrapping
method of training the neural network, the ∆ELab
error increased to 9.38. Nonetheless, this is better
than e i ther  the  GW or  WP methods and the
bootstrapping method can be applied in situations
where accurate measurements of the illuminant chro-
maticity are unavailable for training.
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Plate 5. Example of color correction based on various methods including grey world, a neural network trained on estimated
training data via bootstrapping,17 and a neural network trained on accurate training data.8,11  (Cardei and Funt, pp. 288–294).
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