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Optical Dot Gain: Lateral Scattering Probabilities

Geoffrey L. Rogers*
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In the development of the technology of halftone imaging there has been significant interest in physically modeling the halftone
microstructure.  An important aspect of the microstructure is the scattering of light within the paper upon which the halftone image
is printed.  Because of light scatter, a photon may exit the paper at a point different from the point at which it entered the paper. The
effect that this light scatter has on the perceived color of the printed image is called optical dot gain. Optical dot gain can be character-
ized by lateral scattering  probabilities, which is the probability that a photon entering the paper through a particularly inked region
exits the paper through a similar or different type inked region. In this article we explicitly calculate these lateral scattering probabili-
ties for the case of AM and FM halftone screening. We express these probabilities in terms of the fractional ink coverage and the
lateral scattering length, a  quantity that characterizes the distance a photon travels within the paper before exiting.
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Introduction
Halftone imaging is a widely used technique for produc-
ing printed images. Recently there has been significant
interest in physically modeling the halftone microstruc-
ture to control the tone characteristics of the halftone im-
age better.1–4 An important aspect of this microstructure
is the scattering of light within the paper upon which the
image is printed. This effect of scattering is called optical
dot gain, because, for achromatic images, the ink dots are
effectively larger as a result of the scattering.5 Several
authors have expressed optical dot gain in terms of lat-
eral scattering probabilities1,2 which is the probability that
a photon having entered the paper through a particular
type inked region exits the paper through a similar or dif-
ferent type inked region. In this article we explicitly cal-
culate these probabilities; in particular we calculate the
ink–ink probability, which is the probability that if a pho-
ton enters the paper through an inked region it also exits
the paper through an inked region—a conditional prob-
ability we label Pii. Knowledge of Pii allows one to calcu-
late all the other lateral scattering probabilities.1 Although
the calculation done here involves a single array of dots,
our results are applicable to a chromatic halftone image.9

We make the calculation for the case of both AM and FM
halftone screening.2

In Ref. 1 it is shown that the ink–ink probability can be
expressed in terms of an infinite series—the Z-series—
involving the Fourier transforms of the dot shape and the
paper’s point spread function. Here, we explicity calcu-
late Pii and obtain a closed-form expression.

The model we construct to determine Pii is as follows: a
uniform stream of photons is incident on the paper within
an area of one dot, and we calculate the fraction of the
photons that exit the paper through this dot and through
all the other dots. This fraction is Pii. We assume that the
dots are circular with radius d and that they are arranged
in a square grid (screen) with screen period r. The origin
of the coordinate system is at the center of the dot through
which the photons enter the paper (see Fig. 2).

We define 2πR(ρ)ρ,dρ as the probability that a photon,
having entered the paper through the dot centered on the
origin, exits the paper through an annulus, also centered
on the origin, with radius ρ and thickness dρ. R(ρ) is the
radial reflectance per unit area, and R(ρ) integrated over
the entire surface is the paper’s reflectance, Rp:

    
R R dp =

∞
∫2
0

π ρ ρ ρ( ) . (1)

We define the radial covering distribution A(ρ), as the
probability that an arbitrary point at a distance ρ from
the origin is covered by ink.

Then the ink–ink probability is:

    
P R A dii =

∞
∫2
0

π ρ ρ ρ ρ( ) ( ) . (2)

In the section “Reflectance” we calculate the reflectance
per unit area, R(x,y), for photons that have entered the
paper through the area of a single dot. In the section “Ra-
dial Covering Distribution” we calculate the covering dis-
tribution A(ρ). In the section “Ink-Ink Probability” we carry
out the integration of Eq. 2, making two approximations
to obtain a closed-form expression for Pii. The calculations
carried out in these sections are for AM halftone screen-
ing in which the number of dots within a region is con-
stant and the size of the dots is varied. In the section “FM
Halftone Screen” we calculate Pii for FM halftone screen-
ing: the dots are of constant size and the number of dots is
varied. In the section “Ink-Ink Probability for Diffusion
PSF” we give the ink-ink probability as calculated with
the diffusion point spread function.

