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An important process in remote sensing is spectral unmixing which is used to obtain a set of species concentration maps known
as abundance images. Linear pixel unmixing, also known as linear mixture modeling, assumes that the spectral signature of
each pixel vector is the linear combination of a limited set of fundamental spectral components known as end-members. Thus
end-member selection is the crucial first step in the spectral unmixing process. A conveniently parameterized method for deter-
mining the appropriate set of end-members for a given set of multispectral images is proposed. The end-members are obtained
from a thematic map generated from a modified ISODATA clustering procedure that uses the spectral angle criterion, instead of
the common Euclidean distance criterion. The centroids of the compact and well-populated clusters are selected as candidate
end-members. The advantages of this technique over common mathematical and manual end-member selection techniques are,
(1) the resulting end-members correspond to physically identifiable, and likely pure, species on the ground, (2) the residual error
is relatively small, and (3) minimal human interaction time is required. The proposed spectral unmixing procedure was imple-
mented in C and has been successfully applied to test imagery from various platforms including LANDSAT 5 MSS (79 m GSD)
and NOAA’s AVHRR (1.1 km GSD).
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Introduction
The most widely used method for extracting informa-
tion on surface cover from remotely sensed imagery data
is classification. Conventional classification techniques
assign a single label to each pixel. The label can be any
one of the known categories such as water, forest, soil,
and rock. The resulting thematic map can become a very
useful land cover interpretive aid provided that the
imagery data is composed of pure pixels in the sense
that each represents the spectral signature of only one
species. A thematic map is thus appropriate for imag-
ery data with a relatively small ground sampling dis-
tance (GSD) such as LANDSAT Thematic Mapper
imagery with a 30 m GSD. For large GSD imagery, such
as those from NOAA’s AVHRR sensor with a 1.1 km GSD,
accurate land cover estimation can only be achieved if
each pixel is assigned not just to one, but several labels
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along with their respective concentrations in that pixel’s
footprint. The technique used to assign these labels and
proportions is known as mixture modeling, or spectral
unmixing. Spectral unmixing produces a compositional
map, also known as abundance image, that provides a
more complete land cover type information than a the-
matic map. The set of compositional maps depicts the
proportions of all species present in each pixel footprint,
while the thematic map identifies only the species with
the highest concentration. Thus it can be argued that
spectral unmixing yields a more complete classification
information than a thematic map.

Recently the application of spectral unmixing has been
extended to the area of multispectral image compres-
sion. Classification can provide the compression system
with the additional capability to prioritize species of
interest in the compression process Prioritization is
achieved via minimizing the compression-induced error
on the species of interest.1 Via spectral unmixing, the
multispectral image set is mathematically transformed
into a set of compositional maps, known as abundance
images each showing the concentration of one species
in the scene. Assuming that the transformation is re-
versible, the actual compression can be carried out in
the abundance image space rather than the original
spectral image space. Prioritization is achieved via ad-



justing the coding bit rate on a species by species basis
depending on their significance in the final product do-
main. The conceptual design for a species-prioritized
compression system involves,
1.  applying spectral unmixing to the original image set,
2.  coding the resulting prioritized species concentration

maps at a relatively high bit rate,
3. coding the resulting non-prioritized species

concentration maps at relatively low bit rate, and
4. at the decoder, re-mixing the decoded species

concentration maps to form the species-prioritized
reconstructed multispectral image set.

This concept is only feasible if the unmixing algorithm
has a negligible residual error associated with it.

Spectral unmixing is commonly carried out via a lin-
ear mixture modeling approach. The basic assumption
is that the signal received at the sensor from each pixel
is a linear combination of the spectral contributions of
all species present in that pixel’s footprint. The tech-
nique allows decomposition of the scene in such a way
as to recover the fractional contributions of fundamen-
tal components in the scene. This provides a means for
obtaining sub-pixel information from the scene when the
size of the interesting ground elements is much smaller
than the image resolution. Linear pixel unmixing is
much more flexible than usual “hard” classification pro-
cedures because it doesn’t assign each pixel to a single
class, with a consequent loss of potentially useful infor-
mation. On the other hand, it produces results that are
much easier to interpret than those of classical rota-
tional transformations, such as principal component
analysis. In addition to this, the assumption of linear-
ity allows the simple mathematical treatment of the
resulting abundance images so as to increase or reduce
the relative importance of one or more scene compo-
nents. This feature was utilized to achieve species
prioritization in the bandwidth compression application.

