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Printer Model and Least-Squares Halftoning Using Genetic Algorithms
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In this paper, a least-square model-based halftoning technique using a genetic algorithm is proposed to produce a halftone image by
minimizing the perceived reflectance difference between the halftone image and its original image. We use a least-square criterion
incorporating with the property of the human visual system to measure the difference between the two images. The genetic algorithm
is used for investigating the complicated search problem. The standard halftoning techniques, such as error diffusion and least-square
halftoning, produce gray-level distortion because of dot-gain problem. In this study, we use a modified dot-overlap printer model to
compensate the gray-level distortion. The printer model combines with a measurement-based algorithm to estimate the print-dot
radius and makes the proposed halftoning approach adapted to a wide variety of printers and papers. Experiments show that the
proposed approach produces more accurate gray levels than several common-used halftoning methods produce.
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Introduction

Digital halftoning refers to any algorithmic process that
creates the illusion of continuous-tone images from the
judicious arrangement of binary picture elements.! Many
halftoning techniques! have been proposed to improve
printing quality such as, artifact, texture, or false-contour
removing; deblurring; and contrast enhancing. However,
only a few techniques have been proposed for accurate
gray-level rendition.>® Accurate gray-level rendition means
to minimize the perceived gray-level difference between a
printed halftone image and its original image. In halftone

@

printing, we always assume that the printed dot is square;
however, most printers produce circular dots and the dot
size is always larger than the square size because of ink
spread, wax compression, and ink absorption into papers.
The increase in dot size was termed as the physical dot
gain as shown in Fig. 1. This phenomenon causes the
printed gray levels to be darker than the expectation. In
this report, we compensate the physical dot-gain problem
to produce halftone images with less gray-level distortion.

Three kinds of halftoning techniques have been proposed
to compensate the dot-gain problems: (1) measurement-

(b)

Figure 1. The physical dot gain: (a) ideal dots, (b) round dots cause dot gain.
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based calibration, (2) least-square halftoning, and (3)
model-based halftoning.

The measurement-based calibration technique® was pro-
posed to compensate for any gray-level distortion. In the
method, an image consisting of 256 gray levels is halftoned
and then printed. A tone-response curve? is generated for
measuring the reflectance of the printed image. The curve
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is used to describe the relationship between the perceived
gray level (input reflectance) and the output reflectance.
The calibration technique corrects the output response of
a particular halftoning algorithm on a specific device us-
ing an inverse mapping function. This process works well
but has three drawbacks: (1) Each individual halftoning
algorithm needs to be calibrated for each individual
printer. (2) The calibration of dithered results may pro-
duce less than 256 gray levels. (3) Only specific pixel pat-
terns are measured. If the microstructure of the halftone
image greatly varies from the measured pattern, the gray
levels predicted by the calibration curve may not be rep-
resentative of what is printed on paper and the tones will
not be reproduced accurately.’

On the basis of the least-square-error criterion, a
halftoning technique can be regarded as a process of ar-
ranging black dots to simulate gray levels on a bilevel out-
put device. Hence, a halftoning technique is taken as an
optimization algorithm that searches for a suitable place-
ment for black dots to produce halftone images with less
gray-level distortion. However, in our sense, a primary
least-square halftoning is poor to compensate for the gray-
level distortion; more treatments are needed to get better
results.

Zakhor et al.'® presented a class of dithering techniques
for black and white images. They divided an image into
small blocks and minimized the gray-level difference be-
tween every corresponding block pair in the original con-
tinuous-tone image and its low-pass filtered halftone
image. They utilized quadratic programming with linear
constraints to solve the standard optimization problem.
However, they did not consider the printer characteristics
needed to compensate for gray-level distortion; moreover,
their method needs much computation.

Saito and Kobayashi'! tried to produce a less-distortion
halftone image by using evolutionary computation ap-
proaches, but they did not consider a printer model to com-
pensate for the dot-gain problem; moreover, stochastic
errors are associated with the simplest selection method
in their evolutionary algorithm.

