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Introducing Correction for Optical Dot Gain into Pollak’s Equation:
Application to Reflectance through R, G, and B Filters

Michitaka Nonaka*† and Masatsugu Isoda
Department of Image Information Engineering, Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi, Kanagawa, Japan

The Neugebauer equation is generally used to predict full color reproduction for printing. Pollak resolved the Neugebauer equation
into factors, assuming the additivity of superimposed solid optical densities. Because of differences between predicted and actual
results, various modifications of the formula have been suggested. Yule and Nielsen introduced the parameter n. We have now devel-
oped a quadratic equation with a factor corresponding the Yule-Nielsen n. By introducing our correction term to Pollak’s equation, it
is possible to correct approximately for optical dot gain in the case of halftone dots superimposed on paper.
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Introduction
Color images are reproduced using halftone dots in the
printing process. Because various papers and inks are
used, it is important to be able to accurately predict the
resulting colors. High quality color images use a four-color
process, with separate plates for cyan, magenta, yellow,
and black halftone dots. A color printing press normally
prints these colors in sequence on white paper.

To predict the color of the halftone reproduction,
Neugebauer’s equation1 is generally used. This equa-
tion uses variables to describe the fractional dot areas
of the three colors. We expressed Neugebauer’s equa-
tion for four-color prints and included the reflectance of
paper in it. The fractional dot area of cyan, magenta,
yellow, black are described with the variables c, m, y, bk,
respectively, and the reflectance of the paper is Rp. The
variable RSC denotes the reflectance measured with red
light for the cyan solid print. RSCM is the reflectance
measured with red light for the magenta ink printed
over cyan, and so on. The reflectance of the four-color
combination print through the red filter is as follows.

   R = Rp [(1 – c) (1 – m) (1 – y) (1 – bk) + c(1 – m) (1 – y)
          (1 – bk)RSC + (1 – c)m(1 – y) (1 – bk)RSM

      + (1 – c) (1 – m)y(1 – bk)RSY + (1 – c) (1 – m)
          (1 – y)bkRSBK + cm(1 – y) (1 – bk)RSCM

    + c(1 – m)y(1 – bk)RSCY + c(1 – m) (1 – y)bkRSCBK +
           (1 – c)my(1 – bk)RSMY

    + (1 – c)m(1 – y)bkRSMBK + (1 – c) (1 – m)ybkRSYBK +
            cmy(1 – k)RSCMY

 + cm(1 – y)bkRSCMBK + c(1 – m)ybkRSCYBK +
               (1 – c)mybkRSMYBK + cmybkRSCMYBK]. (1)
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There are two similar equations for the green and blue
reflectance, where G and B, respectively, are substituted
for R.

Pollak derived a modified form of Neugebauer’s equa-
tion as the product of four terms, assuming that the solid
ink densities were additive,2,3 and that the reflectance
of an ink combination was equal to the product of the
reflectance of its components. Thus:

R = Rp(1 – c + cRSC) (1 – m + mRSM) (1 – y + yRSY)
             • (1 – bk + bkRSBK). (2)

There are also two similar equations for the blue and
green reflectance, where B and G are substituted for R.

Compared to Neugebauer’s equation, we believe that
Pollak’s equation can more directly predict the color of
halftone reproductions because of its simple form and
its use of terms describing the paper and each ink film;
each term is constructed in the form of the Murray-
Davies4 equation. However, the reflectance represented
by each of the terms does not agree with the measured
reflectance of a single color halftone print. Therefore,
another correction is required. That is the correction
for optical dot gain.