Linear pixel unmixing requires the exact knowledge
of the end-member spectra (the spectral signatures of
the fundamental components). It further requires that
the number of end-members be limited by the true spec-
tral dimension of the scene (dimension of feature space).
The latter is known as the condition of idebtifiability.
This condition obviously limits the applicability of the
linear pixel unmixing when using data from existing
operational sensors. Firstly, the end-members may not
necessarily correspond to physically identifiable species
on the ground. Secondly, there may be more distinct spe-
cies in the scene than the true spectral dimensionality
of the scene. The latter constraint has recently been
resolved by the method of dynamic selection of optimum
end-member subset.2 In this technique, an optimum
subset of end-members is selected for spectral unmixing
of each pixel vector in the scene. The subset is selected
from the set of all available end-members.

The subject of end-member selection and their impact
on the results of multispectral pixel unmixing has been
addressed by several researchers.2–12 In general, end-
members are obtained via either mathematical meth-
ods such as principal component analysis or
Gram-Schmidt orthogonalization, or manual techniques
such as selecting them directly from the scene or from
the library of end-member spectra. Mathematical tech-
niques may have the advantages over manual tech-
niques because they involve no human interaction time
and, additionally, yield minimum residual errors from
the decomposition process. However, the resulting end-
members may exhibit negative components and/or do
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not correspond to spectral signatures of the physical
materials present in the scene. As such, the resulting
abundance images may be difficult to interpret.

In this article, a new method to obtain end-members
from the scene is proposed. User-specified end-mem-
bers may also imported and added to the end-members
generated from the scene. The end-members are ob-
tained from a thematic map generated from a modi-
fied ISODATA clustering procedure that uses the
spectral angle criterion, instead of the common Euclid-
ean distance criterion. The centroids of the compact
and well-populated clusters are selected as candidate
end-members. The advantages of this technique are,
(1) the resulting end-members correspond to physically
identifiable, and likely pure, species on the ground, (2)
the residual error is relatively small, and (3) minimal
human interaction time. The proposed spectral
unmixing algorithm has been applied to test imagery
from NOAA’s AVHRR and Landsat MSS sensors. The
performance in terms of the residual error and utility
of the resulting compositional maps has been very
promising.

Block Diagram of the Proposed Spectral Unmixing
Process
Figure 1 shows the overall block diagram of the pro-
posed spectral unmixing process. In the first module an
unsupervised classification of the image set is carried
out via a modified ISODATA clustering procedure. Af-
ter reaching final convergence, the centroids of the re-
sulting clusters are examined for their compactness and
population. Compactness is measured with respect to
the standard deviation of the spectral angle along each
of the feature axis. The centroids of compact and well-
populated clusters are selected as candidate end-mem-
bers. End-members may also be externally introduced
by the user and added to the list. The ensemble of inter-
nal and external end-members forms the pool of avail-
able candidate end-members for the subsequent spectral
unmixing procedure. The so-called condition of identifi-
ability limits the number of end-members to the true
spectral dimension of the scene. In general, however,
the number of available end-members exceeds this limit.
For this reason, a strategy proposed by Maselli2 for dy-
namic selection of optimum end-member subsets has
been adopted. In the next module each pixel vector spec-
trally decomposed as a linear combination of its opti-
mum subset of end-members. For each species
represented by an end-member, the ensemble of all frac-
tional components form a concentration map known as
abundance map. The fractional concentration maps are
then optimally mapped to an eight-bit integer format
for display and storage purposes. The following sections
describe the details of each module.

