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Objective Quality Potential Measures of Natural Color Images

Juha Katajamaki " and Hannu Saarelma*
Helsinki University of Technology, Laboratory of Media Technology, FIN-02015 HUT, Finland

This article deals with estimating the quality of natural color images from the digital image itself, for the purpose of determining
whether the quality is sufficient for printing or displaying at some specified quality level. The problem of measuring simply defined
parameters that correlate reasonably with human perception is discussed. Then an algorithm is described that measures sharpness,
stochastic noise, and the blocking artifact of JPEG compression. The sharpness measure is the maximum of local sharpness, defined as
the maximum gradient at an edge divided by the edge contrast. The algorithm behaves fairly consistently with respect to the amount of
simulated blur and the measure correlates with the subjective sharpness of different images. The output of the stochastic noise algorithm
is an unspecified number of noise levels, each of which is associated with the corresponding mean luminance. The algorithm computes a
gradient image using the Sobel filters and uses the bivariate histogram of gradient and luminance to find the noise levels. The gradient
filters are suitable for estimating the effect of power spectrum on noise visibility, but the discrimination between image details and noise
is only partially solved by this method. The blocking artifact measure describes a characteristic spikiness in the histogram of the Sobel

gradient.
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Introduction

The study reported here belongs to a framework to de-
velop source and device independent and automatic color
image correction.’? The aim of this framework is to gener-
ate algorithms and systems making it possible to print
proper quality pictures from variable quality network origi-
nals without interactive image correction. For automatic
image processing, a classifier telling whether an individual
image needs correction and whether the quality will be
sufficient for the intended printing process is of use. The
former depends on the quality rendition of an image, the
latter on its quality potential. The purpose of this study is
to find out basic principles to measure quality potential
automatically from digital real scene color image signals.

For a digital image signal, the quality potential of a pixel
is, in bits, the bit depth as such. The final quality poten-
tial for an individual image may, however, be reduced due
to reduced dynamic range, increased point spread, or in-
creased noise. The measurement of dynamic range is
straightforward using the gray-level histogram if it is as-
sumed that every natural scene contains both very dark
and very bright regions. This assumption is not strictly
valid; a more sophisticated estimation of dynamic range
is actually an implicit part of the automatic color correc-
tion software developed in our laboratory. This article deals
with other important subquestions, namely, measurement
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of line spread, stochastic noise, and deterministic noise
caused by lossy compression.

Objective measurement of image quality has been the
topic of numerous studies during the past decades. Today
image transmission and lossy coding are very active fields
of image quality research. The objective is to develop meth-
ods to predict the visual difference of an “original” and a
“distorted” image.?¥ Such a method can then be used to
evaluate a compression algorithm, given both the original
and degraded images.

This principle of comparing two images is not applicable
in our case, where only one version of each picture is avail-
able during both the development and application of the
methods. Ahuman observer can judge an image as having
high or low quality without any reference image, so the
question arises whether this is possible for a machine too.
Some inspection of typical images suggests that the hu-
man judgment often involves interpretation at a very high
level. For example, one expects an image area represent-
ing grass to be “rough,” so it is not judged noisy, whereas
roughness in a region interpreted as sky is an indication
of noisiness.

What are the design criteria of objective quality measure-
ment? The most ambitious goal is that the results should
correspond to the judgment of an “average” human observer.
It is very difficult to define the average observer. Moreover,
the assessment of visual quality requires knowledge of the
way in which the digital code values are transformed into a
physical light distribution. In the framework of quality po-
tential measurement the final device is not known, instead
one of the goals is deciding for which purposes the image is
sufficiently good. The picture may also undergo some digi-
tal manipulations after the quality measurement; for in-
stance, sharpening and tone rendering can affect the
visibility of noise considerably. Hence we cannot adopt a



completely visual approach, instead, in this article re-
peatability is considered the main motivation of objec-
tive measurement.

The objectiveness of quality measurement is highest
when the measured quantities are purely physical param-
eters, such as the line spread function (equivalently, the
optical transfer function or OTF) and noise. Line spread
is closely related to the subjective notion of “sharpness,”
while (stochastic) noise roughly corresponds to subjective
“graininess.” For example, the OTF can be estimated from
a “knife edge” image’ (for a nonlinear process this can be
regarded as a possible definition of OTF). Similarly, the
noise power spectrum can be measured from a test patch
intended to be uniform. One can therefore try to general-
ize the measurement of physical parameters to real im-
ages assuming that every natural scene contains both
sharp edge-like features and uniform regions.

Due to the complexity of real images, the physical prop-
erties cannot be measured accurately. Then modeling en-
ters the picture and the problem reduces to estimating a
small number of parameters instead of a whole OTF or
noise spectrum. This is the approach of Kayargadde and
Martens,? 1% who divide the task into two phases: first
develop a method to estimate the physical model pa-
rameters, then use models of vision to convert the pa-
rameters to perceptual quality indices. This separation
has flexibility as its advantage: the visual modeling in the
latter phase can be altered or omitted altogether depend-
ing on the application.

It is likely that the model assumptions are not valid in
some cases. Moreover it is well known that even if the
physical parameters could be measured, they would not
necessarily predict perceptual quality well. This would
favor the perceptual approach over the physical one, but
the arguments in the above paragraphs suggest the con-
trary view. The perceptual effects may also be very diffi-
cult to model. Some of them, such as masking of noise by
image structure,’% occur at a rather low level in the visual
system, while others, such as the dependence of optimal
sharpness on image content!! involve high- level mental
processes. Nevertheless, the methods should desirably be
such that they, even though based on physical parameters,
give results that correlate positively with human percep-
tion whenever the employed model is not valid.

The methods of this article lie somewhere between the
physical and perceptual approaches. The main objective
is to find algorithms that measure some simply defined
quality parameters and are fast enough to be run on a
regular computer. Proper consideration of the filtering in
low-level vision is regarded desirable, but no attempt has
been made so far toward the modeling of masking effects
or image interpretation.

Background and Principles of the Methods

Sharpness. The term “sharpness” means here the aspect
of image quality related to small line spread, while “blur”
refers to the opposite of sharpness. (We do not deal with
“tangential” sharpness, the opposite of which is “ragged-
ness”.) Some authors use the word “acutance.” The mea-
surement of sharpness has been studied extensively. On
the one hand there is the vast literature on adaptive en-
hancement filters, all of which must implicitly do some
kind of sharpness estimation. The problem is referred to
as “blind deconvolution.” On the other hand, many mea-
sures aim to relate known properties of the imaging sys-
tem to the perceived sharpness.!? Finally, there are the
image fidelity measures mentioned in the Introduction. A
brief review of the various methods has been given by
Rangayyan and Elkadiki.®
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Some techniques estimate sharpness using the spec-
trum.'41 Other methods work in the spatial domain and
resemble ours.?1316 The common principle of these latter
methods as well as ours is to locate the edge areas in an
image, compute some kind of local sharpness values at
the edges, and combine the results to obtain a global sharp-
ness value.