The original Murray-Davies equation represents the
relation between a single color image and the ratio of
the area occupied by the halftone dots. The density that
is calculated with this equation does not perfectly pre-
dict the actual printing density. Therefore, it appears
that the density difference between the value calculated
from the Murray-Davies equation and the measured
value is due to the behavior of the light absorbed in the
paper by the halftone dots. The difference is called ‘opti-
cal dot gain.’ The optical dot gain reaches its maximum
in areas with halftone and decreases with decreasing
or increasing ratios of the area covered by printed dots
versus white paper. Therefore, Yule and Nielsen intro-
duced the coefficient n to improve the calculated pre-
dictions. Generally a quadratic equation can be fitted
to the shape of the curve of the optical dot gain versus
the fractional dot area. The coefficient k used in the qua-
dratic equation can be determined from the height of the
peak of the curve in the center of gradation.
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Modified Murray-Davies Equation Using the Qua-
dratic Equation. The symbol a represents the ratio of
the halftone dot area per unit area. This equation can be
rewritten in terms of the reflected light in the form:

R = 1 – a + aRS (3)

Here we must add the corrective factor. The term ka(1
– a). f(a) = ka(1 – a) is a quadratic equation, and when a
= 0, 1, then f(a) = 0. When a = 0.5, the value of the func-
tion reaches its maximum. The correction coefficient k
is determined by the difference between the measured
values and the calculated values of the Murray-Davies
equation for the case where a = 0.5. The final approxi-
mation equation is as follows:

R = 1 – a + aRS – ka(1 – a) (4)

Yule and Nielsen introduced the coefficient n to im-
prove the prediction of the Murray-Davies equation.
Ruckdeschel and Hauser5 analyzed the physical prop-
erties underlying Yule and Nielsen’s n. They convoluted
the point spread function for the substrate with the
transmittance distribution of the halftone dots. That
result was compared with the actual results using the
Yule-Nielsen equation. Then n was calculated to equal-
ize the results of the two formulas. They found that the
range of values for n was n = 1 if the surface of the sub-
strate was a perfect reflector (a mirror), and n = 2 if the
surface of the substrate was a perfect light diffuser. They
also reported that the n value is unique and indepen-
dent where the saturation is less than 50%, but the value
is not unique for saturation over 50%. They applied their
theory to photography, so their approach is not directly
applicable to normal printing because of the delay in
the ink transfer from the plate to the substrate, and
because of instability in the location of the plane of the
printing process.

Nagayama, Yuasa and Mishina6 reported on the in-
fluence of the shape of halftone dots made by a laser
printer. Their work was based on a simplified version of
the method of Ruckdeshel and Hauser.5 In their paper
it was reported that the correlation between the dot gain
and the perimeter was very strong, but as the point
spread became smaller the correlation became weaker.

Teraoka and Taguchi7 reported that they derived the
line spread function (LSF) of the paper from the MTF of
a rectangle pattern of preproof and there was a close
correlation between optical dot gain and the relative in-
tensity of LSF at 50 µm distance from the LSF center.
Inoue, Tsumura and Miyake8 reported that the value n
could be calculated by convolution based on the point
spread function derived from the MTF of the paper for
the transmittance of images. Their work was limited to
the conditions where the fixed fractional dot area was
50% and the solid density was held constant.

In each of these studies, the convolution and point
spread functions are used to predict the reflectance of
halftone images and a relationship to Yule-Nielsen n is
sought. In our current work, we have focused on how to
derive accurate values of n without reference to theory.
Considering the many variable factors in printing, we
recommend a simple and understandable correction
term derived using the quadratic equation, that in turn,
uses the coefficient k to mathematically describe the
color images reproduced by superimposing halftone dots
on a substrate.

Arney and Katsube10 treated the case of the halftone
print made from a thermal transfer printer. They paid
Introducing Correction for Optical Dot Gain into Pollak’s Equ
attention to the variation in the reflectance of the pa-
per between the dots with varying fractional dot area.
Accordingly they estimated the probability of a photon
that enters the paper by passing through a halftone dot
and returning under the dot, and the probability of a
photon that enters the paper between the halftone dots
also emerging under the dot, that are both functions of
the fractional dot area. If these probabilities can be de-
termined, the reflectance of a halftone dot and the pa-
per could be expressed as functions of the fractional dot
area. By substituting these functions into the Murray-
Davies equation, the reflectance of a halftone print can
be expressed.