Clustering
The objective of clustering operation is to obtain the can-
didate end-members for the proposed spectral unmixing
procedure. A modification of the well-known ISODATA
(Iterative Self-Organizing Data Analysis Technique) un-
supervised classification algorithm13,14 have been
adopted for this purpose.

ISODATA Classification Procedure
The ISODATA is an iterative classification method

that uses the Euclidean distance as the similarity mea-
sure to cluster the data elements into different
classes.13,14 It may serve as the benchmark for all un-
Vol. 44, No. 3, May/June 2000  197



Figure 1. Block diagram of the proposed spectral unmixing process

TABLE I. General ISODATA Classification Procedure

1. Pick K0 arbitrary initial centroid (mean vectors)

2. Classify the samples by assigning them to the class of the closest mean

3. If the standard deviation of points in a cluster along a feature axis is greater than a prespecified threshold,
the cluster is split in half along that axis

4. If the Euclidean distance between the centroids of any pair of clusters is less than a prespecified
threshold, the two clusters are merged into one

5. The process is repeated with the new K1 number of clusters until no clusters are split or merged.
supervised classification techniques. The goal of
ISODATA is to divide a given set of Np pixel vectors,
i.e., spectral patterns, into exactly Nc disjoint sets,
where Nc << Np . By performing such a clustering, natu-
ral grouping of objects can be revealed that weren’t
evident before. The algorithm itself is based on the k-
means algorithm, with additional heuristics that gov-
ern the splitting and/or merging of clusters.14 The
number of classes is assumed known in advance. How-
ever, no statistical information about the classes is
available.

The task of the ISODATA algorithm is to perform a
labeling operation on the set of Np pixel vectors. Label-
ing refers to associating each pixel vector (feature vec-
tor) with one of the Nc clusters on the basis of the
minimum Euclidean distance of the pixel vector from
each cluster’s center, known as centroid. If the number
of clusters Nc is not known in advance, an iterative op-
timization approach outlined in Table I, known as gen-
eral ISODATA procedure, may be employed to arrive at
the locally optimum clustering solution.
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Let Nb represent the number of spectral bands, i.e.,
images, in the data set. A pixel vector xi can be repre-
sented in terms of its Nb components as x i =

    [ , , ... ] .( ) ( ) ( )x x xi i i N
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Each cluster centroid can be considered as the best
representation of the ensemble of pixel vectors forming
that cluster in the sense that it has the minimal sum of
the squared Euclidean distances from all the cluster
points. The clustering quality is thus measured in terms
of the total sum of the sum of squared Euclidean dis-
tance separation for each cluster. Assume that applica-
tion of the above procedure results in Nc disjoint clusters
L1, L2, L3, . . . ,      LNc

.  The clustering quality as mea-
sured by the sum of the squared error is given by,
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where:
j = Total sum of the squared error
mi = centroid of class i
d (x, mi) = Euclidean distance between pixel vectors
x and centroid mi

Nc = number of samples in class i
Li = subset of pixel vectors forming class i

Modification of the ISODATA Clustering Algorithm
Modification to the general ISODATA clustering al-

gorithm is accomplished via using the spectral angle
measure, instead of the Euclidean distance measure, to
carry out the labeling task at each iteration. That is, a
pixel vector is assigned to class i if the spectral angle
measured between that pixel and class i centroid is the
minimum of spectral angles measured from all other
class centroids. Thus the criterion to minimize the sum
of the squared Euclidean distances differences in Eq. 3
is replaced by the criterion to minimize the sum of the
squared spectral angle separation from the centroids.

The spectral angle α between two pixel vectors xi and
xj is defined as,
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Note that two pixel vectors being collinear with the
origin of the feature space will have zero spectral angle
difference but not necessarily zero Euclidean distance
separation. As such the classification result will be in-
different to multiplicative factors arising from shadow
and sun angle effects.

