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High Precision Scanner/Printer Calibrations in Sub-divided Color Spaces
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A variety of color calibration technologies have been developed for input and output devices. Linear or nonlinear matrices have
been conveniently applied to correct the color filter’s mismatch with color matching function in scanners or suppress the cross-
talk by unwanted absorption of colorants in printers. The color matching accuracy is expected to be further improved when the
nonlinear matrices are optimized into subdivided smaller color spaces than in single matrix of the entire color space. This article
proposes a new method for partitioning the color space into sub-spaces divided by the combinations of luminance, chrominance,
radius, or hue angle in CIELAB space so that each sub space includes the constant number of color samples. Linear or nonlinear
color correction functions are applied to each subdivided space and the coefficient matrices are optimized individually by the
method of least squares. The new method resulted in the high precision color matching with rms color differences ∆Eab*(rms) <
0.5 for flat bed scanner and ∆Eab*(rms) ≈ 2.0 for inkjet printer. The color matching accuracies could approach the colorimetric
measurement errors in scanners and mechanical stabilities in printers by the proposed subspace division methods.
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Introduction
Color management is a key technology to reproduce the
accurate colors across the different media in an electronic
color imaging system. The color signals from input devices
such as a scanner or camera should be calibrated to match
with the correct tristimulus values, and the color mask-
ing process is indispensable for printer or copier to elimi-
nate the crosstalk by unwanted absorption in colorants.
Linear and nonlinear color correction matrices methods
have been conveniently applied to reduce the colorimetric
reproduction errors with scanners3,5,7 or printers.1,4,6,8 The
color reprodution accuracy is expected to be further im-
proved when the color transform matrices or look-up tables
in device profiles are optimized in subdivided smaller color
spaces rather than in the whole color space.2,9

This article discusses the partitioning method of in-
put color space into subspaces, where the equal number
of color samples are included in every subspaces to de-
termine the correction matrices.3 Linear or nonlinear
color correction functions are applied to each subspace
and the transform matrices are optimized in individual
subspace by the method of least squares. The perfor-
mance of the proposed method is compared with con-
ventional methods.

Color Reproduction System Model
Figure 1 shows the basic color reproduction system model.
An input color scanner is modeled as a forward transformer
from input tristimulus value T to signal x, while an out-
put printer also works as forward transformer from the
drive signal y to tristimulus value T. In the color manage-
ment system, the scanner signal x = [R, G, B]t is calibrated
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to carry the correct tristimulus value T = [X, Y, Z]t by plac-
ing its inverse transformer from x to T behind the input
device as follows.

T = ΦIN
–1(x)≈MSCANfS(x) (1)

The color corrector is placed in front of the printer to
compensate the unwanted absorption of colorants and
the nonlinear color mixing characteristics. The color cor-
rector also works as the inverse transformer from the
target tristimulus value T to printer drive signal y =
[C, M, Y]t as.

y = ΦOUT
–1(T)≈MPRNTfP(D) (2)

Here, the inverse transfiorms ΦIN
–1(x) and ΦOUT

–1(T) are
characterized by polynomial expansions fS(x) and fP(D)
derived from the device input signals.

Figure 2 shows the printing subsystem, where fP(D)
includes two steps of signal conversions as follows. First,
CIE-XYZ tristimulus input T is transformed into CIE-
RGB signal xRGB by 3 × 3 linear matrix MRGB as

xRGB = [R, G, B]t = MRGBT (3)

Next, xRGB is converted into logarithmic density signal
DRGB as

DRGB =[–log10R, –log10G, –log10B]t =[DR, DG, DB]t (4)

The matrices MSCAN and MPRNT are optimized to mini-
mize the approximation errors in Eqs. 1 and 2 by the
method of least squares.

Subspace Models
In the simple color matching system, single matrix MSCAN

in scanner and MPRNT in printer are uniformly applied to



Figure 1. Basic color reproduction system model

Figure 2. Printing sub-system model.
Figure 3. Uniform tri-linear division.

Figure 4. LAB vector division.
Subjective Image Quality for Multi-Level Error Diffusion and Its O
correct all of the pixels in the whole color space. On
the contrary, here the color space is partitioned into a
plurality of subspaces and different color matching ma-
trices are applied to the subdivided color spaces. A
simple way to do this  is to divide each axis by an equal
interval where the subspace is formed by tri-linear box
with constant volume as shown in Fig. 3, where the
printed sample color targets are not distributed uni-
formly inside the gamut of actual color printers. Then
the equally divided subspaces include an uneven num-
ber of sample points in each subspace. The smaller the
volume of subspace, the higher the color matching ac-
curacy. However, as the number of partitions increases
in the conventional tri-linear division, enough sample
numbers to determine the color masking coefficients are
not always guaranteed in every cube.

