
JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY • Volume 42, Number 4, July/August 1998
Edge Estimation and Restoration of Gaussian Degraded Images
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The blur function of a degraded image is often unknown a priority. The blur function must first be estimated from the degraded image
data before restoring the image. We propose an algorithm to address the blur estimation problem. The present algorithm based on the
estimation of restoration filter parameters by using edge information of the degraded image is presented to solve the restoration
problem of the degraded image. The information that relates the variance of the Gaussian blur kernel on degraded image is considered.
Simulation results of image restoration illustrate the performance of the proposed estimation method.
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Introduction
The restoration of images degraded by blur is still a central
problem in image processing. Blur can be introduced by
atmospheric turbulance, improperly focused lenses,
relative motion, or other environmental factors between
an object being photographed and an image scanner. The
restoration of degraded images differs in each case.

The problem of deblurring of images with known blur
function has been dealt with extensively in the literature.
The restoration algorithms include Fourier domain
methods (inverse filtering,1–3 blind deconvolution,3–5

Cepstrum,6–8 etc.) or spatial domain methods.9 In many
applications, however, the blur function is unknown.
Therefore, the estimation or identification of blur function
directly from the blurred image has been a focus of great
deal of interest. A number of techniques have been
proposed to address this problem.

Chang, Tekalp, and Erdem10 have proposed a blur
identification algorithm in which an observed image has
been segmented into N segments by using a method for
blur identification. Reeves and Mersereau11 have used a
generalized cross validation method for blur identification.
Kayargadde and Martens12 have used polynomial
transformations to estimate the edge parameters and
image blur.

Although several methods exist to restore degraded
images, there is still room for improvement.3 In this work
we propose a new algorithm for restoration of unknown
Gaussian blurred images using edge estimation. The
proposed algorithm follows an iterative scheme to converge
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the blur function and then restores the degraded image
after a certain number of iterations. The following sections
present the blur model, our restoration algorithm,
experimental results, and conclusions.

Problem Identification and the Proposed Method
In this work, we address the problem of deconvolution

of unknown Gaussian degradation from an edge
estimation. To describe our techniques, we begin in this
section with a brief description of a blurred image, and
state some important properties relating to it.

Generally, a blurred image can be modeled as follows:

y(n1,n2) = g(n1,n2)*h(n1,n2) + v(n1,n2), (1)

where the original image g(n1,n2) has been blurred by the
function h(n1,n2) with an additive noise v(n1,n2). Additive
noise may come from the imaging system independent of
the original image. Additive noise degradation model
parameters of imaging systems are known. Thus, additive
noise may be easily removed from the degraded image by
using special image processing techniques such as Wiener
filtering before the restoration. Therefore the additive
noise problem has been left out here; rather, we refer the
reader to Refs. 1 through 5 and 9 for further details.

Neglecting the additive noise, Eq. 1 can be rewritten as,

y(n1,n2) = g(n1,n2)*h(n1,n2). (2)

Equation 2 states that degradation is the result of the
convolution between the original scenery and the blur
function.

The blur function h(n1,n2) given in Eq. 2 could have
statistically different distributions, and different models
could be identified for each distribution problem. As a
result, the restoration problem may become very complex.
In so far as the Gaussian distribution includes all other
distributions, in general, we assume that all blurring
effects have Gaussian, or normal, distribution. For
example, atmospheric turbulence, unfocused imaging
systems, motion, or evaporation effects could cause the



original image to blur with Gaussian distribution. A
Gaussian distribution can be modeled as,
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Equation 3 represents the filter model in which the
variance and the matrix size have an effect on the filter
performance. This model will be used for the restoration
of the blurred image. As long as the variance and the
matrix size can be appropriately arranged, a good
approximation of the original image should be obtained.

In this study, we use the gradient edge detection
method3 to estimate the filter model parameters. In a
blurred image, regions of high frequency, called edge
pixels are spread over the neighboring pixels causing the
loss of image details. Thus, the blurred image edge map
does not contain more edge lines or points than the
original one. Using this property, we can say that the
edge map of an image contains important information
about the degradation.

Figure 1 shows a block diagram for the algorithm. The
process to converge to the blur function of the degraded
image is as follows:
Step 1. Find the edge map of the actual image.
Step 2. Choose the filter model parameters, variance and

matrix size from step 1.
Step 3. Construct a filter using the parameters in step 2.
Step 4. Restore the degraded image.
Step 5. Find the edge map of step 4.
Step 6. Compare step 5 and previous edge map. If step 5

> the previous edge map, filter parameters are
actual, else filter parameters are the previous.