The relationship between the spectral angle and the
normalized Euclidean distance can be obtained. Let the
normalized Euclidean distance between two pixel vec-
tors xi and xj be denoted by dn (xi, xj ). We may then
write,
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where

  o
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From Eqs. 4 and 5 we obtain,

cosine (α [xi , xj] ) = 1 – 0.5 [dn (xi , xj)]2  (6)

Equation 6 states that the minimum of spectral angle
α  [xi , xj] occurs for the minimum of the normalized Eu-
clidean distance dn (xi , xj). We conclude therefore that
the result of application of the spectral angle measure
in the ISODATA clustering algorithm is effectively the
same as that produced via using the normalized Euclid-
ean distance measure. In practice, the modified spec-
tral angle-based ISODATA clustering algorithm can be
implemented by applying the Euclidean distance-based
ISODATA to the normalized pixel vectors.

Figure 2 shows thematic maps resulting from apply-
ing the conventional and modified ISODATA algorithms
to the seven-band test imagery from LandsatTM sensor.
Each map depicts a total of fourteen different classes
within the same 3 km wide terrain in Montana. Inspec-
tion of the maps reveals that the map from the modified
ISODATA shows a relatively larger patches of homoge-
neous, uncluttered, clusters and hence is simpler and
more useful for interpretation of land cover types.

Obtaining Candidate End-members from the
Thematic Map
The cluster centroids of the thematic map obtained
above can be selected as candidate end-members for the
subsequent spectral unmixing procedure. In general the
larger the number of candidate end-members is the
lower will be the residual error after decomposition.
However, not all centroids are good candidates because
they may not necessarily represent pure species in the
scene. This is an important issue particularly for large
footprint imagery data that is being considered for spec-
tral unmixing. For imagery with large GSD not all pix-
els are pure. But all pixels, pure or otherwise, will be
distributed among the final clusters in a thematic map.
However the centroid of each cluster in the thematic
map is the best representative of all the points in that
cluster in terms of having minimum average spectral
angle difference with all the points in that cluster. A
smaller average spectral angle deviation means the clus-
ter is more compact. The centroid of a compact and well-
populated cluster is more likely to correspond to a pure
species in the scene. Therefore, selection of the centroids
as candidate end-members should be done judiciously
based on the compactness and population of clusters in
the thematic map. Note each of the selected end-mem-
bers will have a corresponding concentration map, i.e.,
abundance image, following the subsequent spectral
unmixing procedure.

Linear Spectral Pixel Unmixing
Linear pixel unmixing, also known as linear mixture
modeling, assumes that the spectral signature of each
pixel vector is the linear combination of a limited set of
fundamental spectral components known as end-mem-
bers. Assume that each species within a pixel footprint
. Vol. 44, No. 3, May/June 2000  199



Figure 2. Fourteen-species thematic maps of Montana test image set (Size: 512 × 512 : Source: Landsat™ 7 band 8-bits Imagery).
contributes to the signal received at the satellite sensor
an amount characteristic of that species and propor-
tional to the area covered by it. The conventional spec-
tral unmixing is modeled as,

      

x Mf e
m m m m e

= +
= + + + + + +f f f fi i n Nc1 1 2 2 .... ....  (7)

where
x a pixel signature of Nb components
M Nb × Nc matrix of end-members m1, . . .Nc

fi fractional component of end-member i , i.e.,
proportion of footprint covered by species i

f vector of fractional components (f1 , f2 , . . fi , . .
fNc )tr

mi end-member i of Nb components
e residual error vector of Nb components
Nb number of bands
Nc number of components, Nc ≤ Nd

Provided that Nm ≤ Nc , the solution via classical least-
squares estimation is,

f = (MTM)–1 MT x (8)