In the method of Inoue and Tajima,'® the local sharp-
ness is the absolute value of a band-pass filtered image.
The edge areas are extracted by thresholding the Sobel
gradient, and the global sharpness is the average of the
local sharpness over the edge area. The intended applica-
tion of this method is to tell which artificially sharpened
version of an image is optimal when the amount of sharp-
ening is varied. Thus it is unclear how well the method
would measure the visual sharpness of arbitrary images.
The authors do not explain in detail how the thresholding
of gradient is accomplished, even though this seems a cru-
cial point.

The method of Rangayyan and Elkadiki!® has been
shown to give good results with respect to visual sharp-
ness,!” but the published tests have been conducted on
very simple images only. The image is assumed to consist
of “object” and “background” regions, and the algorithm
locates the edges between them. The local sharpness mea-
sure is computed by forming several discrete approxima-
tions of gradient in the direction of the edge normal and
taking the average of the results. The global acutance
measure is obtained as the root mean squared value of
the local values. The objective of the authors is somewhat
different from ours: not classification of individual images
but rather evaluation of imaging devices or image process-
ing operations.

The objectives of Kayargadde and Martens®!° match ours
in the sense that natural images with only one sample per
scene are being measured. Their overall approach is to
first estimate the physical blur and then relate this to per-
ceived blur. The method to measure the physical blur mod-
els the blurring kernel as a rotationally symmetric
Gaussian, whose only parameter is its width. The method
is an application of the theory of polynomial transforms,
which are essentially filter banks consisting of Gaussian
derivatives of all orders. By analyzing certain components
of the transform, the locally edge-like features are detected,
and a further analysis involving up to third-order deriva-
tives gives the local edge parameters, one of which is the
width of the blurring kernel. Assuming the blur is uni-
form over the image, the global blur value is obtained as
the value that minimizes a weighted mean squared error.
The authors do not present a method to obtain the global
value when the blur is nonuniform. Finally, the physical
blur parameter is converted to a perceptual blur index by
a nonlinear transformation.

According to the present authors’ experience based on
hundreds of images, nonuniformity of blur is rather com-
mon. Some parts of the scene are better focused than oth-
ers due to limitations of the camera optics or the
photographer’s intent to record depth information. Assum-
ing that the best focused region is the basis for quality
judgment, one should concentrate on the maximally sharp
regions within an image.

The local sharpness measure we use is simply the maxi-
mum edge gradient divided by the total edge height. If the
shape of the line spread function is fixed except for the
spread width, then the measure in question is inversely
proportional to the width. In this respect the method cor-
responds to the blur parameter estimation of Kayargadde
and Martens.®!0 If, however, the shape is not fixed but we
take the more general (and realistic) assumption that the
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line spread function is smooth and symmetric and attains
its maximum value at zero, then the measure is directly
proportional to the value at zero, which, in turn, is (to a
constant factor) equal to the integral of the OTF (which is
real and symmetric). The preceding discussion was one
dimensional with the implicit assumption that the two-
dimensional OTF is rotationally invariant. If this assump-
tion holds, it follows from well-known properties of the
Fourier transform that the sharpness measure is propor-
tional to the integral of the OTF cross section along any
line that passes through the origin.

A conventional method to measure sharpness is to inte-
grate the modulation transfer function (MTF), which is
the absolute value of the OTF, possibly weighted by some
function modeling the frequency sensitivity of the eye.!218
Hence our method, apart from the weighting, is equiva-
lent to the MTF method if the OTF does not change sign.
In the current implementation visual weighting is not used
but some low-pass-type weighting will in fact occur due to
the finite resolution.

The measurement of normalized maximum gradient is
not new in itself; it has been used, e.g., by Lourens, Du
Toit, and Du Toit, but it is unclear from their study how
the normalization is actually done with real images. Other
measures have been proposed to predict perceptual sharp-
ness better. One of these is the acutance as defined by
Higgins and Jones and reviewed by Rangayyan and
Elkadiki.!® In the frequency domain it is equivalent to the
integral of the squared MTF multiplied by the edge height,
so edges of high contrast get a higher sharpness than edges
of low contrast. In spite of this and similar models we use
the above-mentioned measure because no general agree-
ment exists on which model is the best.

Measurement of the edge gradient as well as the edge
height requires extraction of the edge locations, which is
commonly done as a separate step.®!® In the method pre-
sented here, a very rough edge detection stage based on
thresholding of gradient is only performed to find the ini-
tial edge candidates. The subsequent algorithm simulta-
neously examines the candidates to extract edge pixels and
measures the local sharpness at these pixels.

Stochastic Noise. In this subsection we only deal with
noise that is isotropic and at least locally stationary.

Estimation of noise is an essential part of adaptive im-
age enhancement algorithms, where a tradeoff must be
made between enhancing the details and suppressing the
noise. The design of such algorithms is, however, directed
at optimal quality of the final image and the algorithm
may be robust with respect to the estimated value, so the
noise estimation may have little to do with the original
visual quality. Segmentation and machine vision are other
fields where noise estimation is needed.?*?! Many authors
have, though, discussed the noise estimation as a sepa-
rate problem.%2??-2¢ A comparison of some methods has been
made by Olsen.?

The common assumption, because of its mathematical
simplicity, is that the noise is additive with zero mean,
Gaussian, and spatially uncorrelated (white). The combi-
nation of additive and multiplicative noise, the latter aris-
ing from the Poisson statistics of photons, is discussed by
Lee and Hoppel?? as well as Briigelmann and Forstner.?!
The method of Kayargadde and Martens®!? measures both
the variance and the correlation length of noise by model-
ing the noise as a Gaussian random process with Gaussian
power spectrum.

In the case of noise the properties of an analog device
are particularly important. The visibility of noise is af-
fected by the resolution in angular units, and this depends
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both on the pixel frequency of the device and the viewing
distance. Although noise can be “white” in the discrete do-
main, it will always have some finite bandwidth when the
image is reproduced on a device for human viewing. Tone
reproduction is another crucial issue; for example, a dark
region is perceived noisier than a bright region when the
noise variances in luminance units are equal.