Rogers10 reported that when the point spread func-
tion of the paper is known, the reflectance of the half-
tone print is numerically expressed by convoluting
the round dot halftone dot distribution pattern and
the point spread function. He derived the photon trans-
port differential equation, and solved the equation by
introducing the boundary conditions of the paper sur-
face. Accordingly, he got the point spread function of
the paper, and he derived the reflectance based on
photon transport probability in the paper. Though the
correction term is not specifically expressed in his pa-
per, we can derive the same shape correction as ours for
correction of optical dot gain by transforming his three
equations.

For

    R R Ri n= µ µ + − µ( ) ( )1 (5)
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The correction term for optical dot gain then exhibits
the same functional shape as our proposed correction
term ka(1 – a) as shown in Eq. 4.

However in the case of  s = 0, light is perfectly scattered
in the paper. The factor 1

2
−( )Rs

corresponds to our cor-
rection coefficient k. Rogers considered paper to be a
homogeneous substance and explained the effect of op-
tical dot gain theoretically. Though that is a significant
theoretical achievement, our correction method should
be adequate for practical use, given the variability dur-
ing printing.

Accordingly we made a print sample and compared
the three methods (Yule-Nielsen’s n, Rogers’ correction
term, and our correction term) by simulation in
ation: ...         Vol. 43, No. 2, Mar./Apr.  1999    121



Microsoft Excel™. The result was that there was almost
no difference between the three methods, and the val-
ues obtained by the three methods agree within the
range of variability of the measured values. Therefore,
we are confident that the most simple correction method,
namely ours, is adequate to correct optical dot gain in
practice. Now we show that the correction of optical dot
gain in the case of superimposed halftone dots on paper
is possible for the first time by introducing our correc-
tion term to Pollak’s equation.

Experimental
Preparation of Printing Sample. To evaluate the ac-
curacy of our equations, we made various print samples,
using both single-color and four-color superimposed prints.
We prepared the original square halftone dot positive films
using a scanner. The screen ruling was 175 lpi. The screen
angle was 15° for the cyan print, 45° for the magenta print,
90° for the yellow print, 75° for the black print. The origi-
nal image was on Fujichrome PROVIA™, using only the
gray scale section and color area.

The printing was done using a lithographic proof
press. The pre-sensitized plates used were “FPP-B”
made by Fuji Photo Film Co., Ltd. (Tokyo, Japan). The
paper used was art paper “Tokubishi Art” made by
Mitsubishi Paper Mills Co., Ltd. (Tokyo, Japan). The
ream weight of the paper was 135kg per 1000 sheets,
where each sheet was 788 mm by 1091 mm. The print-
ing inks used were “TK For4 CIL” made by Toyo Ink
MFG. Co., Ltd. (Tokyo, Japan). The order of printing
was black, cyan, magenta and finally yellow.

Measurement of Light Density of Print and Frac-
tional Dot Area. The optical density of the printing
sample was measured with a Macbeth RD914 densitom-
eter. When the reflectance value was required, the den-
sity value was converted by setting R = 10–D. The fractional
dot areas were measured using image processing software
made by the Mitani Corporation, using a CCD camera in-
corporated with a microscope.