The model-based halftoning technique relies on an ac-
curate printer model to predicate and compensate for gray-
level distortion to produce less-distortion halftone images.?
Several model-based halftoning approaches have been pro-
posed. Anastassiou'? proposed a “frequency weighted
square error criterion” to minimize the square error be-
tween the eye-filtered binary image and the eye-filtered
gray-level image. However, he assumed that printers gen-
erate non-overlapped perfect dots.

Pappas and Neuhoff exploited both a printer model and
a visual-perception model in a least-square model-based
(LSMB) halftoning algorithm. The algorithm attempts to
produce the “optimal” halftone reproduction by minimiz-
ing the square error between “the response of the cascade
of the printer and a visual model to the binary image” and
“the response of the visual model to the original gray-level
image.”® However, they used an exhaustive search to find
the optimal binary image by updating the binary value of
one pixel at a time and thus spend a huge processing time.

In this paper, we propose a genetic algorithm combined
with a modified dot-overlap printer model for least-square
halftoning. Genetic algorithms (GAs)!3-'® are probabilistic
search methods guided by the principles of evolution and
natural genetics. GAs are well known for their ability to
explore large search spaces efficiently and adaptively.!®
Originally, GAs were modeled and developed by Holland, !¢
and now have emerged as general purpose and robust op-
timization techniques. The process of arranging the place-
ment of black dots in a halftone image to compensate for
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gray-level distortion is tedious. Genetic operators can dy-
namically arrange black dots on bilevel output devices;
thus we use a GA as a search algorithm for halftoning
problems. We consider the problem-specific knowledge in
the GA and incorporate a printer model into the approach
to improve the gray-level rendition.

Pappas et al.58 have proposed two printer models: “cir-
cular dot-overlap” and “measurement of printer param-
eters” to compensate for gray-level distortion. We evaluated
these two printer models and chose the circular dot-over-
lap printer model for further study because (1) the circu-
lar dot-overlap printer model is simpler and more flexible
than the measurement model in use; (2) the measurement
model needs to solve the constrained optimization prob-
lem, and an initial estimation of the solution that satisfies
the constraints must be provided; (3) in the measurement
model, several local minima are often presented in the
solution space; it is not always possible to determine the
global minimum; and (4) the parameters of the measure-
ment model (e.g., 3 x 3 window or larger) are too many to
solve the whole constrained optimization problem.

However, the circular dot-overlap printer model gener-
ates bias error in the printed images;” thus we propose a
modified circular dot-overlap printer model to compensate
for gray-level distortion and resolve the bias problem. Us-
ing the circular dot-overlap printer model, the dot radius
must be known in advance. We here also use a preproposed
measurement-based method to estimate the print-dot ra-
dius and make the modified dot-overlap printer model
adaptable to a wide variety of printers and papers.

The remaining sections of this paper are organized as
follows: First we present the proposed approach, then the
experiments and discussion, and the conclusions are sum-
marized in the last section.

Proposed Halftoning Approach

The most intuitive formulation of the halftoning prob-
lem can be stated as “to find a binary image such that the
gray-level difference between an original continuous-tone
image and its perceived bilevel image is minimized.”*? Be-
cause the human visual system acts as a low-pass filter,
the least-square halftoning approach minimizes the mean
square error between the low-pass version of a gray-level
image and that of its halftone image.

The block diagram of the proposed least-square model-
based GA halftoning technique is shown in Fig. 2. Initially,
a least-square criterion is defined to measure the differ-
ence between the low-pass version of a gray-level image
and that of its halftone image. A modified circular dot-
overlap printer model is taken into the least-square crite-
rion to compensate the gray-level distortion in the halftone
image. Then a genetic algorithm is utilized to find the “op-
timal” halftone reproduction based on the least-square cri-
terion. Here, the “optimal” halftone reproduction means
that the output gray-level response is linear; that is, the
tone-response curve is a straight line of slope one through
the origin.’ In processing, an image is divided into small
blocks and the blocks are processed in the raster-scan or-
der to propagate (block) gray-level errors to the right and
the lower neighboring blocks.