The simplest objective measure of white noise is some
first-order statistic such as the variance. To measure the
variance from real images, the image structure must, how-
ever, be suppressed by appropriate filtering. By analyzing
the histogram of the filtered image, the variance can be
estimated. For instance, the magnitude of the gradient of
Gaussian white noise follows a Rayleigh distribution?20-%
whose variance parameter can be estimated from the gra-
dient histogram of a real image by curve fitting, assuming
the image contains sufficiently large homogeneous regions.

However, in practice the noise power spectrum varies
from image to image, and with typical image resolutions
this variation occurs even within the bandwidth of the hu-
man eye. Methods that employ some filter to measure
white noise actually measure the variance of the filtered
noise, so the methods may behave incorrectly in regard to
perceptual noise when the whiteness assumption does not
hold. This is the case, for example, with the high-pass-
type filter proposed by Immerkeer,?* although this filter is
able to eliminate the image structure very efficiently and
hence produce an accurate estimate when the noise is
white. Two approaches are possible to measure percep-
tual noisiness correctly. One approach, used, e.g., by
Kayargadde and Martens,”! is to first estimate the pa-
rameters of a modeled noise spectrum and then calculate
a perceptual noisiness index from the knowledge of the
spectrum. The other approach, which is adopted in this
article, is to use a filter that mimics the response of the
eye in such a way that the standard deviation of the fil-
tered image directly corresponds to perceptual noisiness.

In digitized natural images, noise level often varies be-
tween different spatial regions, especially between areas
of different brightness. This may be a characteristic of film
or scanner or it can result from nonlinear tone reproduc-
tion that amplifies noise at some gray levels and sup-
presses it elsewhere. Unfortunately, not even the
multiplicative noise model?'?? is adequate. For instance,
the noise level may be low (or even zero, due to out-of-
gamut clipping) in the dark as well as bright regions but
higher at the midtones.

Thus the histogram of the filtered image may not be
unimodal, as demonstrated in Fig. 1. One can, however,
assume that each distinct peak in the histogram corre-
sponds to either the noise in a large homogeneous region
or to a textured region. The discrimination between noise
and texture is a nontrivial subject as such, and although
various approaches are available, the grass versus sky ex-
ample in the Introduction suggests that the solution is
not straightforward. At present our noise estimation
method does not recognize the texture in any sophisticated
way. Instead it analyses the peaks in the histogram of a
filtered image and, on the basis of both the absolute and
relative positions of the peaks, it tries to decide which of
them are likely to have arisen from noise. The main prob-
lem then is that to prevent texture from being misinter-
preted as noise, the peaks with lowest position should only
be accepted, but at the same time the method should be
able to identify the highest noise levels present in the
image, because they are usually significant for overall
quality.

One could think of taking, e.g., the maximal detected
noise level as an overall measure of noisiness. However,
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Figure 1. (a) An example of nonunimodal gradient histogram.
The histogram has been computed from the magnitude of the
gradient defined by the Sobel filters. (b) The bivariate histogram
of gradient and luminance reveals that the noise level depends
on the luminance. The image contains an almost black region of
practically zero noise and a gray and a white region with ap-
proximately equal noise levels.

the question is complicated by the fact that the visibility of
noise depends considerably on local color, especially on light-
ness. Thus, unless the final color reproduction is exactly
known, it cannot be determined which of the noise levels
will be visually maximal. But it is still possible to mea-
sure the local color of noisy regions and save it to be used
at a later stage where the color reproduction, and hence
the correct weight for the noise visibility, will be known.

Consequently, the goal of our noise measurement method

is not a single noise index, but a set of noise levels, each of

which is associated with the corresponding mean color.

Currently the method only measures the noise of the
luminance component of a color image, and the associated
local mean also includes the luminance only. Strictly speak-
ing, this is not enough to predict perceptual noisiness, but
this is one of the points where simplicity is favored over
accuracy. In practice the luminance noise is often domi-
nant both physically and perceptually and the mean color
of large homogeneous regions is frequently close to a neu-
tral gray.

In view of the above discussion, we prefer the “visual”
filtering approach over the spectral parameter estimation
approach, because it would be complicated to first iden-
tify every distinct noise level and then estimate the pa-
rameters separately for each. Hence, the main parts of
the method are the following:

1. Extract the luminance component of the color image
and process it with a filter that approximates the fre-
quency response of the human eye.

2. Analyze the joint statistics of the luminance image and
the filtered image in order to identify the noise levels
and the mean luminances of significant homogeneous
regions, while excluding textured areas.
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Figure 2. Comparison of the magnitude response of the Sobel
filter and a model for the visual transfer function (VTF). The
horizontal Sobel filter has response H(f,.f,) = —4 sin(nf,/f})
(1+cos(nf,/fy)), where fy, is the Nyquist frequency. The VTF is de-
fined according to Ref. 27 as 5.05exp(-0.138u) (1-exp(-0.1u)),
where u is the spatial frequency in cycle/degree. Part (a) shows
the cross section of | H/8| with f, = 0 and 0 <f, <fy and the VTF
evaluated at viewing distance 35 cm and resolution 100 pixel/
inch. Part (b) is an image of | H| over the frequency plane.

To select an optimal visual filter, the image resolution,
viewing distance, and the OTF of the display device should
be fixed. Because this cannot be done in a standardized
way and because no standardized model exists for the vi-
sual transfer function (VTF), we simply use the Sobel gra-
dient?¢ defined as

1 -1 0 1 -1 -2 -1
G= (8. *Ll+|s,*Lf) s.=|-2 0 2| S,=f0 0 0| q
101 1

where L denotes the luminance image. The main reasons
for using this filter are computational efficiency and the
fact that the gradient can be utilized in other ways in qual-
ity measurement (cf. Fig. 5). Nevertheless, the magnitude
of the Sobel filters in the frequency domain is a reason-
able approximation to the visual transfer function at least
for low resolutions, as shown in Fig. 2. The preferred orien-
tation of the Sobel filters has no perceptual justification, but
under the assumption of noise isotropicity the angular be-
havior is not as important as the radial behavior.
Because of the possibility of noise nonuniformity, we do
not use any parametric model for the histogram of the
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Figure 3. Effect of JPEG compression on the histogram of Sobel gradient (Eq. 1). The lower part of the histograms is only shown. (a)
Uncompressed image. (b) Compressed image with moderate compression ratio. (c) Compressed image with high compression ratio.

gradient image. After the gradient image has been com-
puted, it is smoothed. The smoothing reduces the vari-
ance of the gradient in homogeneous regions, making
multiple peaks in the histogram of the gradient more dis-
cernible from each other and facilitating their separation
from signal gradients. Because the smoothing also reduces
the skewness of the peaks, the position of a peak after
smoothing will be approximately equal to the mean abso-
lute Sobel gradient (either horizontal or vertical) over a
homogeneous area. (This mean value is also approxi-
mately proportional to the standard deviation of gradi-
ent, because the Sobel filter output of noise can be
assumed nearly Gaussian; more specifically, the mean of
the absolute value of a Gaussian variable is 2/ times
the standard deviation.)

