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Two kinds of models were derived that predicted spectral reflectance factor of colors formed using an ink-jet printer. One was the spectral
Murray–Davies–Yule–Nielsen model in which n-value was assumed to vary as a function of wavelength. The other was based on the
Omatsu model in which the path length of light scattering was assumed to vary as a function of wavelength. Model parameters were
optimized using a test target of 57 samples consisting of cyan, magenta, yellow, red, green, blue, and black colors varying between white
and the maximum ink amount. Average accuracy of an independent data set sampling the printer’s color gamut was 4.2 and 3.9     ∆Eab

* ,  for
the Murray–Davies–Yule–Nielsen and the Omatsu models, respectively. The difference in performance was not significant. The Yule–
Nielsen model was selected to build device profiles because of its simplicity in comparison to the Omatsu model. A desktop scanner was
colorimetrically characterized using a multiple-linear-regression model to build a concatenated device profile in which digital counts of a
scanned photographic reflection print were the input and those of the printer were the output. Because the printer model was analyti-
cally noninvertable, the Newton–Raphson and the Simplex iterative methods were evaluated as candidate optimization methods to build
33 × 33 × 33 color look-up tables. These tables were evaluated by comparing a photographic reflection IT8.7/2 target with its printed
reproduction. The Simplex method yielded superior results, particularly for colors near the edge or outside of the printer’s color gamut.
The average     ∆Eab

*  error from a profile based on the Simplex method was 5.9 including colors outside of the printer’s color gamut.
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Introduction
Device-independent color1 is now recognized as a general
way of color communication for electronic devices. Although
terminology varies, obtaining acceptable color reproduc-
tions requires: colorimetric device characterization, color
appearance modeling, and color gamut mapping. A colori-
metric device characterization is a set of equations or a
three-dimensional data set that converts between the
device’s signal space and a colorimetric space such as
tristimulus or CIELAB space. Appearance models account
for differences in illuminating, viewing, and cognitive con-
ditions between different imaging modalities. Gamut map-
ping often consists of a set of rules to map the gamut
volume defined using a color-appearance space of one de-
vice onto a second device. Once the input and output im-
aging devices are identified, the three stages are used to
build a color-management module or CMM. This is usu-
ally in the form of a three-dimensional color look-up table
(CLUT). Linear interpolation is used to estimate values
in between CLUT entries.

When considering the colorimetric characterization of
desktop color devices, three methods are commonly used:
direct interpolation, multiple-linear regression, and ana-
lytical modeling. For the first two methods, one first gen-
erates a test target sampling the device’s input space (for
RGB devices, dr, dg, and db and for CMYK devices, dc, dm,
dy, and dk, where d represents digital counts) that is mea-
sured colorimetrically for a defined observer and
illuminant. This can vary between hundreds and thou-
sands of samples.2,3 In a sense, the first two methods are
the extrema of a single empirical approach. Direct inter-
polation2–5 can be thought of as a piecewise linear model
while multiple-linear regression6,7 represents a single lin-
ear or nonlinear model. If the relationship between digi-
tal and colorimetric representations is highly nonlinear,
direct interpolation yields higher accuracy (though con-
strained by the sampling). As the relationship becomes
more linear, the two methods yield equivalent results. It
is also possible, and desirable, to blend the two methods.

The third method is to derive an analytical model that
relates input drive signals to spectral output. When scan-
ning, digital data are used to predict the spectral reflec-
tance factor or spectral transmittance of the scanned
photographic material.8–12 In similar fashion, printing
models relate drive signals to spectral reflectance fac-
tor.13–19 For CRT displays, the input drive signals are re-
lated to spectral radiance or irradiance.20,21 Spectral data
are used to calculate colorimetry for a defined illuminant
(in the case of scanning and printing) and observer. Test
targets are produced that enable the determination of the
model’s parameters. Because most theoretical models have
practical limitations, the parameters are statistically es-
timated. Thus, strictly speaking, analytical models are a
combination of theory and empiricism. However, because
the empirically determined parameters can be theoreti-
cally related to the device’s physics, it seems reasonable
to consider this approach as an analytical method.
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There are several advantages to using analytical mod-
els. First, a small number of samples is required to build
the model. As a consequence, one can update a device pro-
file readily with changes in consumables. Second, they pro-
vide excellent modeling tools for making engineering
improvements in a device (e.g., estimating the effects of
changing an ink’s spectral characteristics or halftoning al-
gorithm on image quality) or in device calibration (e.g.,
set up of a display to achieve optimal tone reproduction20,21).
Third, one can calculate colorimetric values for any
illuminant and observer of choice that enables easy inte-
gration with color appearance models. Finally, they mini-
mize problems from linear subsampling in highly nonlinear
subspaces and extrapolation when building device profiles
and CMMs.

One limitation when using analytical models to build
printer device profiles is that they are usually
noninvertable. Analytical models are derived from device
drive signals. To build a printer profile, one inputs colori-
metric coordinates and calculates device coordinates nu-
merically. The particular numerical method affects the
accuracy of the CLUT.

Thus, we were interested in exploring several issues
relating to building a CMM for a desktop color system con-
sisting of a flat-bed scanner and ink-jet printer. The first
issue was evaluating the accuracy of two different ana-
lytical models: Murray–Davies–Yule–Nielsen and Omatsu.
The second issue was evaluating the efficacy of two nu-
merical methods: Newton–Raphson and Simplex.