Least-Squares Criterion. Assume that an M x N gray-
level image is represented by [g,],i =1, ..., M, andj = 1,
..., N. We use a 2-D Gaussian filter with impulse response
[7,;] to simulate the eye model to evaluate the gray-level
difference between a gray-level image and its halftone im-
age. The original image [g; ] is partitioned into several n x
n blocks, where both M/n and N/n are integers. Then the
evaluation function for a block is defined as
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Figure 2. The least-square model-based GA halftoning: (a) the evaluation process; (b) the genetic algorithm.

(D)

where

and * indicates a convolution operator. The p, ; is a printer
parameter of the modified dot-overlap printer model uti-
lized instead of the output gray level b, ; for compensating
the gray-level distortion and described in the Printer Model
Section. Next, we use a genetic algorithm as an evolution-
ary computation to generate the halftone image [b,;,] by
minimizing the square error E.

Genetic Algorithms. A genetic algorithm (GA) is a sto-
chastic algorithm used to solve search and optimization
problems. The algorithm is based on the mechanics of natu-
ral selection and genetics in biological systems.

In general, a GA contains a fixed-size population of po-
tential solutions over the search space. These solutions
are encoded as bit strings and called individuals or chro-
mosomes. The initial population can be created randomly
or based on problem-specific knowledge. At each iteration,
called a generation, a new population is created. To gener-
ate a new population based on a preceding one, the algo-
rithm performs the following three steps: (1) evaluation:
each individual of the old population is evaluated by a fit-
ness function and given a value to denote its merit, (2)
selection: individuals with better fitness are selected to
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generate the next population, and (3) mating: genetic
operators such as crossover and mutation are applied to
the selected individuals to produce new individuals for the
next generation. The above steps are iterated for many
generations until a satisfactory solution is found or a stop-
ping criterion is met. A standard GA is described as the
following pseudocodes:

t<0
initialize P(¢)
evaluate P(t)
while (the stop criterion is not met) do
begin
t —t+1
select P(¢) from P(t — 1)
recombine P(¢)
evaluate P(t)
end,

where P(¢) is the population at generation ¢.

Typically, using a GA to solve a problem, we must pro-
vide the following components: (1) a genetic representa-
tion of solutions to the problem, (2) one way to create an
initial population of solutions, (3) an evaluation function
that rates each candidate solution according to its “fit-
ness,” (4) genetic operators that effect genetic informa-
tion of children during reproduction, and (5) control
parameters (e.g., population size, crossover, mutation
rates, etc.)'”

Solution Representation. In our utilization of a GA
to find the “optimal” halftone image, a binary block is en-
coded as a bit string. We create a population of strings
and evaluate each string, then select the best strings to
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construct the new population. Finally, the binary block [, ;]
with the highest fitness value is found.

Initial Population. In general, a GA creates its start-
ing population by filling with randomly generated bit
strings; however, we can heuristically rather than ran-
domly generate the individuals in the initial population
to improve the search performance. Heuristic initializa-
tion may be helpful but must be done carefully to avoid
premature convergence. Here we use the result of stan-
dard error diffusion as an individual and the remaining
individuals are randomly generated. Note that if the ini-
tial population contains a few individuals far superior to
the rest of the population, the GA may quickly converge to
a local optimum.

Fitness Function. Fitness function is the survival ar-
biter for individuals. In the halftoning problem, the objec-
tive is to find the binary halftone image block [b,;] that
minimizes the mean square error E. Because the fitness
in GAs is to find the maximum profit, the fitness function
in the halftoning problem is defined by

F=C,,—E

max

M=z

= Cmax -

13

n
> (zy—w)? )
1 /=1

where C,,,. is a predefined value or the maximum of E.

Genetic Operators. Three primary genetic operators:
selection, crossover, and mutation are generally involved
in a GA.

Selection. The selection operator determines the sur-
viving individuals. Each surviving individual is reproduced
into several copies according to its relative responsibility.
Two reproductive strategies were commonly used. Gen-
erational reproduction replaces the whole population in
each generation, but steady-state reproduction'® only re-
places the least-fitted members in a generation.