Reflectance
The reflectance per unit area R(x,y) is the probability

that a photon exits the paper at the point x,y after having
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entered the paper through the area of a dot of radius d
centered on the origin and is given by:

    
R x y

R

S
H x x y y I x y dx dyp( , ) ( ' , ' ) ( ' , ' ) ' ' ,= − −∫∫

0
(3)

where S0 is the number of photons incident on the paper
per unit time, H(x,y) is the paper’s normalized point spread
function, and I(x,y) is the incident photon distribution. The
value H(x – x′,y – y′) is the probability that a reflected photon
having entered the paper at x′,y′ exits the paper at x,y. The
value I(x,y) is the number of photons per unit area per unit
time entering the paper at the point x,y and is given by:

    

I x y
S
d

x y
d

( , ) ,=
+











0
2

2 2

π
circ

where d is the radius of the dots and circ [ρ/d] is:

    
circ

ρ ρ
ρd

d
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=
≤ ≤
>





1 0

0

,

, .

The integral Eq. 3 is a convolution and can be evalu-
ated as the inverse Fourier transform of the product of
the transforms of H(x,y) and I(x,y). The transform of H(x,y)
is the paper’s modulation transfer function (MTF) labeled

    
˜ ( ),H k  with k the spatial frequency (lines per unit length).

Owing to the assumed isotropy of the point spread func-
tion, the MTF has circular symmetry.

The transform of the circ[ ] function is:

      

F circ
x y

d
d

J kd
kd

2 2
2 1 2+
























= π

π
π
( )

,

where J1 is a Bessel function.
Due to the circular symmetry, the inverse Fourier trans-

form can be expressed as a Hankel transform, and one
writes Eq. 3 as:

    

π ρ π π π ρd
R

R d H k J kd J k dk
p

2

1 00
2 2 2( ) ˜ ( ) ( ) ( ) ,=

∞
∫ (4)

where ρ is the polar radial coordinate.
To evaluate Eq. 4, one must choose an appropriate point

spread function. A widely used PSF is6:

Figure 1.  Radial reflectance per unit area R(ρ) with d = 0.4r
and (a) ρ  = 0.1r, (b) ρ  = 0.6r, (c) ρ  = 1.5r, and (d) ρ  = 4.0r.
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H K( ) ( / ),ρ π

ρ
πρ ρ=

2
2

2 0

where K0 is a modified Bessel function of the second kind.
The parameter ρ  is ρ  = 4 < ρ > and < ρ > is the first mo-
ment of H called the lateral scattering length. It is the
average lateral distance a photon travels within the pa-
per, and its inverse, < ρ >–1, is the approximate bandwidth
of the paper. The MTF is:

    

˜ ( )
( )

.H k
k

=
+

1

1 2ρ (5)

Integrating Eq. 4 using Eq. 5, one finds:

    

π ρ
π ρ π ρ πρ ρ ρ

π ρ π ρ πρ ρ ρ
d
R

R
d K d I d

d I d K dp

2
1 0

1 0

1 2 2 2 0

2 2 2
( )

( / ) ( / ) ( / ),

( / ) ( / ) ( / ),
,=

− ≤ ≤
<





(6)

where I0 and I1 are modified Bessel functions of the first
kind. Figure 1 shows the radial reflectance Eq. 6, with d =
0.4r, for several different ρ .

Radial Covering Distribution
The radial covering distribution, A(ρ), is the probability

that an arbitrary point at a distance ρ from the origin is
covered by ink. The value A(ρ) is the fraction of the circum-
ference of a circle, centered on the origin with radius ρ, that
lies on a dot. This is shown graphically in Fig. 2. The small
circles are the dots, with radius d, and the large circle has
a radius ρ. The variable A(ρ) is the sum of the bold arc-
lengths of the large circle divided by its circumference. If
the dots overlap (d > r/2), then for some values of ρ the sum
of the arc-lengths is larger than the circumference—in this
case, all points of the large circle lie on a dot and A(ρ) = 1.

