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Imaging systems are multivariate, involving response functions or even sets of response functions—the red, green, and blue charac-
teristic curves of photographic systems, for example—that relate image properties to scene properties. These functions must be simul-
taneously optimized to produce the best possible system. While the preferred methods for empirically optimizing the characteristics of
a product or process are those of designed experimentation and response surface methodology, there is no widely accepted method that
enables the application of these techniques to multivariate problems and therefore to imaging products and processes. This situation
is changed with the advent of the desktop computer. We will describe a conceptually simple, though computationally intensive, method
that enables application of designed experimentation and response surface methodology to multivariate systems and imaging sys-
tems. The method discussed will produce a more robust manufacturing process as well as a better product.
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Introduction
No product is immune to competition. Product quality
must be continuously improved, even as manufactur-
ing costs are reduced. For many manufactured products
the manufacturing process is too complex, or too little
understood, to have available analytical models to guide
process improvement, and one must resort to empirical
optimization. Almost all manufactured products must
meet multiple “fit for use” criteria to sustain product
quality. Thus it may come as a surprise that there is no
generally accepted method for empirically optimizing a
product or process that must simultaneously satisfy mul-
tiple criteria.1,2 While several methods have been pro-
posed, none have become widely accepted.2,3,4,5,6,7,8

Imaging systems are always multivariate, in that
there is always at least one function, depending on the
imaging device, that relates an output image to an in-
put scene. We will call this function the image conver-
sion function (ICF). Sturge and co-workers9 list many
imaging processes where the ICF can be identified: (1)
in photography—the sensitometric curves of red, green,
and blue image density as functions of exposure, (2) in
electrophotograpy—the surface potential of the electro-
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photographic drum as a function of exposure, (3) in pho-
tolithography—the extent of mask polymerization as a
function of exposure, (4) in microfabrication—the resist
thickness as a function of exposure, (5) for display de-
vices—the output brightness or intensity as a function
of input electrical energy, and (6) in stereolithography—
the amount of material deposited as a function of laser
exposure.

The optimization problems we address in this article
are those where, first, the process is reasonably well
defined with a dozen or fewer continuously variable in-
puts. Second, there is a number, say six or more, of out-
put variables or samples of the image conversion
function at different input levels, that must be controlled
to sustain product quality.

The problem that led to the methods described in this
paper arose in the manufacture of Polaroid Spectra®

instant photographic film.10,11,12 A Polaroid instant pic-
ture includes three elements that are primarily chemi-
cal in nature: the negative coatings, the reagent, and
the positive sheet coatings. When the color negative is
manufactured, its properties may be perturbed by varia-
tions (usually due to raw materials) so that, with no
subsequent adjustments, the final pictures would show
unacceptable run to run variations. The cure for this
problem, implemented since the days of the first Polaroid
instant photographic products, was to adjust the com-
position of the reagent—the chemicals in the pod that
are activated as the picture leaves the camera—so as to
compensate for the variation in the negative. Initially,



adjustment of the chemistry was accomplished using a
combination of experimentation and experience. As prod-
ucts evolved in complexity and improved in overall qual-
ity, the adjustment process became more complex than
most technicians could execute, and in 1984 the search
for more automatic methods of performing the adjust-
ment was begun. We describe here in general terms a
successful strategy to make chemical adjustment of re-
agent to compensate for variation in negative. Other
details of the optimization are described elsewhere.13

Response Surface Methodology and Designed
Experiments
Because the concepts are needed later in this article, we
review briefly response surfaces and designed experimen-
tation. These techniques are used for manufacturing qual-
ity control, and there is extensive literature14,15,16,17,18 from
which we cite but a few examples. Consider a chemical
manufacturing step where the yield of a reaction is a
function of the batch temperature and the concentra-
tion of two ingredients. Imagine we could write an equa-
tion that described the yield of the chemical reaction as
a function of the batch temperature, T, and the two con-
centrations, C1 and C2. The yield function, with depen-
dent units of moles, would vary with temperature, C1,
and C2. Such a function is a surface embedded in the
space (moles, T, C1, C2). The description of the response
of a manufacturing process is called a response surface.