The luminance image is also smoothed. Then the bivari-
ate histogram of the luminance and the gradient images
is constructed. The 2-D locations of pronounced peaks in
this histogram are found and recorded as representing the
potential noise levels of the image with their associated
local luminances. This sequence of peaks is further ana-
lyzed to exclude those likely to have arisen from texture.
The algorithm is based on the assumption that if there
are several peaks with approximately equal luminance
values, then only the one with the lowest gradient is likely
to represent noise. This assumption is a necessary tradeoff,
but of course it is not always valid, because regions of the
same luminance but different color may have different
noise levels. The method of Lee and Hoppel?? is similar in
that it utilizes the joint distribution (scattergram instead
of histogram) of local mean and local variance, but the
dependence of the variance on the mean is assumed a com-
bination of multiplicative and additive noise.
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Coding Artifacts. In images from digital sources, deter-
ministic noise due to lossy coding can be a very significant
factor of quality. The block discrete cosine transform
(BDCT), while not being the best coding method visually,
is widely used because of the JPEG compression standard.
Images coded with low bit rate BDCT have a typical blocky
appearance. A lot of research has been done to measure
objectively the image quality by comparing the uncom-
pressed and reconstructed images. There are also pub-
lished methods to estimate the strength of the “blocking
artifact” from the reconstructed image only.?82°

In the general framework of this article it not necessar-
ily known whether a digital image has been compressed
at some stage in its history. It is important to be able to
recognize BDCT coded images, because the unusual sta-
tistics of such images may cause a systematic error in the
sharpness and noise measurement algorithms. A strong
compression artifact is an indication of poor quality as such
and detection of it allows the other quality measurements
to be interpreted correctly or even omitted. We do not elabo-
rate on visual models to estimate the blockiness, but we
present a very simple method that is a by-product of the
other quality estimation procedures, namely, a method
based on the histogram of the Sobel gradient.

Figure 3 shows how the histogram of gradient defined
by Eq. 1 changes as the bit rate of the JPEG compression
is reduced. The color image has 24 bits per pixel and the
gradient has been computed from the luminance compo-
nent. It is seen that even values of the gradient domi-
nate over odd values the lower the bit rate is, especially
at low gradients. (It is easy to show that with integral
pixel values the gradient values are always integers de-
spite the division by two in Eq. 1.) This phenomenon can
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Figure 4. Examples of bit blocks of size 3 x 3 invariant in either
horizontal or vertical direction. These occur with large frequen-
cies in highly compressed images. The output of the gradient fil-
ter (Eq. 1) is even for all of these.

be explained by examining how the least significant bit
(LSB) of the gradient value depends on the local 3 x 3
block covered by the filter masks. First of all, the LSB of
the gradient can be shown to depend on the LSBs of the
pixels only. There are 2° = 512 possible combinations of
the bits, and one can construct a 512-bin histogram by
counting the number of occurrences of each combination
over the whole image. For a typical uncompressed image

Color image (RGB)

I

Luminance image Gradient image

A 4

each combination will occur with practically equal fre-
quency, provided that there is no completely noiseless
area. For a JPEG compressed image, however, “one-di-
mensional” bit configurations such as those in Fig. 4 are
more frequent than others. This results probably both
from the block structure and the fact that oblique spa-
tial frequencies are quantized to a smaller number of bits
than horizontal and vertical ones.

Therefore, to detect the BDCT artifact, the histogram
of gradient is analyzed to calculate an index describing
the amount of disproportion between even and odd val-
ues. So the method does not measure any visible artifact
directly, but assumes that in practice this kind of phenom-
enon is an indication of some kind of quality degradation.
Note that the method, unlike methods designed specifi-
cally for JPEG, is applicable even to images resized after
reconstruction.

The method by Datcu?® is similar, but it is based on the
“spikiness” of gray level instead of gradient histograms.
However, spikiness in the Sobel gradient seems more eas-
ily detectable in complex images. Of course, no fundamen-
tal reason exists to use the Sobel filters. For example, the
above-mentioned histogram of LSB configurations could
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be used; it would actually reveal some other types of cod-
ing artifacts as well.

Quality Measurement Algorithms

Overall Structure. Figure 5 is a diagram of the overall
algorithm, showing the auxiliary images and histograms
common to the measurements. First the luminance com-
ponent of an RGB image is computed by

L=kR +k,G+ kB (kp+kg+ky=1) (2)

and all subsequent processing is done for the luminance
image. The gradient image is computed according to Eq. 1
and its histogram is constructed. This histogram itself is
the input to the coding artifact measurement. The noise
measurement uses the gradient image and its histogram
to exclude strong gradients, and the sharpness measure-
ment uses them to select the potential edges.

The noise algorithm is executed last so that the smoothed
gradient image used in the noise algorithm can replace
the original gradient buffer. The sharpness algorithm
smooths the luminance image to suppress noise, overwrit-
ing the original luminance buffer. This same smoothed
image together with the smoothed gradient image is used
by the noise algorithm to construct the 2-D histogram, in
which the noise levels with associated gray levels are
looked for. The sharpness algorithm produces an image
representing the local sharpness values, and the histogram
of this image after postprocessing serves as the basis for
the global sharpness index.

All the auxiliary images have a precision of 8 bits.

The principles of the algorithms were already discussed
in the previous section. The following subsections will give
more detailed descriptions of the nonobvious computations
in Fig. 5.