Selection of the Optimum Subset of End-Members
When the number of end-members is more than the
true spectral dimensionality of the scene, i.e., Nm > Nc,
we encounter the so-called Condition of identifiability,
which means that f can not be determined via Eq. 3.
This situation may seriously restrict the applicability
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of the linear umixing operation because most opera-
tional remote sensing systems measure radiation in
limited number of bands. Therefore, the scene can be
decomposed into only a limited number of distinct com-
ponents. For example for LandsatTM with seven spec-
tral bands (Nb = 7), the true spectral dimension is at
most five (Nc = 5) based on principal component analy-
sis. To overcome the condition of identifiability, we
adopted the method of dynamic selection of optimum
end-member subset recently proposed by Maselli.2 In
this technique, an optimum subset of all available end-
members is selected for spectral unmixing of each pixel
vector in the scene. Thus, although not every pixel vec-
tor will have a fractional component for each end-mem-
bers, the ensemble of all pixel vectors in the scene will
collectively have fractional contributions for each end-
member.

For each pixel vector, a unique subset of the available
end-members is selected which minimizes the residual
error after decomposition of that pixel vector. To deter-
mine the Nc optimum end-members for pixel vector x,
the pixel vector is projected onto all available normal-
ized end-members. The most efficient projection, which
corresponds to the highest dot product value cmax, indi-
cates the first selected end-member mmax. It can be
shown that this procedure is equivalent to finding the
end-member with the smallest spectral angle with re-
spect to x. The residual pixel signature, rx = x – cmax.
mmax is then used to identify the second end-member by
repeating the projection onto all remaining end-mem-
bers. The process continues up to the identification of a
prefixed maximum Nc number of end-members from the
total of Ne available end-members.
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Figure 3. Test image set of UK and the corresponding thematic map ( Size: 847 × 1009 : Source: NOAA’s AVHRR 5-band 10-bits
Imagery).
Displaying the Species Concentration Maps
The proposed spectral unmixing procedure produces the
species concentrations as fractional, floating point, val-
ues. For display and storage purposes, these floating
point maps should be converted into integer format. This
requires a quantization process. For compression and
archival applications, it is desirable to minimize the
quantization error induced by the quantizer. For this
purpose the following nonlinear mapping scheme was
adopted.

    

M
f f

f f
=

−( )
( ) − ( )

+
255

0 5
exp

min
exp

max
exp

min
exp

( )
. (9)

where
M = mapped integer fractional component in the

range of 0 ≤ M ≤ 255
f = fractional component
fmin

 = minimum fractional component
fmax

 = maximum fractional component
exp =floating-point exponent parameter in the range

of 0 ≤ exp ≤ 1.0

Note that for exp = 1 the Eq. 9 reduces to simple lin-
ear mapping. The optimum value of exp was determined,
empirically, to be 0.6 for the test abundance images. The
RMS quantization error for the optimum nonlinear
mapping was about 30 percent lower than that for the
linear mapping.

Experimental Results
The proposed spectral unmixing procedure was imple-
mented in C and has been successfully applied to test
imagery from various platforms including LANDSAT 5
MSS (79 m GSD) and NOAA’s AVHRR (1.1 km GSD). In
this article however, only the results for the latter is
A Viable End-Member Selection Scheme for Spectral Unmixing ..
presented. The NOAA’s AVHRR test imagery shown in
Fig. 3 was obtained from the University of Dundee Sat-
ellite Receiving Station. It covers an almost cloud-free
territory of the entire United Kingdom (UK). Each of
the five spectral images (one visible, one near-infra red,
and three in the thermal range) is composed of 847 ×
1009 pixels. Pixels have a dynamic range of 10 bits (1024
gray levels) and correspond to a GSD of 1.1 km. The
relatively large footprint of 1.1 km indicates the impu-
rity of a large number of pixels in the scene. Hence, the
test set is a good candidate for spectral unmixing to
obtain sub-pixel resolution.