Figures 4, 5, and 6 illustrate the proposed partition-
ing methods into subspaces in CIELAB space. Here all
the subspaces are partitioned to include the same num-

Figure 5. LC division.
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ber of color samples bounded with nonuniform intervals.
In Figure 4, CIELAB color space is partitioned into

M subspaces divided by one dimensional LAB vector
magnitudes.

1. LAB Vector Division; N divisions in LAB vector ra-
dius r

rj  ≥  ∆rj > rj–1; j = 1~M (5)

r ={L*2 +a*2 +b*2}1/2 (6)

Here the boundary radius rj is determined to include the
constant sample points in every subspace volumes.

Figure 5 illustrates the two-dimensional luminance-
chrominance (LC) division, where CIELAB color space
is partitioned into totally M = J × K subspaces along the
following two directions.

2. LC Division; J divisions in L* and K divisions in C*

L*j ≥ ∆L*j ≥ L*j–1;        j = 1 ~ J (7)

C*k ≥ ∆C*k ≥ C*k–1;           k = 1 ~ K (8)

C* = {a*2 + b*2}1/2 (9)

Here the boundary luminance L*j and chroma C*k are de-
termined to include the constant sample points in every
subspace areas divided by ∆L*j and ∆C*k.

Figure 6 illustrates the polar coodinates division,
where CIELAB color space is partitioned into totally M
= J × K subspaces along the following two directions.

3. Polar Division; J divisions in hue angle and K divi-
sions in LAB vector radius r

θj ≥ ∆θj ≥ θj–1;        j = 1 ~ J (10)

θ = tan–1(b*/a*) (11)

rk ≥ ∆rk ≥ rk–1 ;          k = 1 ~ K (12)

Here the sector angle θj and radius rk are determined to
include the constant sample points in every subspace area
surrounded by ∆θj and θrk.
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Calibration for Scanner
In the calibration of the scanner, IT8/7.2 standard color
targets are used as inputs. Here, the XYZ tristimulus val-
ues Tn = [Xn, Yn, Zn]t for n = 1 ~ N=256 color chips are
measured by spectro-colorimeter as original test targets.
Thus the sample number Q of color chips included in each
subspace is set as

Q = N/M= constant (13)

The boundaries between subspaces in the proposed three
division methods are determined for each subspace to in-
clude Q sample chips.

Letting the color scanner RGB signals be   xq
m  (q = 1 ~ Q,

m = 1 ~ M) corresponding to the input XYZ tristimulus
values   Tq

m  for the m-th subspace, the calibration is per-
formed by the following mathematical transformation.
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where,   Tq
m  denotes the tristimulus matrix of Q samples in

m-th subspace.
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Also,   xq
m  denotes the scanner signal matrix of Q samples

in m-th subspace.
Figure 6. Polar coordinate division
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and fS(  xq
m ) represents the scanner signal matrix expanded

by polynomials of Q samples in the same m-th subspace.
For example, in the case of second order polynomials, it is
given by 10 terms x Q samples matrix as follows.
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Color Correction for Printer
Generally, the inverse transform ΦOUT

–1(T) in a printer is
processed as “color masking” to remove the crosstalk
caused by unwanted absorption of colorants. In the model
proposed here, it is also described in each subspace as well
as in scanner calibration. The forward transfer function
of the printer is characterized by measuring the
tristimulus values     T X Y Zq

m
q
m

q
m

q
m t= [ , , ]  of printed color

patches for drive signal     y C M Yq
m

q
m

q
m

q
m t= [ , , ]  as

    T yq
m

P
m

q
m= Φ ( ) (20)

Here, the N = 512 color patches are printed and their
tristimulus values Tn = [Xn, Yn, Zn]t; n = 1 ~ N are mea-
sured by spectrocolorimeter. Then {Tn} are partitioned
into M sets of {  Tq

m }, each including Q = N/M samples
for q = 1 ~ Q in m = 1 ~ M subspaces. The sample num-
ber of color chips in all the subspaces are set as con-
stant Q. First, the measured tristimulus value   Tq

m  is
converted into logarithmic density signal   Dq

m  corre-
sponding to the CMY drive signal as given in Eqs. 3 and
4. Then, the inverse transform from   Tq

m to   yq
m  is ap-

proximated by polynomial expansion
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The coefficient matrix   Mq
m is optimized to minimize the

mean square error between the drive signal   yq
m  and its

approximation     ŷq
m , that is given by
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Experiments
These subspace models have been applied to a flat bed
color scanner and color inkjet printer. In the experi-
ments, N = 256 basic color chips in IT8/7.2 standard
color targets were used for scanner calibration, while N
= 83 = 512 color patch samples were generated on the
inkjet printer driven by the 8 steps of cmy signals yi

=[Ci, Mi, Yi]t, and their tristimulus values To =[Xo, Yo,
Zo]t were measured by spectro-colorimeter. For example,
the color masking matrices in the printer are calculated
by using these data set {yi, To}i,o =1 ~ 512.