The value A(ρ) is calculated as follows: We define the
neighbor distribution N(s) as the number of dots whose
centers lie at a distance s from the origin. We define θ(s,ρ)
as the angle subtended by the arc-length covering a dot
whose center lies at a distance s, as shown in Fig. 2. Then,
the radial covering distribution is:

A N s s ds( ) ( ) ( , ) .ρ
π

θ ρ= ∫∞1

2 0 (7)

Figure 2. The small circles are dots, and the large circle has
radius ρ. Light is incident through the central dot. The value
A(ρ) is the sum of the bold arc-lengths of the large circle divided
by its radius. The value θ is the angle subtended by the bold arc-
lengths.
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Both N(s) and θ(s, ρ) are derived in Ref. 2 and are given
by:

  

θ ρ

π ρ
ρ ρ

ρ ρ
ρ

( , )

,

arccos /( )

,

,

s

d s

s d s

s d s d

s d s d

=

≤ ≤ −
+ −( )[ ]

≤ − ≥ +
− ≤ ≤ +







2 0

2 2

0

2 2 2

or

(8)

and

    
N s p x sk k

k
( ) ( ),= −

=

∞

∑ δ
0

(9)

where δ(x) is a Dirac delta function and xk is
  r k  with k a natural number, and pk is the number of com-
binations of integers n and m such that k = n2 + m2. The
quantity xk is the distance to the kth “set” of dots, and pk is
the number of dots in the “set”; i.e., the number of dots at
a distance xk. The first few xk/r with nonzero pk are 0, 1,  2,2,

  5 8, ;  and the corresponding pk are 1, 4, 4, 4, 8, 4.7

Carrying out the integration in Eq. 7 and defining:

    
A0 ( )

,

,
ρ

ρ
ρ

=
≤ ≤
>





1 0

0

d

d

and for k ≥ 1:

A
p x d x x d x d

x d x d
k

k k k k k

k k

( )
( / )arccos /( ) ,

,
,ρ π ρ ρ ρ

ρ ρ
= + −( )[ ] − ≤ ≤ +

< − > +







2 2 2 2

0 or

one obtains:

    
A A

k
k( ) ( ).ρ ρ=

=

∞

∑
0

(10)

Figure 3 shows A(ρ)  for dot radius d = 0.4r.
Equation 10 is correct for d ≤ r/2. If d > r/2, the right

side of Eq. 10 is greater than 1 for some values of ρ, in
which case one sets A(ρ) = 1.

Ink–Ink Probability
Inserting the expressions for R(ρ), Eq. 6, and A(ρ), Eq.

10, into Eq. 2, one obtains:

    

π π π
ρ

π ρ πρ ρ ρ ρ

π
ρ

π ρ πρ ρ ρ ρ ρ

d
R

P
d

K d I d

d
I d K A d

p
ii

d

d k
k

2

1 00

2
1 0

1

2 1
2

2 2

2 2 2

= −










+

∫
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=

∞

( / ) ( /

( ) ( / ) ( / ) ( ) .
    (11)

Figure 3.  The value A(ρ) with d = 0.4r.
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Integrating the first term and dividing by πd2  one obtains:

    1 2 2 21 1− K d I d( / ) ( / ).π ρ π ρ  (12)

This expression is the probability that a reflected pho-
ton exits the paper through the same dot as that through
which it entered the paper.

Integrating the second term, one obtains a sum of inte-
grals of the form:

    
x d

x d k

kk

k K
x d

x
d

−

+
∫

+ −











0

2 2 2

2
2

( / ) arccos .πρ ρ
ρ

ρ
ρ ρ  (13)

These integrals can be evaluated numerically with little-
trouble, however it is possible to get a very accurate closed-
form expression by making two approximations. The first
is an approximation to the arccos [ ]:

    
arccos ( ) .

x d
x

d xk

k
k

2 2 2
2 2

2
1+ −











→ − −
ρ

ρ ρ
ρ

The second approximation is:

    K K x xk k0 02 2 2( / ) ( / ) exp ( ) / ,πρ ρ π ρ π ρ ρ→ − −[ ]
for xk - d ≤ ρ ≤ xk + d.