The pool of end-members was obtained entirely from
the scene. The end-members were selected from the cen-
troids of compact and well-populated thematic map clus-
ters resulting from the application of the proposed
modified ISODATA unsupervised clustering algorithm.
The color thematic map of UK depicting 8 classes is
shown in Fig. 3 along with the original image set. Fig-
ure 4 shows the set of eight abundance images result-
ing from the application of the discussed modified linear
spectral unmixing procedure. For display purpose the
fractional species concentrations were mapped to 8 bpp
abundance images to obtain the depicted abundance
images. The top abundance image depicts the urban
areas. Figure 5 shows the resulting normalized mean
and RMS residual errors using seven or eight end-mem-
bers. Normalization is performed with respect to the
mean (absolute values) and RMS of the test imagery
data, respectively. As expected, the residual error de-
creases with increasing number of end-members.

To evaluate the effectiveness of the proposed technique,
the same linear spectral unmixing procedure was applied
to the same test data, but with different end-member
selection schemes. The first experiment involved a math-
ematical approach. A set of five orthogonal end-members
were obtained via Gram Schmidt orthogonalization pro-
cedure and used to linearly unmix each pixel vector of
the scene. The second scheme involved a standard Eu-
. Vol. 44, No. 3, May/June 2000  201



Figure 4. Species concentration maps resulting from the application of the proposed end-member selection scheme to unmix the
UK test image set.
clidean-distance-based method to obtain the end-mem-
bers. The end-members were assigned to the centroids of
the clusters formed by a standard Euclidean-distance-
based clustering procedure.13 In the third experiment the
end-members were obtained using a spectral sceening
procedure.12,15 In this technique a set of pixel vectors
which have unique signatures are obtained from the
scene. Selection of pixel vectors is performed sequentially
based on a user-defined spectral angle threshold. The
pixel vectors in the image are sequentially scanned. The

Figure 5. Residual error after decomposition for the proposed
spectral unmixing scheme (using seven and eight end-members).
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first pixel is considered spectrally unique and is added
to the list of unique signatures. The next pixel vector in
the sequence is added to the list of unique signatures if
its spectral angle with respect to all the previously se-
lected unique signatures exceeds the spectral angle
threshold. Because the first unique signature can liter-
ally be any of the pixels in the scene, this technique can
yield different sets of unique signatures.

Figure 6 shows the percent normalized average abso-
lute residual error resulting from the proposed and the
three traditional end-member selection schemes. As ex-
pected the mathematically optimum Gram Schmidt pro-
cedure yielded the lowest residual error. However, as
discussed earlier, the end-members were not physically

Figure 6. Residual error after decomposition for different end-
member selection schemes.
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identifiable. The residual error for the spectral screen-
ing approach was almost twice as the proposed new ap-
proach. Also, unlike the proposed clustering-based
approach, the end-members obtained via spectral
screening are not selected based on their statistical sig-
nificance, but rather their spectral uniqueness. Thus
although the end-members are physically identifiable,
they do not necessarily represent pure species. The Eu-
clidean-distance-based approach also yields a higher
residual error than the proposed approach. Additionally,
the resulting concentration maps are not as revealing
as those obtained from the proposed method. Figure 7
shows the urban concentration map of this set. Com-
pared to the corresponding map in Fig. 4, the urban ar-
eas are not as clearly and exclusively marked in this
map.

Conclusion
A conveniently parameterized method for determining
the appropriate set of end-members for a given set of
multispectral images was proposed. The end-members
were obtained from a thematic map generated from a
modified ISODATA clustering procedure that uses the
spectral angle criterion, instead of the common Euclid-
ean distance criterion. The centroids of the compact and

Figure 7. Urban concentration map resulting from the stan-
dard Euclidean-distance-based end-member selection scheme.
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well-populated clusters were selected as candidate end-
members. The advantages of this technique over com-
mon mathematical and manual end-member selection
techniques were, (1) the resulting end-members corre-
sponded to physically identifiable, and likely pure, spe-
cies on the ground, (2) the residual error was relatively
small, and (3) minimal human interaction time was re-
quired. The proposed spectral unmixing procedure was
implemented in C and has been successfully applied to
test imagery from various platforms including
LANDSAT 5 MSS (79 m GSD) and NOAA’s AVHRR (1.1
km GSD).    
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