First we calibrated the dot pitch by inputting the im-
age scale to the system. Next a frame size that contains
an array of nine halftone dots (3 vertically and 3 hori-
zontally) was determined. This required a separate step
because the shapes of the halftone dots were not exactly
the same. The image processing was then done using
this frame size. The halftone dot images of the prints
were magnified to 100× with the microscope and fed to
the CCD camera. On display, the frame position was
then manually set to the proper location. The color im-
ages of the halftone dots were then converted to the gray
images in the frame. The brightness histogram of the
gray image was used for converting the binary images
using a threshold that we set by studying the bright-
ness value distribution. There are two peaks in the his-
tograms for the cyan, magenta, and black prints, and
we used the minimum value between the peaks as the
threshold value. Because the contrast of the yellow print
was relatively low, there is only a single peak in the
distribution of brightness values, so we used color sepa-
ration to convert the binary image. By counting the
number of elements corresponding to halftone dots and
paper, the fractional dot areas were derived.    We mea-
sured the fractional dot areas of the halftone dots, and
because both the halftone dot images and the binary
images were simultaneously visible on the Macintosh
computer monitor, we were able to make sure that the
shapes of both images corresponded accurately.
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Results and Discussion
Optical dot gain expressed by reflectance is the differen-
tial reflectance between the value calculated by the
Murray-Davies equation and measured reflectance. Mea-
sured optical reflectance is smaller or equal to the value
calculated by the Murray-Davies equation. Now the dif-
ferential reflectance corresponding to optical dot gain is

D.R. = (1 – a + aRS) – Measured Reflectance. (10)

Our correction term is

D. R. = ka(1 – a) (11)

Yule-Nielsen’s correction term is

    D R a aR a aS
D n ns. . ( ) ( ) ./= − + − − + −1 1 10 (12)

Rogers’ correction term is

    
D R R a aS

s. . ( ).= −( ) − −1 1
2

1 (13)

Using both the measured value of fractional dot area
at various parts of the gray scale on the color target at
C, M, Y, and BK of each progressive proof, and the mea-
sured optical density through R, G, and B filters on the
same location, the values of optical dot gain could be
estimated as a function of light reflectance. Three mea-
surements were made for each patch. These values were
plotted versus fractional dot area as shown in Figs. 1
and 4. The scattering of the measured values is seen for
the patches of fractional dot area 0.08, 0.59, 0.61, but it
is not appreciably seen at the patches of the other frac-
tional dot areas. There is more scatter between patches
than in the same patch.

In Fig. 1, the broken line with one dot expresses our
correction curve that is symmetrical, and the broken line
with two dots expresses Rogers’ correction curve, and
the solid line expresses the Yule-Nielsen correction
curve.

These curves are derived by adjusting the parameter
of each equation so as to yield the same value at the
point of about 0.5 fractional dot area. Rogers’ curve is
skewed to the left and the Yule-Nielsen curve is skewed
to the right, while our curve is symmetrical. But the
differences among these three curves are far smaller
than the scatter of measured values, and the results

Figure 1. Comparison of three kinds of correction methods for
optical dot gain in the case of C print.
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are considered equivalent whichever correction method
is used.

In Fig. 2, scattering of measured values for the ma-
genta halftone print is large within patches, and be-
tween patches in the case of dot areas smaller than 0.65.
As for the case of the cyan halftone print, we normalize
the three correction curves at dot area 0.5. In this case
the correction values are smaller than the values for
cyan. The characteristic skewing of Rogers’ curve and
the Yule-Nielsen curve becomes remarkable. In this case
the scatter of measured values is large, so it can be pre-
dicted that the approximations are effectively equiva-
lent whichever method is used.

In Fig. 3 significant scatter of measured values in the
case of the yellow halftone print is again seen within
the same patch. Before normalizing the three curves at
dot area 0.5, the three curves become nearly the same.
Therefore, whichever curve is used, the correction is
essentially the same.

In Fig. 4 the differential reflectance derived from the
densities measured through the red filter is shown. For
the case of the black halftone print, the measured val-
ues of density through B, G, and R filters are nearly the
same, therefore only the differential reflectance derived
from the density through the red filter is shown to in-
troduce of the correction item to Pollak’s equation.
Again, the scatter of measured values is observed rather
strongly. Normalizing the three kinds of correction val-
ues at the dot area 0.5, it seems that Rogers’ curve

Figure 2. Comparison of three kinds of correction methods for
optical dot gain in the case of M print.