Step 7. Choose the next value of the filter parameters.
Step 8. Construct a new filter and repeat steps 5

through 8.

After a certain number of iterations, the best edge map
gives the best filter model parameters used for designing
the restoration filter. (Note that different variances are
used for a fixed matrix size of filter model in the algorithm.
In other words, the variance is searched for a fix blur
matrix size, then the matrix size is changed.) There for
each iteration step:

bi+1 = bi + ∆bi[n1(i + 1); n2(i + 1)], (4)

Figure 1. Edge estimation and restoration algorithm block
diagram.
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where, bi+1 is the convergency vector of the model
coefficients and ∆bi is the correction term that depends on
the measurements along a period.

The choice of the amplitude level of the edge points is
particularly important because the edge algorithm may
detect low noise as an edge point. To obstruct the false
edges, first, we introduced a fixed threshold (k). Then,
we chose the amplitudes up to the fixed threshold as an
edge point. Here if k is low, noise may be detected as an
edge point. If k is high, some edge points may not be
detected. Thus, the threshold level k has been chosen as
35% of the amplitude of the maximum edge pixel level.
As a result, the relation between the variance and the
edge algorithm is defined as,

σ 2
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where σ2 is the variance, ∇ is the gradient operator, and y is
the blurred image. Equation 5 is used to compute
appropriate matrix size and variance for the restoration
filter model.

Having estimated the filter model parameters, we use
the Fourier domain Cepstrum transform for the filtering.
The Cepstrum algorithm has been extensively used for
image processing applications and its features are well
documented in the literature.3,6–8 Fourier domain Cepstrum
transform of Eq. 2 is obtained as,

y′(ω1,ω2) = g′(ω1,ω2) + h′(ω1,ω2). (6)

Equation 6 shows that the blur function is decomposed into
a sum of original scenery of the image component and blur
effect component by using the Fourier domain Cepstrum
transformation.

Let the designed filter be h1(n1,n2) after the iterations and
the filtering process in Cepstrum domain as,

y′(ω1,ω2) = g′(ω1,ω2) + h′(ω1,ω2) – h′1(ω1,ω2) (7)

Minimizing of the error between the blur function model
parameters and the constructed filter model parameters
presents the improvement of the quality in the image.

Mean squared prediction error is then computed to
obtain the restoration error:
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where g(n1,n2) and ynew(n1,n2) are the original and restored
images, respectively. The energy of the original signal E1

is defined by
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To evaluate the improvement in the restored image, we
combine Eqs. 8 and 9,
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Experimental Results
The performance of the proposed algorithm has been

investigated with three different types of blurred images.
The restoration results are presented in this section with a
200 × 200 pixel simulated child image, a real world degraded
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TABLE I. Mean Square Error Measurement in Blurred and
Restored Child Image

Image Estimated MSE in MSE in Improvement
Variance blurred image restored image (dB)

 5.5 (7 × 7 pix.)  1145.3 4.811 75.8
Child 10.25 (13 × 13 pix.) 2400.0 4.988 75.5

(Fig.-2.) 13.75 (13 × 13 pix.) 3154.1 6.463 73.3

TABLE II. Restoration Results in the Real World Images

Images Estimated Variance Improvement Image type

Fig. 3  5  26.6 Photographic
Fig. 4  3  28.7 Satellite
Fig. 5  7  26.4 Satellite
Fig. 6  4  30.15 Satellite

Figure 2. (a) Blurred child image with variance 13.75 (left above); (b) edge map of (a) (right above); (c) restored image by filter not
estimated correctly from degraded image (middle left); (d) edge map of (b) (middle right); (e) resulting image from (e), (left below); (f)
edge map of result of iterations (right below).
photographic image, and a real world satellite image. The
proposed algorithm estimates the size and variance of blur
function from the blurred image and restores it.

Figures 2(a) and 2(b) show the Gaussian blurred child
image and its edge map in which image details have been
lost. It is seen that not enough edge pixels are on the edge
map. Figures 2(c) and 2(d) show restoration results from
an incorrectly estimated filter parameter. So, the image is
still not very clear. Figures 2(e) and 2(f) present the restored
image and its edge map. The threshold operation prevents
the edge pixels from detection of small noise as an edge
point. The performace of the restoration is shown by the
improvement in the image quality in Table I.

The algorithm has also been applied to real life degraded
images and considerable improvement has been observed
in the resulting images. Figures 3(a) and 3(b) show an
original photograph image and its edge map. The image
was blurred by out of focus lenses. Degradation again has
a Gaussian distribution. The restoration result of the
image is depicted in Fig. 3(c) and its edge map in Fig. 3(d).
Table II also presents the improvement in image quality.