Smoothing of the Luminance Image. The method to
smooth the luminance image is aimed at the suppression
of noise in the sharpness measurement, although for effi-
ciency the same image is used in the noise measurement
as well. Because we prefer methods that are simple to imple-
ment, a combination of median filtering and binomial low-
pass filtering is used. The problem with noise is twofold: first,
noise may ruin the operation of the edge analysis algo-
rithm (see below), and second, noise increases the vari-
ance of the local sharpness values, thus increasing the
maximum sharpness which is our interest. For sharp
edges, where the luminance transition occurs practically
within one pixel, median filtering suffices. For blurred
edges median filtering does not adequately suppress noise
over the whole edge zone, which is several pixels wide. There-
fore the histogram of gradient is used to obtain a prelimi-
nary sharpness estimate. For high values of this estimate
only median filtering is used and for low values only low-
pass filtering is used. In the intermediate range a smooth
transition is made by taking a weighted combination of
the original and median filtered image and by varying the
size of the low-pass mask. Whenever low-pass filtering is
performed, it is necessary to correct the bias caused in the
sharpness values. This is done by modeling the original
blurring kernel as Gaussian with spread parameter b:

1 O x2+y2D
K, (x,y) = ———expr——32—
oY = o OPH T22 H 3

The binomial filtering is also a discrete approximation
to Gaussian blurring with some spread parameter b,,. The
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spread parameters of repeated Gaussian blurring combine
in a “root of sum of squares” manner. Hence an estimate
for the original blur, given the estimate 5, obtained from
the filtered image, is

b=\b62-b2, 4)

and the corresponding sharpness estimate is the inverse
of this value. But this low-pass method with correction
would not be applicable to very sharp images, because it
assumes the resulting measured blur is greater than the
blur of the filter, which might not be the case in practice.

The implementation of the median filtering is based on
updating the histogram of the pixels in a gliding window,
which is considerably more efficient than a straightfor-
ward method. The binomial filter is also very efficient,
because it is separable and can be implemented using ad-
ditions followed by a shift operation.

Edge Analysis for Local Sharpness. As stated in the
Background and Principles Section, the quantity to be mea-
sured is

FE

local sharpness = \/Gf +Gy2 /H, (5)

where G, and G, are the components of the gradient at an
edge and H is the total height of the edge. To apply Eq. 5
we need to find those locations in an image that are really
“edges” and not “lines” or “points.” We assume that the edge
is sufficiently straight locally and that the cross section
and its second derivative have the qualitative shape shown
in Fig. 6. Let the cross section be denoted by flx) and let a
point x, be fixed. The decision whether x, is an edge point
is done by evaluating the difference function

D(s) =|f(xg +5) = f(xg = s)| (6)

for values of s ranging from zero to an upper limit s .

The following is true when the model of Fig. 6 is valid:

1. D is a monotonically increasing function of s for every
fixed x,. The value D tends to H as s — oo.

2. Thereis a distance a, such that when the distance from
x, to the edge center is smaller than a,, then D is a

f(x)

£(x)

Figure 6. Assumed shape of an edge cross section and of its sec-
ond derivative. See text for explanation of the symbols.
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(b)

Figure 7. (a) Part of a luminance image. (b) The corresponding sharpness image, where brightness is proportional to sharpness. Note

that there are both sharp and blurred edges.

concave function of s, i.e., 02D/0s? is negative. This is
seen from Fig. 6 by noting that 02D/0s? is equal to
—If(xy+8)—f"(x,—s)|. For example, a, can be defined
as a,/2, where a, is the position of the extremum of f”.

3. Thereis a distance a, such that when the distance from
x, to the edge center is at least a,, there exist values of s
where D is not concave. For example, let a, =, + € with
€ positive; then 92D/0s? is positive whenever 0 < s < €.

These properties are applied pixel by pixel. The direc-
tion for evaluating D in the neighborhood of a given pixel
must first be determined. To simplify the implementation,
one of four directions, namely, the horizontal, vertical, and
the two diagonal directions, is selected on the basis of lo-
cal gradient. Then D is evaluated for several values of s
starting at zero. If D turns out not to be monotonic or con-
cave at some value of s, it is known by properties 1 and 2
that the current pixel cannot be an edge point. But if D is
monotonic and concave for every s, the current pixel is
accepted as an edge point. For the accepted pixels, the
latest computed value of D is taken as an estimate for the
height H, and using this with the gradient at x,, the local
sharpness estimate is computed from Eq. 5. According to
property 2, the edge area detected in this way contains a
narrow zone with width roughly proportional to the line
spread. But property 3 guarantees that the accepted area
is not too large. Having an edge zone instead of edge line
causes no problems, because the maximal sharpness over
an image is only of interest. The sharpness is locally maxi-
mal at the precise edge location, because the numerator
of (5) is highest there while the denominator H is approxi-
mately constant over the zone.

Objective Quality Potential Measures of Natural Color Images

In reality the monotonicity and concavity conditions
must be relaxed because of noise; they are only required
to hold to a certain tolerance. To reduce the possibility of
false edge detection there is also a lower limit on the ac-
ceptable values of H. The parameter s_,, is large enough
to allow the correct measurement of H even for the least
sharp edges occurring in practice.

To store the local sharpness image with 8 bits, the sharp-
ness values from Eq. 5 are multiplied by 100 and the non-
edge pixels are marked with zeros. When the edge profile
approaches a step function, the sharpness saturates to 100,
because the resolution imposes an upper limit on the dis-
crete gradient. This corresponds to low-pass filtering of
an analog image before the sharpness estimation, so the
method is qualitatively consistent with the corresponding
filtering effect of the eye. Due to the tolerance mentioned
in the preceding paragraph, the method also has capabil-
ity of measuring “overshoot” edges, which are common in,
e.g., artificially sharpened images. The larger sharpness
value obtained for overshoot edges is consistent with per-
ceptual sharpness as well. (For very sharp edges with over-
shoot the local sharpness can be even greater than 100.)

To speed up the algorithm it is not run for every pixel, but
candidates for edge pixels are first selected by taking a fixed
percentile from the high end of the gradient distribution.
Because the maximum gradient at an edge depends not only
on the line spread but on the edge height as well, some edges
of interest may be missed with this method. However, for
most practical images enough edges are included.

Postprocessing of the Sharpness Image. The monoto-
nicity and convexity properties of the function D discussed

Vol. 42, No. 3, May/June 1998 257



in the previous subsection are only necessary, not suffi-
cient, conditions for the presence of an edge. For example,
if any function that is symmetric with respect to x, is added
to f, the values of D are not altered. Because of this and
the required relaxation of the conditions, there will usu-
ally be some pixels misinterpreted as edges. These are of-
ten scattered over the image and in the current
implementation they are removed by finding the connected
regions among all pixels that were accepted as edges, and
deleting very small regions.

Figure 7 shows a portion of an image and the correspond-
ing sharpness image.

Determination of Global Sharpness. According to the
discussion in the second section of this report, global sharp-
ness is defined as the maximal local sharpness. In practice
the strict maximum would be too nonrobust, so a fixed per-
centile from the high end of the local sharpness histogram is
used instead. The percentile is calculated over the edge pix-
els only (i.e., the nonzeros in the sharpness image).