Figure 3. Comparison of three kinds of correction methods for
optical dot gain in the case of Y print.
Introducing Correction for Optical Dot Gain into Pollak’s Eq
skewed to the left is the best match to the distribution
of measured values. The Yule-Nielsen curve is skewed too
much to the right. But considering the scatter of the mea-
sured value, we infer that there is little difference in the
extent of correction whichever correction curve is used.

Table I summarizes the coefficient k for our correc-
tion curve, the parameter 1 – s of Rogers’ correction curve
and the parameter n of Yule-Nielsen’s correction curve.
The value of each parameter has almost the same value
for C and Y, M and BK. In Table I the value of (1 – T0)2 in
the Rogers’ equation is also shown, which corresponds
to k of our equation. As the value 1 – s becomes nearer
to unity, the value of (1 – T0)2 becomes nearer to the
value of k.

Introducing Our Correction Term to Pollak’s
Equation
In Figs. 5 through 8, the measured optical reflectances
through R, G, and B filters and the values derived from
Murray-Davies’ equation at the regions of C, M, Y, and bK
prints corresponding to regions of the gray scale of the
original color target are shown. The values are estimated
for the case of the paper reflectance being taken as unity.

At each fractional dot area, the difference between
the optical reflectance derived from the Murray-Davies’
equation and the measured value expresses the effect
of optical dot gain. In the case of C, M, and Y, each pro-
gressively printed, the optical reflectance through the
complementary color filter is smaller than the value
calculated by the Murray-Davies equation, but the op-
tical reflectance through now complementary color fil-
ters, nearly agrees with the Murray-Davies’ equation.
In Fig. 8, for the case of the black print, the effect of
optical dot gain through R, G, and B filters is nearly
the same, and a correction is required to obtain the op-
tical reflectance through each color filter.

Here, we mention our approach to introducing the
correction term for the effect of optical dot gain into
Pollak’s equation. The effect of optical dot gain is shown

Figure 4. Comparison of three kinds of correction methods for
optical dot gain in the case BK print.

TABLE I. Summary of Correction Parameters

k (1 – TD)2 1 – s n

C 0.60 0.68 0.85 1.82
M 0.38 0.67 0.48 1.42
Y 0.64 0.64 1.00 1.95
bK 0.40 0.71 0.48 1.42
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Figure 5. The values measured through R, G, and B filters and
values calculated by the Murray-Davies’ equation and the modi-
fied equation in the case of C print.

Figure 6. The values measured through R, G, and B filters and
values calculated by the Murray-Davies’ equation and the modi-
fied equation in the case of M print.

Figure 7. The values measured through R, G, and B filters and
values calculated by the Murray-Davies’ equation and the modi-
fied equation in the case of Y print.

in Figs. 1 through 4 for the case of halftone dots with
only one color printed on the paper, but an actual full
color halftone print is constructed by superimposed half-
tone dots. Therefore, we are not able to introduce each
correction parameter separately into the corresponding
term of Pollak’s equation.

The halftone print comprising four color inks super-
imposed is divided into a total of seventeen color areas
containing the first color, the second color, and white of
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paper. Observing the print through R filter, the parts of
the area printed by C ink and BK ink are seen as black
area. Fractional dot area of these black areas can be
derived by Demichel’s method11 that uses the multipli-
cation theorem of probability. The area where C is not
printed and bK is not printed corresponds to the white
area of the paper. The expression describing that area
is (1 – c) (1 – BK), as c is the fractional dot area of C and
bK is the fractional dot area of bK.

By this method, we can approximately correct the ef-
fect of optical dot gain compounded by C and BK. If we
substitute the halftone dot of BK with one of C, and
still suppose that the fractional dot area of C should
increased by [1 – (1 – c) (1 – bK)], we introduce the cor-
rection value for the effect of optical dot gain at that
fractional dot gain of C into Pollak’s equation, as shown
in Fig. 9.