Baker!” compared various selection methods comprehen-
sively and presented an improved version called the sto-
chastic universal sampling (SUS) method. A SUS'
procedure is described by the following C codes:

ptr = Rand( );
for(sum =i =0;1i < N;i++)
for(sum += ExpVal[il; sum > ptr; ptr++)
Select_individual(i);

where Rand( ) returns a random real number between 0
and 1. We use steady-state reproduction and the SUS
method in the proposed halftoning approach.

Crossover. The crossover operator randomly pairs in-
dividuals with a probability p, and swaps parts of their
genetic information to produce new individuals. Several
types of crossover operators such as, one-point, two-point,
and uniform-type splitting have been proposed. However,
Dedong and Spears!® concluded that the uniform cross-
over is more beneficial if the population size is small and,
hence, gives a more robust performance. The uniform cross-
over is adopted in the proposed halftoning approach.

In the uniform crossover,!® two parents are selected and
two children are produced. One of the selected parents
has the best fitness and the other is randomly selected.
Each bit position in the children is created by copying the
corresponding bit from either one of the parents. The uni-
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Parent 1
Parent 2

Crossover m

Child 1 101110001
Child 2 010100110

Figure 3. An example of the uniform crossover.

Parent Random New Child
individual numbers bit individual
1 00 10(.103.305.248.851.552| - |1 0 010
0 10 11|.203.123.005.657.3411 1 (0 1 11 1
0 01 10].469.778.651.033.951] 0 [0 0 10 O

Figure 4. Examples of bit mutation used in the proposed
approach.

form crossover randomly generates a crossover mask that
is a bit string with the same length of an individual for
each pair of parents. A “1” bit in the crossover mask means
that the first child inherits the gene from the first parent
and other genes from the second parent. The second child
uses the opposite rule. One example of the uniform cross-
over is shown in Fig. 3.

Mutation. The mutation operator creates a new indi-
vidual by altering one or more genes of an individual with
a probability p,, to increase the variability of the popula-
tion. One or more bits in the crossover children are in-
verted; “1” is changed to “0” and “0” is changed to “1.” In the
proposed halftoning approach, the mutation operator works
as the example shown in Fig. 4. The example shows three
individuals of length 5 and a random number generated
for each bit in each individual. The bit changes its value
when the random number test is passed. The random num-
ber that causes a bit to change is printed in bold face.

Control Parameters. The population size influences
the performance of GAs. A small-size population reduces
the evaluation cost but results in premature convergence,
because the population provides insufficient samples in
the search space. For a large-size population, the GA can
gain more information to search better solutions because
the population contains more representative solutions over
the search space.

Both crossover and mutation probabilities may influ-
ence the performance of GAs. A GA may stagnate in the
search for new solutions if the crossover probability is low.
However, if the crossover probability is too high, unstable
solutions may be quickly substituted into the population
for individuals with better fitness. But if the mutation
probability is too high, the search of the GA becomes a
random-like process. In the proposed halftoning approach,
extra experiments are performed to find more appropri-
ate values for the used parameters.

Printer Models. Most standard halftoning techniques
produce darker halftone images than the expectation due
to the dot-gain problem. To resolve this problem and
achieve a less-distortion gray-level rendition, the printer
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(a)

Figure 5. Definition of parameters used in the circular dot-overlap
printer model; (a) definition of a, 3, and y; (b) definition of & and €.

characteristics should be considered. Model-based tech-
niques®® exploited the printer characteristics to compen-
sate for gray-level distortion.