Smoothing of the Gradient Image. The smoothing of
the gradient required in the noise measurement is basi-
cally spatial averaging over a small area. The area should
be as large as possible, but simple averaging over a large
area would result in “spreading” of strong edge gradients,
causing the reduction of homogeneous regions, which may
already be small in some images. To prevent this, a bi-
nary mask image is first constructed to separate very
strong edges from other regions. The binary image is ini-
tially created by thresholding the unsmoothed gradient,
and is subsequently “cleaned” by median filtering. The
threshold selection currently utilizes the histogram of the
gradient only. It first transforms the histogram frequen-
cies by a nonlinear function that lowers large frequencies
in relation to small frequencies and then computes a “per-
centile” from the transformed histogram.

The spatial averaging is performed using a fixed size
square window, but the average is calculated over only
those pixels in the window that were not marked as edges
in the binary image. At the same time the edge pixels in
the output image are marked with value 255 so that the
gradient/luminance histogram can be computed over the
whole image without disturbing the analysis of peaks. In
this method of smoothing, spreading can still occur be-
tween two homogeneous regions of different mean gradi-
ents and separated by an edge, if the width of the edge is
smaller than the window size, but in practice this effect is
much smaller than the spreading of the edge gradient.

The smoothing operation allows very efficient implemen-
tation, in which the sum over the nonedge pixels and the
number of them within the averaging window is updated
as the window glides over the image.

Detection of Peaks Representing Noise in the Gra-
dient/Luminance Histogram. The task is to analyze the
bivariate histogram of smoothed gradient and smoothed
luminance to find peaks likely to have arisen from large
smooth regions and to discard peaks that probably repre-
sent texture. The coordinates of an accepted peak are mea-
sures of the noise level and the mean luminance of the
corresponding region.

The algorithm to find the peaks contains many details and
is still a potential subject for development, so we do not give
a complete description of it. There are two main objectives:
firstly, small gradients should be favored but simulta-
neously the existence of different gradients at different
luminance levels should be recognized; secondly, even
small homogeneous regions should be detected because
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these may be the only possibility of noise measurement
for some images. The structure of the histogram is analyzed
on the basis of the 1-D marginal distributions, but during
the course of the algorithm partial histograms are exam-
ined, which makes it possible to detect weak peaks that
could not be discerned in the global marginal histograms.

After the execution of this algorithm there can still be
some false noise recordings left. Although perfect discrimi-
nation between noise and textures is not possible by this
method, the probability of error can be reduced with rules
that constrain both the absolute and the relative location
of the noise peaks in the gradient/luminance plane. Cur-
rently the following post-processing algorithm is used: The

O *
X
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100

Gray level
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f
200~ %

2501

0 20 40
Gradient

Figure 8. A bivariate histogram of smoothed gradient and
smoothed luminance. The crosses indicate peak candidates that
were accepted as noise. The circle is a peak not accepted because
its gradient value was too different from that of its neighbors.
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Figure 9. Testing of the sharpness algorithm with artificial blur. (a) Synthetic edge image. (b—c) Natural images without and with
added noise. Each curve represents the various versions of a single image.

noise peak candidates are scanned in ascending order of
gradient. If the gradient value is greater than a threshold,
or if it is too large in relation to the gradient of those candi-
dates that are the nearest neighbors along the luminance
axis, the peak is rejected. The rejected peaks are excluded
from all subsequent examination. It is possible that after
this algorithm there no peaks are left, i.e. the image does
not contain any reliable region for noise measurement.

Figure 8 shows a sample 2-D histogram and the accepted
and rejected peak positions.

Calculation of the Compression Artifact Measure.
To describe the disproportion between even and odd gra-
dient values, two indices are first calculated from the his-
togram of the gradient. One of the indices measures the
amount of disproportion and the other the upper limit of
the gradient range where the phenomenon is present.
Each histogram frequency is compared with the inter-
polated frequency obtained as the average of the two im-
mediate neighbors of the current histogram bin. When the
artifact is present, the averaged value is greater than the
actual value at odd gradients and less than the actual value

Objective Quality Potential Measures of Natural Color Images

at even gradients. The histogram is scanned starting from
the low gradient and stopping when the mentioned condi-
tions fail to hold. During the scanning the absolute differ-
ences between the actual and interpolated counts are
summed and this sum, properly normalized, defines the
first of the indices. The gradient value at which the scan-
ning stops is the second index.

The final measure for compression artifacts is a linear
combination of the two indices, with the relative weight
selected optimally according to experimental results.

Performance of the Algorithms. The justification of the
methods described in this article lies mainly in the theo-
retical background discussed in the Background and Prin-
ciples Section. The main purpose of experimental testing is
to find out how nonidealities occurring in real images affect
the measures. There are also some requirements regarding
the perceptual meaningfulness of the measures. Results con-
cerning both of these aspects are presented in this section.

Sharpness. The effect of noise and other nonidealities on
the performance of the sharpness estimation algorithm
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Figure 10. Subjective vs. measured sharpness for four separate sets of 20 different real images.

has been tested both with a synthetic edge image and 10
different natural images. Each image was in 24-bit RGB
format. The edge image had size 128 x 128 and consisted
of two adjacent uniform neutral regions of gray levels 50
and 200 separated by a vertical edge. The natural images
were originally very sharp and their dimensions were
about 400 to 800 pixels.

From each original image, six blurred versions were gen-
erated with increasing amount of blur, and more versions
were generated by adding noise to the original and the
blurred versions. The blurring was performed by filtering
each color channel with a filter that is the separable prod-
uct of 1-D binomial filters of equal radii. The radii used
were 1 to 6 pixels. The filter with radius r is a discrete
approximation to the Gaussian filter in Eq. 3 with

b=Ar/2. (7

The noise was white and Gaussian with standard de-
viation of 5 or 10 gray levels and was added independently
to each channel.

The global sharpness values measured with the algo-
rithm were inverted and scaled by /277 to be expressed
in the same scale as b in Eq. 7. Figure 9 shows this mea-
sured blur versus the approximate true blur computed
from Eq. 7. (Note: because the luminance image is a lin-
ear combination of the RGB channels, it is blurred in the
same way as the channels are.)

The nonzero blur value measured for the unblurred im-
ages is primarily a consequence of the saturation due to
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finite resolution discussed above in the subsection Edge
Analysis for Local Sharpness. Slight overestimation of
sharpness due to noise is present with the synthetic im-
ages, but with the natural images this is overshadowed
by a larger overestimation due to the image structure.
There are also systematic differences between scenes.
These result probably both from slight differences in blur
between the original versions and differences in the ideal-
ity of edge features.