This correction is expressed in Eq. 14.

        c1 = 1 – (1 – c) (1 – bk)
       R = RP [1 – c + cRSC – kCc1(1 – c1)] (1 – m + mRSM)

                (1 – y + yRSY). (1 – bk + bkRSBK) (14)

Similarly, observing the full color halftone print
through green filter, the area printed by M and bK half-
tone dots are seen as black area. By using the method
of Demichel, the fractional dot area that is not printed
by M and bK halftone dots becomes (1 – m) (1 – Bk).
Therefore, the fractional dot area that is covered by M

Figure 8. The values measured through R, G, and B filters and
values calculated by the Murray-Davies’ equation and the modi-
fied equation in the case of BK print.

Figure 9. Schematic of C and BK halftone dot superimposed on
paper, and schematic of C halftone dots in the case where the BK
halftone dot is converted to a C halftone dot for approximately
the correction for optical dot gain.
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and BK halftone dots becomes 1 – (1 – m) (1 – BK). We
considered this area as all M halftone dots, and intro-
duced the correction value at that fractional dot area to
the magenta term of Pollak’s equation. By this method,
we can approximately correct the effect of optical dot
gain compounded by M and bK as expressed in Eq. 15.

  m1 = 1 – (1 – m) (1 – bk)
     G = GP(1 – c + cGSC) [1 – m + mGSM – kMm1(1 – m1)]
            • (1 – y + yGSY)  (1 – bk + bkGSBK) (15)

Similarly, observing the full color halftone print
through a blue filter, the areas printed by Y and BK
halftone dots are seen as black area. By using the
method of Demichel, the fractional dot area that is not
printed by Y and BK halftone dots becomes (1 – y) (1 –
bk). Therefore, the fractional dot area that is covered
by Y and BK halftone dots becomes 1 – (1 – y) (1 – bk).
We considered this area as all Y halftone dots, and in-
troduced the correction value at that fractional dot area
to the yellow term of Pollak’s equation. By this method,
we can approximately correct the effect of optical dot
gain compounded by Y and BK, as expressed in Eq. 16.

    y1 = 1 – (1 – y) (1 – bk)
     B = BP(1 – c + cBSC) (1 – m + mBSM)
          • [1 – y + yBSY – kYy1 (1 – y1)] (1 – bk + bkBSBK) (16)

To verify how well our modified Pollak’s equation in-
corporating our correction term for optical dot gain cor-
responded to the measured value of the print comprising
superimposed halftone dots constructed by various com-
bination of C, M, Y, and BK fractional dot areas, we se-
lected the 12 color areas of the color target and measured
optical density through R, G, and B filters. Next, by con-
verting the optical density into the reflectance, we com-
pared the calculated values to the measured values.
These selected colors are 12 colors of an equally divided
hue circle; their lightness is L*1, and their saturation
is C*3. Table II summarizes the measured fractional dot
areas of these patches in the C, M, Y, and BK progres-
sive proofs.

In Figs. 10 through 12 the measured reflectance
through each filter, the reflectance calculated by Pollak’s
equation, and the reflectance calculated by our modi-
fied Pollak’s equation wherein our correction term has
been introduced are shown. Except for patch 3-I, black
halftone dots exist in each patch. Therefore, the correc-
tion of optical dot gain is required except where the
patch is solid, and the combined effect for correction of
the light of complementary color to each print color and
for the light of corresponding color can be verified. To
the reflectance through red filter, except for green

TABLE II. Fractional Dot Areas: Superimposed Primaries

Patch Dot area Dot area Dot area Dot area
    (C)     (M)     (Y)    (bK)