Figures 4(a), 5(a), and 6(a) show some real world satellite
images taken by the Hubble Space Telescope. These images
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have been degraded by atmospheric turbulence. Thus,
some details on the images have been lost. The restored
images are shown in Figs. 4(c), 5(c), and 6(c) respectively.
Improvements in all of the satellite images are con-
siderable as given in Table II.

Conclusion
This paper develops a new restoration algorithm for

unknown Gaussian degraded images. Variance and matrix
size of the convolutional Gaussian effect are estimated and
accordingly the blurred image is restored. Our experimental
results show that the proposed method performs effective
restoration for degraded images. If the original scene has
only been degraded by the blur function as in the case of
the simulated child image, the restoration result is
satisfactory. However, there are some unmeasured
observation effects in real world images and these effects
cannot be controlled. Our filter model partially compensates
unmeasured observation effects but not all. So the
restoration results and improvements for the real world
images given in Table II are not as high performance as in
the simulated image.
 Telatar and Tüzünalp
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igure 3. (a) A real world photograph image (left above); (b) edge map of (a) (right above); (c) restored image from (a) (left below; (d)
dge map of (c).

igure 4. (a) A real world satellite image (left above); (b) edge map of (a) (right above); (c) restored image from (a) (left below; (d) edge
ap of (c).
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Figure 5. (a) A real world satellite image (left above); (b) edge map of (a) (right above); (c) restored image from (a) (left below; (d) edge
map of (c).

Figure 6. (a) A real world satellite image (left); (b) restored image from (a) (right).
The algorithm needs 125 iteration steps with 43 min
required on a 90-MHz Pentium computer. If the matrix
size is chosen properly, iteration steps can be reduced to
20 with very low computing time, which can be important
for real-time applications. Under these conditions,
restoration quality may decrease, however.

References
  1. B. L. McGlamery, Restoration of turbulence-degraded images, J. Opt.

Soc. Amer. 57, 293 (1967).
  2. G. M. Robbins and T. S. Huang, Inverse filtering for linear shift variant

imaging systems, Proc. IEEE 60, 862 (1972).
  3. J. S. Lim, Two Dimensional Signal and Image Processing, Prentice Hall,1990.
  4. J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, 1968.
  5. S. C. Pohlig, New techniques for blind deconvolution, Opt. Eng. 20, 281

(1981).
  6. D. E. Dudgeon, The computation of two dimensional Cepstra, IEEE Trans.

Acoust. Speech Signal Proc. ASSP-25, 476 (1977).
374     Journal of Imaging Science and Technology
  7. J. K. Lee, M. Kabrisky, M. E. Oxley, S. K. Rogers, and D. W. Ruck, The
complex Cepstrum applied to two-dimensional images, Patt. Recog. 26,
1579 (1993).

  8. P. A. Petropulu and C. L. Nikias, The complex Cepstrum and Bicepstrum:
Analytic performance evaluation in the presence of Gaussian noise,
IEEE Tran. Acoust. Speech Signal Proc. 38, 1246 (1990).

9. O. Shunichiro, Restoration of images degraded by motion blur using
matrix operators, Int. J. Systems Sci. 22, 937 (1991).

10. M. M. Chang, A. M. Tekalp and A. T. Erdem, Blur identification using
bispectrum, IEEE Trans. Signal Proc. 39, 2323 (1991).

11. S. J. Reeves and R. M. Mersereau, Blur identification by the method of
generalized cross-validation, IEEE Trans. Image Proc. 1, 301 (1992).

12. V. Kayargadde and J. B. Martens, Estimation of edge parameters and
image blur using polynomial transforms, CVGIP 56, 442 (1994).

13. G. Demoment, Image reconstruction and restoration: Overview of com-
mon estimation structures and problems, IEEE Trans. Acoust. Speech
Signal Process. 37, 2024 (1989).

14. Z. Telatar, Adaptive restoration of blurred satellite images, in ISI 51st
Session of the International Statistical Institute, Book 2, 499, (1997).

15. Y. Ando, A. Hansuebsai and K. Khantong, Digital restoration of faded
color images by subjective method, J. Imag. Sci. Tech. 41, 259 (1997).
 Telatar and Tüzünalp


	Edge Estimation and Restoration of Gaussian Degraded Images
	Ziya Telatar* † and Önder Tüzünalp
	Introduction
	(1)
	(2)
	Figure 1.
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	Experimental Results
	Figure 2.
	TABLE I.
	TABLE II.
	Conclusion
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	References