In the uniform tri-linear division, CIELAB space is
divided into tri-linear boxes with the same volume,
where the number of color samples included in each
subspace becomes uneven. In order to apply the higher
order polynomials with P terms, each subspace should
include at least Q ≥ P samples. Thus, for example, the
whole color space was segmented into M ≤ 8 cubes bounded
at a* = 0, b* = 0, and L* = 50, unless the sufficient samples
could not be guaranteed for applying third order matrix
(P = 20).

While in the LAB vector division, CIELAB space is
segmented into M = 2~64 radial segments by {∆rj}j = 1~63,
including an equal number of samples in each. Also in
LC division, the distributions of color sample values
LABi = [L*i,a*i,b*i]t are first divided into J segments in
L* direction, each including N/J samples and next, the
samples in each interval ∆L*j are again divided into K
segments in C* direction. Thus, whole color sample space
is divided into totally M = J × K = 4~64 subspaces, each
including N/M samples equally.

In the polar coodinates division, whole color sample
space is first segmented into J hue angle sectors and
next, the samples in each hue angle sector are again
divided into K radial segments as well. In all subspace
models, M has different coefficient matrices;   MS

m  in the
scanner or   MP

m  in the printer for m = 1~M can be deter-
mined individually.

Results in Scanner Calibration. The calibration results
for a flat bed scanner are given in Figs. 7 and 8 in com-
parison with conventional methods. Figure 7 shows root
mean square (rms) color differences ∆Eab*(rms) and Fig. 8
compares the maximum ∆Eab*(max) both in the case of M
= 8 division. In all cases, the calibration accuracy has been
improved for the higher order polynomials. Although the
third order polynomial resulted in ∆Eab*(rms)≈1.0 with-
out division, it was impossible for the case of uniform tri-
linear division to apply the third order matrix with M = 8
division because of insufficient sample numbers in some
subspaces, and, moreover, the second order matrix did not
give any credit to the linear matrix. This may be caused
 Color Spaces Vol. 43, No. 2, Mar./Apr.  1999    181



by the uneven sample numbers between the subspaces.
On the other hand, proposed division methods made it
possible to apply the higher order terms and resulted
in the dramatic improvements in calibration errors. The
rms errors by the second order matrix method with M =
8, were ∆Eab*(rms) = 0.90, 0.75, and 0.77 for LAB vector
division, LC division, and polar division respectively.
These errors have been further improved to ∆Eab*(rms)
= 0.47, 0.35, and 0.39 for the use of third-order terms.
In addition to the rms errors, the maximum errors also
tended to be dramatically improved by the proposed sub-
space division methods especially for the use of higher-
order polynomials as shown in Fig. 8. The maximum
calibration errors were ∆Eab*(max) = 5.9, 4.3, and 4.9
by second-order, and ∆Eab*(max) = 2.0, 1.58, and 2.0 by
third-order polynomials for LAB vector division, LC di-
vision, and polar division respectively. Figure 9 illus-
trates how the calibration error decreases as the division
number M increases. The rms errors are shown to be
roughly reduced linearly with the division number M
approaching zero. Theoretically, the calibration errors
are expected to reach zero at the maximum division
number M = N/P, where each sub-space includes the
minimum sample number Q = P just adequate to deter-
mine the P terms of the coefficient matrices {  MS

m }.

Figure 7. RMS error in scanner calibration (M = 8 division)

Figure 8. Maximum error in scanner calibration (M = 8 division)
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Figure 10 shows the distributions of IT8/7.2 color tar-
gets in a*-b* plane after calibration. The proposed sub-
space division methods of LC division and polar
coordinate division are shown to give highly accurate
calibrations almost close to original targets as compared
with conventional methods.

Results in Color Correction for an Inkjet Printer.
Here the color correction experiments have been evalu-
ated inside the printer color gamut, where the correc-
tion matrices are optimized using the printed color
patches as input targets. The typical color correction
results for the inkjet printer tested are summarized in
Fig. 11 (a) and (b) compared with conventional methods
for the case of M = 8 division. Figure 11(a) shows rms
color differences; ∆Eab* (rms) for trained color targets
where N = 512 color patches are generated by a combi-
nation of CMY printer drive signals and measured XYZ
values are used to determine the coefficient matrices
{  MP

m }. In Fig. 11(b), N = 512 non-trained color targets
are also used for the estimation; these are generated by
a different combination of CMYs. In our experiments,
the color corrections worked very well for non-trained
targets as well as trained targets with almost the same
accuracy.