The errors in these approximations tend to cancel each
other for all d and ρ  so that the expression

    
K x u d u duk d

d
0

2 22 2( / ) exp /π ρ π ρ
−∫ −[ ] −  (14)

is a very accurate approximation to Eq. 13. The integral is
easily evaluated, and one obtains for Eq. 14:

    

ρ π ρ π ρd
I d K xk2

2 21 0( / ) ( / ). (15)

Inserting Eqs. 12 and 15 into Eq. 11, one obtains:

    R P K d I d I d Sp ii
− = − +1

1 1 1
21 2 2 2 2 2( / ) ( / ) [ ( / )] ( ),π ρ π ρ π ρ ρ  (16)

where we define:

    
S p K xk k

k
( ) ( / ).ρ π ρ=

=

∞

∑ 0
1

2  (17)

The second term in Eq. 16, 2[I1(2πd/ ρ )]2S( ρ ),
is the probability that reflected photons exit the paper
through dots other than the one through which they en-
tered the paper.

It is convenient to express Pii in terms of the fractional
ink coverage rather than the dot radius. The percent area
covered by ink, µ, is:

µ =
≤ ≤

+ + ≤ ≤




π
θ θ θ

( / ) , /

( cos ) /( sin ), / /

d r d r

r d r

2 0 2

1 2 2
 (18)

where

    
θ π

= − 



2

2
2

arccos .
r
d

The expression Eq. 16 is correct for 0 ≤ µ ≤ π/4. Numeri-
cal integration of Eq. 2 indicates that linear extrapolation
of Eq. 16 for π/4 ≤ µ ≤ 1 is an excellent approximation.

One then obtains for the ink-ink probability:

R Pp ii
− µ =

− µ ≤ µ ≤
− − µ( ) − µ( )[ ] µ ≤ µ ≤






1

0 0

1 0 4

1 1 1 4 1
( )

( ), /

/ ( ), /

ξ π
ξ π   (19)

where
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ξ π ρ π ρ π ρ ρ( ) / / /µ = µ( ) µ( ) − µ( ) ( )[ ]2 2 2 21 1 1I r K r I r S

and µ0 = π/4. Note that ξ(µ) is the probability that a re-
flected photon exits the paper through a nonink region
after entering through an inked region.

Figure 4 shows Pii versus µ for several ρ  and Fig. 5 shows
Pii as a function of ρ  for several µ. In the figures, ρ  is in
units of r. As indicated by the curves in Fig. 5 and as can
be shown by Eq. 16, if ρ  >> r, then Pii ≈ µ. This corre-
sponds to the case of “complete scattering”.1 Figure 6 shows
the first and second terms in Pii separately (as a function
of µ) for ρ  = 1.5. Curve (a) is the probability that the light
exits through the incident dot, (b) is the probability it ex-
its through the other dots, and (c) is the sum of (a) and (b).
For convenience, we have set the paper reflectance equal
to unity in all the figures.

FM Halftone Screen
In this section we calculate the ink-ink probability for

an FM halftone screen. In such a method, all the dots have
the same size and are square with dot area equal to a cell
area and the number (or frequency) of dots is varied. There
are a number of techniques for determining the exact place-
ment of the dots.8 The calculation done here is general in

Figure 4. The value Pii as a function of µ for various ρ . (a) ρ  =
0.2r, (b) ρ  = 1.0r, (c) ρ  = 2.0r, and (d) ρ  = 6.0r.

Figure 5. The value Pii as a function of  ρ  for (a) µ = 0.1, (b) µ =
0.4, (c) µ = 0.6, and (d) µ = 0.9.
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that our final result depends only on the average number
of dots within a given region; we assume that within a
region of constant tone, the dots are uniformly distributed.
For ease in notation we assume the paper reflectance Rp

is unity; for Rp < 1, the final expression for Pii is multiplied
by Rp.

We assume the dots are potentially located on a square
grid array with period r. The dots are labeled by their co-
ordinates n, m, with the photons entering the paper
through the n = 0, m = 0 dot. We define Pnm as the prob-
ability that a photon having entered the paper through
the dot 0, 0 exits the paper through the dot n, m. We also
define the stochastic variable pnm as:

  
p

m n

m nnm =




1, ,

,

if thereisadotat

0, if thereisnodotat  (20)

subject to the constraint:

lim ' ,
, /

/

N n m N

N

nmN
p

→∞ =−
∑ = µ1

2
2

2

 (21)

where the ′ on Σ indicates that the n = m = 0 term is ex-
cluded from the sum (p00 ≡  1) and µ is the fractional ink
coverage. The left side of Eq. 21 is the average pnm so that:

<pnm> = µ  (22)

(excepting the n = m = 0 term).
The ink–ink probability is obtained by first summing the

probability that a photon exits the paper through the n, m
cell, Pnm , over all cells that contain a dot (pnm = 1), then aver-
aging over all realizations of the pnm consistent with Eq. 21:

    
P p P p Pii nm nm

nm
nm nm

nm
= =∑ ∑ .  (23)

For a uniform distribution, the average over all possible
realizations of the pnm is equivalent to the average defined
by the left side of Eq. 21, so one can write:

    
P P P Pii nm

nm
= µ −









 +∑ 00 00.  (24)

As we assume Rp = 1, the sum is unity:

    
Pnm

nm
=∑ 1,  (25)

Figure 6. Comparision of the first and second terms of Eq. 16
with ρ = 1.5r. (a) Probability that photon exits incident dot. (b)
Probability that photon exits any of the other dots. (c) Total prob-
ability that photon exits a dot, sum of (a) and (b).
Rogers



which simply states that the number of photons is con-
served. The probability that the photons exit the same dot
as that through which they entered the paper, P00 , is given
by Eq. 12 (where we approximate the square dot with a
circular dot with area equal to cell area) with d = r/√π, so
the ink–ink probability is:

Pii = 1 – (1 – µ)χ, (26)

with:

    
χ π ρ π ρ= ( ) ( )2 2 21 1K r I r/ / .  (27)

Unlike with the AM halftone screen, the probability here
is linear with µ for all   ρ.  The Pii is shown as a function of
µ for several different ρ  in Fig. 7, and as a function of ρ
for several different µ in Fig. 8. For ρ  >> r, the AM Pii(µ) is
equal to the FM Pii(µ).

Note that χ is the probability that a photon having en-
tered the paper through a dot exits the paper outside the
dot. The different terms of Pii can be interpreted by writ-
ing Eq. 26 as Pii  = 1 – χ + µχ. In other words: [the prob-
ability that the photon exits through a dot (Pii)] =  [the
probability it exits within the dot through which it en-
tered the paper (1 – χ)] + [the probability there is a dot
located at an arbitrary point (µ)] × [the probability the
photon exits the paper outside the dot through which it
entered (χ)].

Ink–Ink Probability for Diffusion PSF
The MTF of the diffusion point spread function is:1

    

˜ ( )
/

( / )
,H k

R
q

ktp n

n n

n

=
+=

∞

∑1

1 21

2

2

σ
π σ  (28)

where qn and σn are defined in Ref. 1 and t is the paper’s
thickness. The paper’s reflectance is:

    
R qp

n
n n= ∑ / ,σ 2

and the lateral scattering length is:

    
ρ π σ= ∑t

R
q

p n
n n2

3/ .

The diffusion ink–ink probability for AM screening has
the same form as Eq.19 with ξ(µ) given by:

Figure 7. The value FM Pii as a function of µ for (a) ρ  = 0.2r, (b)
ρ  = 1.0r, (c) ρ  = 2.0r, and (d) ρ  = 6.0r.
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ξ

σ
πσ πσ πσ

( )

/ / / / / / ,

µ =

µ( ) µ( ) − µ( )[ ]
=

∞

∑2

1
2 1 1 1R

q
I r t K r t I r t S

p n

n

n
n n n n

were Sn is given by:

    
S p K x tn

k
k n k=

=

∞

∑
1

0 ( / ).σ

For FM halftone screening, Pii has the same form as Eq.
26 with χ given by:

    
χ

σ
πσ πσ= ( ) ( )

=

∞

∑2

1
2 1 1R

q
I r t K r t

p n

n

n
n n/ / / / .  (30)

Conclusion
In this article, we explicitly calculate the probability that

a photon exits the paper through an inked region after
originally entering the paper through an inked region, and
we obtain a simple closed-form expression. This conditional
probability completely contains the effects of optical dot
gain; i.e., knowledge of this probability allows one to ac-
count for the effects of optical dot gain in a halftone print
completely. We calculate the probability for both AM and
FM halftone screening.

The results reported here also allow a simple calcula-
tion of the Z that appear in the theory of the multi-ink
halftone image.9
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