To optimize a process one needs a quantitative descrip-
tion of the various response surfaces that characterize
the process in terms of inputs to the process. In many
cases we do not know the exact relations, so we must
approximate the response surfaces using experimental
data. To this end, we assume some sort of polynomial
model, run appropriate experiments, then least squares
fit the data to the model. This empirical polynomial model
is an approximation to the “true” response surface.

Methods devised to determine experimentally the co-
efficients in an assumed polynomial model with the least
number of experiments are called “designed experimenta-
tion”, because the experiments are designed to capture only
the needed information. Methods where response surfaces
are estimated using designed experiments are called “re-
sponse surface methodology”, or RSM.2,8,14,15,19

The Univariate Loss Function
There was once a time in American manufacturing when
it was believed that, for the most important character-
istics of a manufactured component, there was a band
of acceptable variation. Within this tolerance band the
product was “good” and outside the band the product
was “bad”. A part either fit or it did not fit. The notion
of failure probability was not generally understood, and
it was not generally accepted that increasing departure
from specification of a component of a product was as-
sociated with increased probability of failure of the prod-
uct. To help change the good versus bad mindset,
Taguchi20,21 introduced the loss function as a way to model
the concept that any departure from specification, how-
ever small, creates economic loss. The Taguchi loss func-
tion qualitatively describes the “economic loss to society”
arising from errors in meeting a specification, includ-
ing random variation from inside and outside the pro-
cess as well as systematic errors in the process.

Multivariate Quality Loss Function
Assume that the economic loss associated with depar-
tures from specifications or target value of each charac-
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teristic of a product can be estimated. At least in prin-
ciple, for a variety of independent uses of a product the
losses can be weighted and summed to find the total
loss to society for all variation of the product character-
istics. Even if we cannot state exactly what the dollar
loss associated with a deviation from target value is,
we can make estimates of the importance of each speci-
fication for maintenance of quality. With these estimates
we can combine the separate responses into a single loss
function that can be used for process optimization.

For imaging processes, the loss function usually must
be constructed iteratively. We start by sampling the
image conversion function at several points, and for each
sampled point construct a parabolic loss function. We
then add the various loss functions together, starting
with weight factors of unity. As experience is gained in
the relative importance for overall quality of the vari-
ous sampled points on the ICF, we might change the
weights, or we might change the location of the sampled
points themselves.

Quality Loss Functions
The Global Image Quality Loss Function. We imag-
ine first the global image quality loss function GIQL,
that describes the loss of product quality and product
value as the various sampled points of the ICF depart
from their specified or target values. The function we
write down uses a parabolic approximation for the loss
of quality due to deviation of any sampled point. We
recognize that each sampled point on the ICF, Pr, will
vary from the fixed target, Gr, because of random varia-
tion, systematic errors, and design compromises. We
write the global image quality loss function, GIQL, as:

GIQL w P G
r R

r r r= ∑ −
=1

2

,
{ } (1)

Here, Pr is a point on the ICF indexed on r, Gr is the
target or value of Pr at optimal quality, and Wr is a weight
factor. The sum is taken over all samples R in number.

Process Related Image Quality Loss Functions. We
next shift consideration from outputs to inputs. To find
the quality of the final product as a function of the pro-
cess inputs, we need to express each of the ICF sample
points in terms of the process input variables. To actu-
ally construct these functions, we use RSM or any other
modeling method that can yield quantitative models for
the response surfaces.

If the process inputs are (X1, X2, - - ) and the model for
the ICF samples is expressed as a function of the in-
puts as Pr = Yr (X1, X2, - - ) then we can write Eq. 2, the
quality loss function referenced to process:
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In Eq. 2, Yr(X1, X2, - - ) is the response surface describ-
ing each of the ICF samples Pr and er = Pr - Yr is any error,
systematic or random, associated with the description
in terms of inputs rather than in terms of responses. R is
again the total number of samples, and Gr is the target.