As clearly shown, the subspace division methods re-
sulted in higher precision color matching than the con-
ventional single matrix method without division. In
general, it is possible to extremely reduced the color
differences by nonlinear color correction using higher
order polynomials. However, in the uniform tri-linear
division, the best result was given by second-order cor-
rection, while rms color difference increased for third-
order correction. This may be caused by the unbalanced
color sample numbers in uniformly divided subspaces.
The best correction for trained targets was obtained by
LAB vector division with third-order polynomials, re-
sulting in ∆Eab*(rms)≈1.5. In the correction for non-
trained targets, the best result was obtained by LC
division with third-order polynomials, resulting in
∆Eab*(rms) ≈ 2.1.

Polar coordinate division showed stable and excellent
results in both trained and non-trained estimations. It
resulted in ∆Eab*(rms) ≈ 2.7 by second-order and ≈ 2.2

Figure 9. Charge in RMS error versus number of division in
scanner calibration.
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Figure 10. Color distributions after scanner calibration in a*-b*
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Figure 11. RMS error in printer correction. (a) Trained targets
(M = 8 division); (b) non-trained targets (M = 8 division).

by third-order correction for trained targets and ∆Eab*(rms)
≈ 2.6 by second-order and ≈ 2.4 by third-order correction
for non-trained target. The maximum error ∆Eab*(max)
in the printer also showed similar behavior as well as
the rms color differences.

Figure 12 illustrates how the correction error de-
creases as the division number M increases in the case
of trained targets. The rms errors are reduced almost
monotonously with the division number M. LAB vector
division gives excellent accuracy in spite of one-dimen-
sional division. The optimum color differences in Polar
coordinate division as well as LAB vector division ap-
proach around ∆Eab*(rms) ≈ 1.5 as the division number
M increases. However, the third-order correction errors
in LC division slightly increased with M. These errors
may be enhanced by small mismatches in the higher-
order coefficient terms.

Figure 13 shows the distributions of reproduced color
targets in a*-b* plane after printer correction. As clearly
shown, the subspace division methods offer higher pre-
cision color matching than the conventional single ma-
trix method.

Discussion and Conclusion
The high precision color calibrations for input/output de-
vices have been approached by optimization in subdivided
color spaces. Nonuniform division to subspaces, including
equal numbers of color samples in each, makes it possible
to use the higher order nonlinear matrices. In the appli-
cation to a scanner, the calibration accuracy could be dra-
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Figure 12. Change in rms error versus number of division in
printer correction (trained targets).
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Figure 13.  Color distributions after printer correction in a*-b* plane.
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matically improved by operating the nonlinear matrices
with second-order or third-order polynomials optimized
in each subspace. The rms color differences as well as
maximum color differences could be reduced to about one-
fifth or less as compared with conventional methods, reach-
ing to ∆Eab*(rms) ≈ 0.35 and ∆Eab*(max) ≈ 1.6. These values
are considered to be equal to the limits in colorimetric
measurement stabilities.

In the application to printer color correction, the pro-
posed subspace division method resulted in high precision
reproductions with ∆Eab*(rms) ≈ 2~3 for inkjet printers in
low-end consumer use. As compared with conventional
color transforms by single matrix, the color errors in the
proposed methods could be reduced to two-thirds or less
inside the device gamuts. One-dimensional LAB vector
division worked well for higher order polynomials. Two-
dimensional polar coordinate division was stable for both
trained and non-trained targets. Because each subspace
surrounded by ∆θj in hue angle and ∆rk in radial direc-
tion will include the color samples and resemble in hue
and colorfulness, the coefficient matrix is expected to fit
well in the statistical variances. LAB vector 8 division
with third-order matrix resulted in the highest repro-
duction with ∆Eab*(rms) ≈ 1.5 and polar coordinate 16
division with third-order matrix also approached to
∆Eab*(rms) ≈ 1.5 for trained targets. LC division with third-
order matrix resulted in the highest quality reproduction
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with ∆Eab*(rms) ≈ 2.1 for non-trained targets. These
values almost approach mechanical stability around
∆Eab*(rms) ≈ 1.0, in low-end inkjet printers.

The gamut compression process is not included in this
article but is necessary for the inputs outside the printer
gamut and is under development.
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