To test the visual reasonableness of the sharpness value
between different images, subjective pair comparison ex-
periments were conducted. Each single experiment was
done with 20 original 24-bit images of different scenes and
of varying quality. There are 20 x 19/ 2 = 190 possible pairs
of the images, and each pair was displayed in random or-
der on a calibrated monitor with a gamma of 1.0 and reso-
lution of about 100 pixel/inch. The subject’s response to each
pair was one of the alternatives “picture 1 sharper,” “pic-
ture 2 sharper,” and “no difference.” The comparison re-
sults were gathered into quality scores, scaled between —1
and 1, which tell the subjective ordering of the 20 images.
The test was executed by two subjects and repeated for sev-
eral picture sets. The results in Fig. 10 show a correlation
between perceptual and measured sharpness but it is not
remarkably high. Because comparison of different images
is very inexact by nature, a perfect correlation cannot be
expected. Nevertheless, the sharpness algorithm still does
have some problems caused by the structure of real images.

Stochastic Noise. Meaningful perceptual scaling of natu-
ral images with respect to noisiness is even more difficult
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TABLE |. Noise Types Used in the Artificial Noise Experiment

Number of noise type

Expression of power spectrum (f,, = Nyquist frequency)

Total standard deviation of noise

1 S(f,.f) = exp((fZ + £3)/20?), 0 = 0.5f, 2,4, 6, and 8 gray levels
2 S(f,1,) = exp((fZ + £2)/20?), 0 = 0.75f, 2,4, 6, and 8 gray levels
3 S(f,.f) = exp((f? + £2)/20?), 0 = 1.0f, 2,4, 6, and 8 gray levels
4 S(f,.f) = @((a + f2 + 1?), a = 0.5f, 2,4, 6, and 8 gray levels
5 S(f1,) = a((a@® + 2 + 1?2), a=0.75f 2,4, 6, and 8 gray levels
6 S(f.f) = @l((a® + £ + 1?), a= 1.0f, 2,4, 6, and 8 gray levels
1 -0,5 - .
& + Noise type 1 X Noise measured with a highpass type filter
>§ O Noise type 2 O Noise measured with the Sobel filters
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Figure 11. (a) Subjective smoothness versus Sobel filter based noise measurement for synthetic gray patches. The numbers refer to
Table I. (b) Comparison of the Sobel filter method and the method of Ref. 24 applied to the encircled samples in part (a).

than the sharpness case. The visibility of noise is very de-
pendent on tone reproduction and viewing conditions, and
even if these were fixed, there may be large variation be-
tween individuals in the relative subjective importance of
various noisy regions. In fact this is one of the reasons for
objective quality measurement. Therefore we do not at-
tempt to examine correlations between measured and sub-
jective noisiness. Instead we present two relevant results
concerning the noise measurement algorithm: first, a veri-
fication of the visual meaningfulness of the filters used
and, second, a test of the ability to separate between noise
and image structure.

To test the visual meaningfulness of noise measurement
using the Sobel filters, uniform 8-bit gray patches of size
128 x 128 pixels and with different types of additive Gaussian
noise were prepared. The mean gray value was 128. Six differ-
ent types of noise power spectrum were used and four in-
stances of each spectrum were created by varying the total
power only. This makes a total of 24 samples, the param-
eters of which are given in Table I. Each image was pro-
cessed according to the noise algorithm described above, with
the exception that the exclusion of edge pixels was omit-
ted as it would not work for completely edgeless images.

The samples were displayed on the same monitor used
in the sharpness test, but with gamma 1.8. To reduce the
influence of the monitor MTF, the images were magnified
to size 512 x 512 and the viewing distance was correspond-
ingly larger than normal, namely, 1.8 m. With this arrange-
ment there were roughly 30 pixels of the original
(unmagnified) image per one degree of the visual field.
The magnification was done by simple pixel replication,
which means that by magnifying the image we wished to
approximate a fictitious “standard” monitor that displays
a single pixel as a square of uniform intensity.

Objective Quality Potential Measures of Natural Color Images

The subjective test was executed by comparing each of
the 276 possible pairs on a three-alternative scale. Only
one subject was used. Figure 11 shows the subjective re-
sults versus the measured noise. The samples are divided
into four groups corresponding to constant total powers
(this was not obvious a priori, though), so the monotonic
relation between groups is not surprising. A more impor-
tant result is the correlation within each group. The sub-
jective noisiness increases as the noise bandwidth is
decreased while keeping the total power constant, which
is in accordance with earlier results.?'© The Sobel filter
approximates this visual effect and, although not optimal,
it is significantly better than a high-pass-type filter such
as that in Ref. 24. Note that the subjective results are not
on a metric scale, so the points are not expected to fall on
a straight line. The subjective results, of course, are only
valid for the particular angular resolution 30 pixel/degree.
This resolution is, however, on a typical range because it
corresponds, e.g., to digital printing at 600 dpi and with a
dithering block of 6 x 6 pixels viewed at 45 cm.

To test the ability of the noise algorithm to detect noisy
regions and discard textured regions, the algorithm was
applied to 187 real images and the resulting noise levels
were checked by visually inspecting both the original im-
ages and the smoothed gradient images used in the algo-
rithm. None of these images were used during the
development of the algorithm. The inspection was done
on a monitor with commercial image editing software,
which has a feature of displaying numerical pixel values
so that the actual noise levels could be identified from the
gradient image. The result of this test is necessarily rather
imprecise because the test is tedious to conduct and be-
cause often no unique way exists to segment the image
into uniform parts. The results in Table II indicate that
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Figure 12. Scatter plot of the compression artifact measure ver-
sus degree of compression. The circles show the average of the
measure at each compression level.

TABLE II. Performance of the Noise Algorithm for Real Images

Result of noise measurement Number of images

(All images) 187
All noise regions recognized correctly 72
One noise region missing 32
Two noise regions missing 9
Three noise regions missing 1

One noise region partially interpreted as edges 8
Two noise regions partially interpreted as edges 2
Three noise regions partially interpreted as edges 1
One false noise region 49
Two false noise regions 17
Three false noise regions 6
Nonzero noise at zero gray level 5

while the algorithm works correctly in many cases, it
should be considerably improved unless relatively simple
images are only used as input. The missing and false noise
levels are mainly due to decision errors in the 2-D histo-
gram analysis, and the partial interpretation of noise re-
gions as edges results from errors in the edge exclusion
technique. The illogical results of nonzero noise with zero
mean gray level are due to certain implementation details.