If the errors, er, are small compared to the errors in
hitting the targets, (Yr – Pr) , we can neglect er and re-
write QLP as the approximate quality loss function ref-
erenced to process:
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Of the three loss functions above, we need only the
last for process optimization. The first, Eq. 1, describes
the quality loss of the imaging process in terms of the
product or process requirements. The second loss function,
Eq. 2, relates the quality loss of the imaging process to
the process inputs by using response surfaces. Equa-
tion 3 includes only response surface polynomials and
targets, and does not explicitly include random errors.

Process Optimization with ALP. As long as the ran-
dom effects in the process are independent of the process
inputs, or alternatively so long as the dominant loss of
quality arises from systematic errors in the ICF, then
the minima of ALP occur at particular values of the in-
puts (X1, X2, - - ). These minima define the process operat-
ing conditions that result in the least amount of quality
loss for the process or product, and are therefore the
best operating conditions for the product or process.

Robustness Characteristics. If a process is being op-
erated under the conditions where overall quality loss
is at a minimum, a second advantage accrues in addi-
tion to highest product quality. At a minimum the rate
of change of the function with respect to change in the
inputs is 0. This raises a point of some significance: the
set of process inputs that produces the highest overall
quality also produces the greatest stability or robust-
ness against variations in quality due to input varia-
tion. Lucas22 discusses this subject in greater detail.

Notes on Construction and Use of Loss Functions
Choice of Weight Factors. One of the difficulties of
the method is the lack of an obvious objective basis for
choosing the weight factors, the Wr. One can seldom es-
timate the “loss to society” of a departure from specifi-
cation. One strategy is to find factors that will eliminate
the units of measure of the squared error, that is, scale
so that the “usual error” will have a value of unity, then
subsequently assess the relative importance of each of
these nondimensional squared error. Another strategy
might be to scale the squared error by its expected value
based on independent criteria, perhaps experimental
error, then choose a multiplier of the scaled value that
expresses the contribution to quality loss. Other strate-
gies could compare deviations from target to control
limit ranges or other process control variables.

For many imaging systems it is feasible to do testing
of computer generated images with panels of viewers to
find the comparative importance of various imaging er-
rors. Whatever strategy is employed, keep in mind that
the weight factors are the means to the end of finding
the best process settings, and insofar as the targets can
be hit, the weight factors are irrelevant because the con-
tribution to quality loss of a parameter that meets speci-
fication is zero.

Less Than or Greater Than Criteria. For construct-
ing loss functions to represent a response that must be
less than or greater than a particular value, we have
successfully used the half parabola method of Tribus and
Szonyi.23 This method maintains continuous first deriva-
tives, that can be useful for finding the optima numeri-
cally. Broad regions of acceptability that are not well
described with a single parabola can be described with
split parabolas.

Need for Higher Order Designs. As optimization of
a product under development proceeds and as more out-
puts and more inputs are considered, the likelihood of
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finding important nonlinear interactions within de-
signed experiments increases. Similarly, as a process
under development becomes more capable and errors
get smaller, the probability increases that interactions
between the inputs will be observed as significant. As-
sessment of nonlinearities requires higher order designs,
that is, experimental designs that can provide estimates
of quadratic (or higher) coefficients within the response
surface polynomial. The important point is that for
multivariable optimizations, the user should anticipate
non-linear effects and interactions which must be sup-
ported by the basic experimental designs. For fitting
second-degree polynomials we have found the central
composite designs15 to be particularly useful.

Some Differences Between Optimizations with
RSM and with Loss Functions. It is conventional in
RSM to subject each coefficient in the polynomial describ-
ing the surface to a test for significance, and thus to jus-
tify the use of the coefficient in the final regression. For
use within quality loss functions, our experience is that
best results are obtained when there is no selection of
the coefficients. While there is no firm theoretical justi-
fication, the most successful strategy has been to use
the largest number of coefficients that can be supported
by whatever experimental design has been chosen.