The Pappas—Neuhoff circular dot-overlap model®® as-
sumed the print dot to be circular with a uniform distri-
bution of ink and the dot radius at least 7/+2, where T is
the spacing of the Cartesian grid, so that a black region
can be blackened entirely. They used p to denote the ratio
of the actual dot radius to the ideal dot radius 7/~2. The
amount of dot-gain area at each pixel is expressed in terms
of parameters a, 3, and y as shown in Fig. 5(a). These pa-
rameters are the ratios of the areas of the shaded regions
shown in Fig. 5(a) to 72 The parameters q, 3, and y are
expressed in terms of p as follows:

D S S L 0 1
G—Z\,Zp 1+7S1n %E E,’ (3)

2 ) a —
_pP g p -1 1 o
PRI T BV A e

The constraint of pis 1< p v2. In terms of these param-
eters, the circular dot-overlap model is defined as

P(W ) O 1, if bi,j =1
pi . = i = D . o
o ST ghat+foB-fsy, if b ;=0 ©
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(b)

Figure 6. Two examples of the printer parameters p,; for differ-
ent dot radii; (a) the printer parameters p,; when r, 2 T/v2, (b)
the printer parameters p,; when T/2 <r, < T/\2.

where W, ; denotes a window consisting of b, ; and its eight
neighbors, f; is the number of horizontal and vertical
neighboring black dots, f, is the number of diagonal neigh-
boring black dots not adjacent to any horizontal or verti-
cal neighboring black dot, and f; is the number of pairs
of neighboring black dots in which one is a horizontal
neighbor and the other is a vertical neighbor. One ex-
ample for describing the circular dot-overlap model is
given in Fig. 6(a).

Pappas and Neuhoff? indicated p = 1.25 in the circular
dot-overlap printer model for HP laser printers. However,
the estimated print-dot sizes are different for different
printers or on different papers. Here we release the con-
straint of 1 < p < v2. We use our measurement-based
method to estimate statistically the dot radius for the
printer model to adapt a wide variety of printers and pa-
pers and then we extend the circular dot-overlap print
model to include all possible cases of print-dot radii.

Measurement of Print-Dot Radii. In general, the
more print dots are considered, the more accurate dot area
is estimated. In order to find a reasonable dot radius, we
consider a larger area of dots. At first, we define a number
of 3 x 3 print patterns with different “0 & 1” permutations
to analyze the physical dot gain. The 3 x 3 print patterns
can define 2° different “0 & 1” permutations. We reduce
the number of patterns by taking the reflected or rotated
patterns to be the same and then get 102 different “0 & 1”
patterns including two special patterns: all “0” (white) and
all “1” (black) patterns.

Secondly, we print out all print patterns repeatedly in
vertical and horizontal directions as one example shown
in Fig. 7 and measure the densities of these patterns us-
ing a reflection densitometer. Then the Murray-Davies
equation®®
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Figure 7. A sample of periodic 3 x 3 print patterns. The 5 x 5
dashed-line window is one example for defining the coefficients a; in
calculating the black area of the internal 3 x 3 print pattern.

_1-107>

1-107% @
is utilized to describe the relationship among the effective
dot area, A; the density of a solid dot, D_; and the result-
ant density of the dot area pattern, D, . Assume that the
measured density of pattern i is D;; the measured densi-
ties of the all-black-dot and all-white-dot patterns are D,
and D,, respectively. Let the measured black area of pat-
tern i be S;, then S, can be calculated by

1- 10—(D, -D,)

i—msb, i:1,2,...,100, (8)

where S, is the 3 X 3 grid area.
On the basis of the dot-overlap printer model, the black
area of pattern i can be calculated by

I:ta]_ +a2a +a3B a4 y)T2 lf T/\/E <r
Ai:|] (a6 +ayd)T?, if T/2<sr<T/V2, ©)
o a2, if r<T/2

where r is the estimated radius of print dots; a, B, and y
are the ratios of the areas of the shaded regions shown in
Fig. 5(a) to T'%, and 0 and € are the ratios of the areas of
the shaded regions shown in Fig. 5(b) to 7'2. The param-
eters 0 and € are expressed in terms of p as follows:

2 EI 0 ‘
P 1 1759
6——c0s —2p° -1,
Bw_ZpH 4 VP (10)
2
e:%—m (11)

The definition of coefficients a,, a,, and a, is similar to
that of f; in the circular dot-overlap printer model Eq. 6;
however, the former is more complicated. The coefficients
a,, a;, and a, are defined by considering a 5 x 5 window
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centered at a 3 x 3 print pattern in periodic print patterns
as one example shown in Fig. 7 with the dashed-line block.
For every white dot in the 3 x 3 pattern, we compute its
dot-gain area in terms of a, 3, y, d, and € and then accumu-
late the dot-gain area for all white dots in the 3 x 3 pat-
tern. Coefficient a, is the number of black dots in the 3 x 3
print pattern. Coefficient a, is the accumulated number
found by counting the horizontal and vertical neighboring
black dots for every white dot in the 3 x 3 print pattern
noting that all neighboring black dots in the 5 x 5 window
are considered. Coefficient a, is the accumulated number
found by counting the diagonal neighboring black dots for
every white dot in the 3 x 3 print pattern while no black dot
is simultaneously adjacent to both the white dot and the
counting black dot. Coefficient a, is the accumulated num-
ber found by counting the pairs of adjacent neighboring
black dots in which one is a horizontal neighbor and the
other is a vertical neighbor for every white dot in the 3 x 3
print pattern.

We take the measured black area and the calculated
black area in a print pattern to be equal; that is, using the
equation

S;=4,,i=1,2,...,100, (12)
to estimate the radii for all print patterns. Due to the mea-
sured error and non-uniform roughness of printed papers,
the dot radii are different and distributed. We need to de-
termine the best-fitted dot radius for the printer model.
The best-fitted dot radius means that the dot radius r, mini-
mizes the sum of the square errors between the measured
densities and the calculated densities of all print patterns.
At first, we substitute each estimated radius r; into every
print- pattern equation (i.e., Eq. 9) to calculate the black
area A 7 and then substltute the area and Eq. 8 into Eq.
12 to get the calculated density D J

0 an 0
i - — _ ] _ -(D,-D,) .
D' =D, logél - (1 102 )g i=12,...,100. (13

b

The sum of square errors for the estimated radius r; is
given as

100 - \2
SE(r;)=3% (Dl- —Dif) , J=12, ..
i=1

» 100, (14)

where D, is the measured density of print pattern i. The
best-fitted radius r,is the radius with the minimum SE
error.

Modified Dot-Overlap Printer Model. To include all
possible cases of print-dot radius, we extend the circular
dot-overlap printer model® as follows:

(W ) if bi,j =0
Pij = DPZ(WL,J), if b =1 (15)

Cria+foB~foy, i TIN2sr
PW, =0  fi9, if T/2<r,<T/V2, 16)
E 0’ if T"f <T/2
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Figure 8. Two test images were printed using the HP Laserdet
5MP at 600 dot/inch (dpi) resolution.

(a)

o1 if T/N2<r
RW,)=0 & if T/2<r <T/+2,

%’zpz/z if r,<T/2 an

where W, ; denotes a window consisting of b,; and its eight
neighbors; P, and P, are two functions for calculating the
estimated gray level p,; for dot b, ;; the parameters a, 3, y, 3,
and € are defined in Egs. 3 through 5 and Eqs 10 and 11,
and the definition of coefficients f}, f;, and f; is the same as
the definition of the Pappas—Neuhoff printer model® given
in Eq. 6. One example of p,; for the case of T/2 <r, < T/ 2
is shown in Fig. 6(b).

The differences between the Pappas—Neuhoff dot-over-
lap printer model and the modified dot-overlap printer
model are (1) the dot radius in the Pappas—Neuhoff model
is obtained from an experience or an assumption value,
but the dot radius in the modified model is measured to
adapt to a wide variety of printers and papers and (2) the
Pappas—Neuhoff model assumes the dot radius is always
larger than the cover square area, but the modified model
considers all possible cases of dot radius.

During the halftoning process, all image blocks are pro-
cessed in the raster-scan order. The mutation operator in-
corporated with the printer model embedded in the fitness
function is used to test whether a binary block is good
enough. We adaptively adjust the combination of 0’s and
1’s through both the mutation operator and the printer
model to reduce gray-level distortion. After we find a near-
optimal binary block, the right-most (binary) pixel values
are recorded for the processing of the right block and the
lower most pixel values are also recorded for the process-
ing of the lower block to propagate (block) gray-level errors
to obtain near-unbiased-error halftone images.