Coding Artifacts. The algorithm for blocking artifact de-
tection was tested by compressing 170 real 24-bit RGB
images with the baseline JPEG algorithm3® using six
grades of quality. (The uncompressed versions of these
pictures had been utilized previously, together with some
compressed but different pictures, to optimize the param-
eters of the algorithm.) Because the compression was done
with commercial software, the quantization tables and other
details of the compression were not known. It is known, how-
ever, that the compression was performed in a luminance—
chrominance color space and in the three lowest grades the
chrominance was undersampled by a factor of 2.

The blocking measure was computed for each version of
each picture. Because we have not evaluated the subjec-
tive quality of the compressed images, the artifact mea-
sure is only compared against the degree of compression
in Fig. 12. The average of the measured value increases
with increasing compression, except at the weakest com-
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pression levels, but the variance at each compression level
is rather high. Good correlation with subjective quality
would, however, be the most important objective, and al-
though this has not been tested systematically yet, it seems
that among images with a given degree of compression,
those with a low value of the artifact measure are usually
either textured or have a high level of stochastic noise,
while those with a high value contain large smooth areas.
Because the artifacts are less visible in “busy” images than
in smooth images, the artifact measure is expected to cor-
relate somewhat better with subjective quality than with
the technical degree of compression.

Discussion

The remaining problems in the sharpness and noise al-
gorithms are somewhat different by nature. For the sharp-
ness algorithm, potential improvements have mainly to
do with better prediction of subjective quality, but not much
can be done in this direction without exact knowledge of
the picture reproduction. One shortcoming of the sharp-
ness algorithm is that it measures the maximum sharp-
ness without examining where the sharpest parts of the
image are. If the main object in a picture is unintention-
ally less sharp than the background, the algorithm fails
to predict subjective sharpness correctly. Because the ob-
ject is usually in the middle of the picture, some kind of
weighting of the local sharpness according to the spatial
location could be an adequate solution.

In the noise algorithm, discrimination between noise and
image structure seems to be the main problem. Interpre-
tation of texture as noise usually increases the maximum
measured noise level in an image, which is particularly
disadvantageous from the visual quality viewpoint, be-
cause texture makes noise less visible. There are some
conceivable improvements in the 2-D histogram analysis
to reduce this problem; for example, the constraints on
the relative positions of the histogram peaks could be more
sophisticated. Despite this, solution of the problem seems
to require estimation of local orientation, using, e.g.,
steerable filters®! or a simpler method similar to that of
Nyberg,?2 to prevent signal gradient from contributing to
the filter output. In the noise measurement too there are
perceptual effects to consider. The most pronounced of
these is the masking by signal, another is that the noise
of a small homogeneous region is more important in the
absence than in the presence of another considerably larger
region. Finally, color information should also be utilized
to include chromatic noise in the measure, and color could
also serve as an important cue in the decision between
noise and texture.

The coding artifact measure is very simple; thus it is
not expected to predict subjective quality very accurately.
Nevertheless it makes possible a rough two-way classifi-
cation; the decision boundary can be, e.g., about 1.0 ac-
cording to Fig. 12. Local mean luminance is a very
important factor for the visibility of coding noise as well
as stochastic noise. Although the described simple method
does not take the luminance into account in itself, the noise
algorithm does measure the luminance of homogeneous
regions, which can in principle be utilized to estimate the
visibility of the blocking artifact as well.

Currently the sharpness and noise measurement are
separate algorithms despite the utilization of some com-
mon intermediate results. Thresholding of gradient to ex-
tract edges is performed both in the sharpness and the
noise algorithm using different methods. Unifying these
into a single operation is worth consideration. Textured
regions must be excluded both from sharpness and noise
measurement; therefore the partition of the image into
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edges, smooth regions, and textures, which is a commonly
used technique in image processing, would be a convenient
approach.

To be visually meaningful, a quality measure should
take the intended pixel resolution and viewing distance
into account. These may not be known at the time of qual-
ity measurement, which is one of the unavoidable prob-
lems. If the viewing parameters are available, then a
potential way to incorporate them into the algorithm is
to resample the images, preceded by appropriate low-pass
filtering, to a “standard” angular resolution prior to ap-
plication of the quality measurement. This resolution
should be such that the corresponding Nyquist frequency
is beyond the visual resolution limit. For images of very
high resolution the resampling is also useful to reduce
computation time.

No method with precisely the same objective as ours
has been found in the literature, so a comparison with
other methods cannot be made. Typically in the literature
an algorithm has been tested on just a few selected im-
ages or the population of images has been implicitly very
restricted. The results in this article must be viewed
against the background that the test images have been
taken from an archive of hundreds of pictures from vari-
ous sources among which very many types of images are
represented. Although the quality measurement problem
is by no means completely solved, the approach of this
article already covers various nonidealities of real pictures,
such as nonuniform blur and nonwhiteness and luminance
dependency of noise.

Conclusions

A computational procedure has been described to esti-
mate quality potential components of natural color images
with no reference image. The algorithm measures sharp-
ness, stochastic noise, and the blocking artifact of JPEG
compression. The aim has been to find simply computable
and yet visually reasonable quality measures.

The sharpness measure is defined as the global maxi-
mum of local sharpness, where local sharpness is defined
as maximum edge gradient normalized by the edge con-
trast. Under reasonable assumptions this measure is
equivalent to the one-dimensional integral of the modula-
tion transfer function. Experiments show that the algo-
rithm predicts the spread parameter of simulated blur
reasonably well and that the measure correlates with the
subjective sharpness of different images.

The stochastic noise algorithm aims at identifying one
or more noise levels in an image together with their
mean luminances. The motivation for this is the poten-
tial dependence of noise on luminance on the one hand,
and the influence of the mean luminance on perceived
noisiness on the other. The method is based on filtering
the image with Sobel gradient filters, which simulta-
neously suppress most of the image structure and
roughly mimic the response of the human eye to noise
of various spectra. Homogeneous regions in the image
are identified as peaks in the bivariate histogram of
smoothed gradient and smoothed luminance, and the
location of such a peak indicates the amount of noise
and the respective mean luminance. The discrimination
between image details and noise is not entirely solved,
however, and masking of noise and measurement of chro-
matic noise are still open questions.

The blocking artifact measure is a convenient supple-
ment for the sharpness and noise algorithms. It describes
a spikiness in the histogram of the gradient image char-
acteristic of JPEG compressed images. &
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