 3-A    0.47    1.00    0.85    0.24
 3-B    0.43    0.94    0.90    0.21
 3-C    0.36    0.80    1.00    0.09
 3-D    0.61    0.71    1.00    0.20
 3-E    0.75    0.58    1.00    0.18
 3-F    0.88    0.45    0.88    0.21
 3-G    0.90    0.63    0.77    0.29
 3-H    1.00    0.67    0.51    0.21
 3-I    1.00    0.75    0.02    0.00
 3-J    1.00    1.00    0.00    0.08
 3-K    0.67    1.00    0.21    0.17
 3-L    0.53    1.00    0.56    0.25
Introducing Correction for Optical Dot Gain into Pollak’s Equ
patches 3-F and 3-G the correction of optical dot gain
has been done perfectly. For reflectance through the
green filter with the yellow and blue patches of 3-E, 3-
H and 3-I the effect of the correction is a little excessive
but for the rest of the patches the effect is good. For
reflectance through the blue filter, the blue and violet
patches 3-I and 3-J are not correctly estimated because
of the lack of halftone dots of Y and BK. For reddish
violet patches 3-K and 3-L, the correction value is larger
than the value needed.

Figure 10. Comparison of measured reflectance, reflectance cal-
culated by Pollak’s equation and reflectance calculated by our
modified equation for each patch of the color target print using R
filter.

Figure 11. Same as Fig. 10, using G filter.

Figure 12. Same as Fig. 10, using B filter.
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By introducing our correction term for optical dot gain
to Pollak’s equation separating the reflectance of pa-
per, we can fairly approximate the values measured
through R, G, and B filters.

The equation comprises the product of the terms for
paper, C, M, Y, and BK. If the correction for optical dot
gain and the correction for additivity-law failure are
introduced to the equation, we conclude that the reflec-
tance value calculated could approximate the measured
value. This should show that the principle of color re-
production in printing by superimposing halftone dots
of each color is subtractive color mixing.

Conclusions
1. For predicting the reflection optical density of color

on paper printed with the combination of C, M, Y,
and bK fractional dot areas, we chose Pollak’s
equation. This equation is constructed as the product
of reflectance of each ink film and paper combination.
It indicates that color reproduction by the printing
of superimposed halftone dots basically corresponds
to subtractive color mixing.

2. The value calculated by Pollak’s equation does not
agree with the measured value. We assigned the
principal cause for nonagreement to the peculiar
effect of optical dot gain in halftone dot printing. We
derived the following method where the amount of
correction for optical dot gain was approximated.

On the graph having fractional dot area as variable,
we plotted the measured value of optical dot gain, and
approximated the value by the symmetrical quadratic
function a(1 – a) that shows maximum value at frac-
tional dot area 0.5. We multiplied the quadratic func-
tion by the empirical coefficient k, to obtain ka(1 – a).
By adjusting k we approximated the measured value
with the calculated value.

On examining the degree of agreement of our quadratic
equation, Yule and Nielsen’s correction, and Rogers’ cor-
rection with measured values, we found that these three
methods had few differences from each other. Therefore
we adopted our correction equation as the most simple and
easiest in which to determine the empirical coefficient.

3. We introduced our correction term for optical dot gain
to Pollak’s equation. On comparison of measured
values of R, G, and B reflectance at each fractional
dot are of C, M, Y, and BK with the values calculated
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by the Murray-Davies equation we found that optical
dot gain occurred under complementary color light
in the case of C, M, Y, and occurred under R, G, and
B light to the same degree in the case of BK.

Therefore, using Demichel’s equation that expresses
the state of superimposed halftone dots introduced into
Pollak’s equation and taking C, for example, the area
superimposed by C and BK should be considered as C
area. By using total fractional dot area, the correction
of the C term to Pollak’s equation can be made, then
the correction of optical dot gain for the case of halftone
dots superimposed becomes possible.

4. To verify the effect of our modified Pollak’s equation,
the equation was applied to the reflection optical
densities of the print of 12 patches of color areas from
a color test target. The calculated values approached
the measured values fairly well.

The strong point of our equation is that its structure
expresses well the actual color print, and therefore the
estimates obtained do not differ substantially from the
measured values. If the amount of trapping or additiv-
ity law failure of optical density of a solid print would
become clear in the future, we should be able to intro-
duce these effects to our modified Pollak’s equation, as
well.
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