Figure 9. The printed images us-
ing four representative halftoning
techniques at 300-dpi resolution: (a)
Jarvis—Judice—Ninke error diffu-
sion; (b) least-square GA halftoning
without printer model; (c) least-
square GA halftoning with Pappas-
Neuhoff circular dot-overlap printer
model; (d) least-square GA halfton-
ing with the modified circular dot-

(b)

(c)
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(d)
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Experiments

We demonstrate here the experimental results of the
proposed approach and compare the printed results and
errors with those generated by other halftoning techniques.
A HP LaserdJet 5MP printer was used to print halftone
images, and a Macbeth RD-1200 reflection densitometer
was used to measure the densities of print-dot patterns.
All halftone images were printed on the same uncoated
papers commonly used for copy machines.

Note that the parameter values in GAs, such as maxi-
mum generation number and probability of genetic opera-
tors, always influence the performance of the algorithms.?
However, GAs are always robust with respect to these pa-
rameters; thus only a few experiments are needed to
specify the parameter values. Of course, reasonable pa-
rameters ensure good results and give rise to quick con-
vergence. The parameters used in the experiments are (1)
each individual represents a possible permutation of 0’s
and 1’s in a 5 x 5 image block; (2) the generation number
is 150; (3) the population size is 30; (4) the adopted selec-
tion and crossover operations are stochastic universal sam-
pling and uniform crossover; and (5) the probabilities of
crossover and mutation are 0.7 and 0.1, respectively.

Nine halftoning algorithms: Floyd—Steinberg error dif-
fusion, Jarvis—Judice—Ninke error diffusion, Stucki error
diffusion, 4 x 4 dither-matrix ordered dither, 8 x 8 dither-
matrix ordered dither, dot diffusion, least-square GA
halftoning without printer model, least-square GA
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halftoning with Pappas—Neuhoff circular dot-overlap
printer model, and the proposed least-square GA
halftoning with the modified circular dot-overlap printer
model, were compared. These halftoning algorithms were
examined by using two images: “Lena” and the “gray-level
chart” as shown in Fig. 8. Both images have 765 x 720
pixel resolution with 256 gray levels. Eighteen halftone
images generated by the nine halftoning techniques were
printed at 300 dpi, but only four representative halftone
images are shown in Fig. 9.

The image obtained via the proposed least-square GA
halftoning with the modified circular dot-overlap printer
model has fewer worm-like artifacts than the error diffu-
sion methods and does not have the false contour as the
ordered dither method produces. Comparing Figs. 9(a) and
9(d), we find the proposed approach produces blocking-ef-
fect halftone images. The phenomenon resulted from the
fact that the proposed approach is a block-based halftoning
method. The thresholded errors in error diffusion are “dif-
fused” pixel by pixel, but the proposed approach is based on
the idea of breaking up a gray-level image into small blocks
and solving the optimum for each block with a genetic algo-
rithm. Zakhor et al.!° also produced blocking-effect halftone
images. The blocking effect can be avoided when the image
is not partitioned into blocks for processing; however, such
processing expends a huge amount of time as spent by the
Pappas and Neuhoff® process. The uniformity of a halftone
image is influenced by the bandwidth of a 2-D Gaussian
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Figure 10. The tone-response curves of four representative halftoning techniques: (a) Jarvis—Judice—Ninke error diffusion; (b) least-
squares GA halftoning without printer model; (c) least-squares GA halftoning with Pappas—Neuhoff circular dot-overlap printer model;
(d) least-squares GA halftoning with the modified circular dot-overlap printer model.
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filter and the block frequency 1/n, where block size is n x n.
When the bandwidth of a 2-D Gaussian filter is wider and
the block frequency 1/n is smaller, the halftone image is
very blurred.