Minimizing ALP on the Computer. Finding the
minima of Eq. 3 with respect to the process inputs re-
quires the use of a computer in most practical cases.
Possible methods range from a simple “steepest ascent”
method to elaborate forms of Newton’s method.24,25,26 For
smaller problems, one can use the solvers within spread
sheet programs. All work discussed in the article was
performed on minicomputers or workstations pro-
grammed in Fortran. The earliest minimizations were
done with steepest ascent methods because they could
be more reliably coded. As confidence in the technique
grew, work shifted to Newton’s method that proved much
faster in most cases, though not all. Either minimiza-
tion method, or even others, may prove useful for par-
ticular problems.

Fabricated Example
To show how the method works, we discuss a realistic,
but largely fabricated example abstracting data from
an old text. In Fig. 1 we show an example of a charac-
teristic curve of a photographic negative—the ICF for
some particular product. We identify four points on the
curve by sampling at exposures of 5, 10, 15, and 20 steps.

Figure 1.
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The chemical development of a photographic negative
depends on, among other things, the temperature and
the development time. We will construct an example
with these two variables.

A central composite experimental design in two fac-
tors15 (CCD2) permits representing a process response
Yr in terms of the scaled input variables X1 and X2 with
the following general polynomial:

Yr (X1, X2 ) =
B0 + B1 X1 + B2 X2 + B11 X1

2 + B22 X2
2 + B12 X1 X2 (4)

To estimate the coefficients in Eq. 4 for the variables
X1 (development time) and X2 (development tempera-
ture) we need to perform experiments. The experiments
in which the variables are varied consistent with the
CCD2 sampling requirements are listed in Table I.

For each of the four exposures where the ICF is
sampled, there is a corresponding polynomial. Repre-
sentative values for the coefficients in Eq. 4 are listed
in Table II.

The initial trial value for the approximate quality loss
function ALP is given in Eq. 5.

ALP = (YSTEP_5 (X1, X2 ) – .18)2 + (YSTEP_10 (X1, X2) – .62)2 +
     (YSTEP_15(X1, X2 ) – 1.07)2 + (YSTEP_20(X1, X2 ) – 1.44) 2 (5)

For the various numbers given in Tables I and II, the
ALP is minimized, and target values (0.184, 0.621, 1.070,
1.440) achieved for X1 = -0.91 (scaled) corresponding to
4.23 minutes and X2 = -0.02 (scaled) corresponding to
20°C.

Summary
We have presented a novel and powerful method for
dealing with a problem frequently encountered in the
manufacture and development of imaging products, that
of process tuning to achieve highest product quality. The
basic strategy is to treat sampled points on the image

TABLE I. Two Factor Central Composite Experimental Design
for Black and White Development

Experimental Inputs    Scaled Inputs

Exp. # Dev. Time  Temperature  X1  X2

 (minutes) (Deg. C.)

1 4 18 -1  -1
2 9 18  1  -1
3 4 22 -1   1
4 9 22  1   1
5 2.965 20 -1.414   0
6     10.035 20  1.414   0
7 6.5 17.172  0  -1.414
8 6.5 22.828  0   1.414
9 6.5 20  0   0
10 6.5 20  0   0

TABLE II. Values for the Polynomial Coefficients

Polynomial Term  ICF AT  ICF AT  ICF AT  ICF AT
STEP 5 STEP 10 STEP 15 STEP 20

Zero level (B0 )  .23000 .82400 1.35400 1.73800
Development time (B1 )  .06201 .22580   .29949   .31089
Development temp. (B2 )  .00352 .01259   .01679   .01729
Time squared (B11)  .01213 .00269 –.01438 –.01969
Temp. squared (B22)  .00112 .00219   .00138   .00131
Time * temp. (B12)  .00150    –.00025 –.00175 –.00225
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conversion function as response surfaces, which can be
described with experimentally derived polynomials. The
individual response surfaces are then combined into a
single loss function using known specifications or de-
sired targets. Minimizing the loss function with respect
to process inputs locates operating conditions which
produce the product of highest quality and most robust-
ness against process input variation.
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