The purpose of this study was to print halftone images
with less gray-level distortion. We compared the nine
halftoning algorithms not only browsing the printed im-
ages, but also inspecting the tone-response curves. We
printed out the “gray-level chart” using the nine halftoning
algorithms and used a Macbeth RD-1200 reflection densi-
tometer to acquire the density and then transform to the
(output) reflectance. Four representative tone-response
curves are given in Fig. 10. In these curve charts, the ab-
scissa denotes the perceived gray level from 0 (black) to 1
(white) and the ordinate denotes the measured reflectance
of a printed halftone image. The perceived gray level is pro-
portional to the amount of ink on the printed paper.” Thus,
the tone-response curve of a tone-correct halftone image is
a straight line of slope one through the origin. The curves
of all standard halftoning algorithms are more concave than
that of the proposed algorithm. This means that these stan-
dard halftoning techniques produce more gray-level distor-
tion than the proposed technique. There is stepped output
reflectance in the curves of the ordered dithers because they
only produce 17 and 65 gray levels, respectively.

Based on the tone-response curves, two sum-square-er-
ror criteria were used to evaluate all halftoning techniques
as shown in Table I. The absolute square error (ASE) mea-
sures the difference between the tone-response curve and
the straight line of slope one through the origin of the chart.
The value of ASE describes the deviation from the ideal
response. The relative square error (RSE) measures the
difference between the tone-response curve and its least-
square fitting straight line. The value of RSE indicates
the degree of the linearity of the output reflectance. The
least-squares GA halftoning with the modified circular dot-
overlap printer model always has the least error. We con-
clude that the proposed halftoning approach produces less
distorted halftone images than other commonly-used
halftoning techniques.

Conclusions

On the basis of a least-squares criterion, a genetic algo-
rithm combined with the modified circular dot-overlap
printer model was proposed to produce halftone images with
less gray-level distortion. The proposed approach minimized
the gray-level difference between the low-pass version of a
continuous-tone image and that of its halftone image. We
used genetic operators, crossover, and mutation in the GA
to arrange the placement of black dots in a halftone image
and to find the “optimal” halftone reproduction. We pro-
posed the modified circular dot-overlap printer model to
describe the printer characteristics and then compensate
for gray-level distortion by means of spatial adjustment of
black-dot locations. We also quoted our measurement-based
method to estimate statistically the radii of print dots for
the printer model. The experimental results revealed the
proposed approach reduces the gray-level distortion and
produces more accurate gray levels than a number of
halftoning techniques. From the experimental results, sev-
eral aspects for future work may be enumerated:

1. Incorporating problem-specific knowledge into genetic
algorithms has been acknowledged as an effective prob-
lem-solving tool in many research fields. Combining more
halftoning characteristics with genetic algorithms to ob-
tain better printed results is a potential research topic.

2. The human visual system plays an important role in
digital halftoning. In the proposed approach, we use a

Printer Model and Least-Squares Halftoning Using Genetic Algorithms

TABLE Il. The Absolute and Relative Square Errors of The
Nine Halftoning Techniques

Errors
Absolute square Relative square

Halftonings error (ASE) error (RSE)
Floyd-Steinberg error diffusion 16.365 3.837
Jarvis-Judice-Ninke error diffusion 14.204 2.832
Stucki error diffusion 17.668 3.701
4 x 4 dither-matrix ordered dither 18.322 4.019
8 x 8 dither-matrix ordered dither 17.262 4.159
Dot diffusion 14.753 3.373
The least-squares GA halftoning

without printer model 5.428 1.375
The least-squares GA halftoning

with Pappas-Neuhoff circular

dot-overlap printer model 5.150 1.237
The least-squares GA halftoning

with the modified circular

dot-overlap printer model 3.500 1.054

simple 2-D Gaussian filter as the eye model. More com-
plicated or more suitable eye models should be incor-
porated into the proposed approach to improve the
printed results further.

3. Recently color printers have been broadly used in the
office and home. Color printers also generate color dis-
tortion. To apply the proposed approach to color print-
ing by considering the relationship among all color
attributes is worth studying. &
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