Experimental
Output Device. An Apple StyleWriter Pro printer was

used in this research. This is a four-color (cyan, magenta,
yellow, and black), thermal ink-jet printer that employs a
halftone process to achieve tone modulation. It is consid-
ered an RGB printer. Through its software, dr, dg, and db,
data are converted to area modulation of cyan, magenta,
yellow, and black ink. The “Best” print quality option was
selected yielding the highest spatial image quality and
largest color gamut using Apple Premium Coated paper.

Two halftoning algorithms are available: Scatter and
Pattern. The Scatter mode utilizes FM stochastic screen-
ing that blends colors in a random scattering of dots. The
Pattern mode provides a repeating pattern of dots. In Pat-
tern mode, dots of two primaries except black ink are
placed in the same location, frequently referred to as dot-
on-dot,22 concentric dot, or cluster dot. The dots of black
ink, in theory, never overlap the other colors. For perfect
dot placement, this image microstructure yields printable
colors composed of a primary (cyan, magenta, or yellow),
a secondary (red, green, or blue), black, and paper. The

Figure 1. Relationship between digital counts and reproduced
luminance factors of black ink.
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Pattern mode was selected as the halftoning process for
this research based on the assumption that the RGB to
CMYK conversion was equivalent to a 100% gray-compo-
nent replacement algorithm. For some printers, the Scat-
ter mode, recommended for pictorial images, has a more
complicated conversion. If the conversion is not known,
an analytical model cannot be derived. Thus for the Pat-
tern mode, the conversion from dr, dg, and db digital counts
in the RGB space to the drive signals dc, dm, dy, and dk, of
each primary ink for an 8-bit digital representation is de-
scribed using the 100% gray-component replacement al-
gorithm as follows:

    

dk = min(255 − dr , 255 − dg , 255 – db ),

dc = 255 – dr − dk ,

dm = 255 − dg − dk ,

dy = 255 − db – dk .

(1)

To investigate the size of the halftone cell, 256 color
patches of a single primary color were printed and mea-
sured colorimetrically. The relationship between digital
counts and luminance factor of the black ink is shown in
Fig. 1. From visual observations under magnification, this
printer obviously does not have 256 quantization levels.
However, it was difficult colorimetrically to find break-
through levels indicating halftone cell size due to the ex-
tremely small differences in luminance factor between each
sample. Noise in the measurements obscured the quanti-
zation. In addition, it appears that the breakthrough lev-
els are spaced nonlinearly. Therefore, it was assumed that
the spectral reflectance factor would vary smoothly with
a change of digital data. Accordingly, modeling and verifi-
cation targets were designed.

A modeling target was printed consisting of ramps of
each single color type: cyan (C), magenta (M), yellow (Ye),
and black (K); and each two-color overprint: red (R), green
(G), and blue (B). Each ramp had 9 steps with a range
from 0 to 255 digital counts in intervals of 32 digital count
in the RGB space. The total number of samples including
the paper equaled 57.

A verification target, used to estimate forward model
performance, was also printed. The target was 125 colors
based on a digital 5 × 5 × 5 factorial design sampling the
RGB space. These samples were not contained within the
modeling target except the paper white.

Input Device. A Sharp JX-610 color-image scanner was
selected as an input device. This is a single-pass three-fluo-
rescent-source flatbed CCD scanner capable of 600 dpi spa-
tial resolution. The scanner settings were adjusted so that
an Eastman Kodak Ektacolor Q-60R1 IT8.7/2 (Ref. 23) re-
flection target had its black and white image areas nearly
0 and 255 digital counts for each channel and its tone re-
production reasonable when displayed on a CRT monitor
viewed in dim ambient lighting conditions. The photo-
graphic target was used to develop a colorimetric charac-
terization for this scanner and Ektacolor paper.

Metrology. The spectral reflectance factors of both the
printed samples and the IT8.7/2 photographic target were
measured using a Gretag SPM 60 spectrophotometer. This
instrument has 45°/0° geometry and samples the spectrum
from 380 to 730 nm in 10-nm increments and bandpass.
Each sample was measured in contact with a black mat
surface. Colorimetric data were calculated for illuminat
D65 and the 1931 2° standard observer using ASTM
tristimulus weights.24
Iino and Berns



Printer Forward Models
As described, the dot-on-dot halftone pattern yields, at

most, four simultaneous colors (including paper). Thus,
the relationship between the drive signals shown in Eq. 1
and the theoretical dot areas of each color type (ac, am, ay,
ak, ar, ag, ab, and aw) is expressed by Eq. 2.

    

ar = min(dm , dy ) / 255,

ag = min(dc , dy ) / 255,

ab = min(dc , dm ) / 255,

ac = dc / 255 − ag − ab ,

am = dm / 255 − ar − ab ,

ay = dy / 255 − ar − ag ,

ak = dk / 255,

aw = 1 − ar − ag − ab − ac − am − ay − ak .

(2)

Spectral Murray–Davies Model Modified by Yule–
Nielsen n Correction. The Murray–Davies equation,25

which predicts the reflectance factor R in a monochrome
halftone process using dot area aink and reflectance fac-
tors of both solid ink Rink and paper Rw, is extended to the
spectral level.

Rλ = ainkRλ,ink + (1 – aink)Rλ,w. (3)

In its usual wideband implementation, the measured
reflectance factor is darker than that predicted by the
Murray–Davies equation. This error is caused by the
effect of light scattering within the paper. This phenom-
enon is often referred to as optical dot gain. Yule and
Nielsen26 have modeled this effect empirically through
the use of an exponent, n. Also, it has been proposed27

to use the n-value correction for improving the accu-
racy of the Neugebauer equation.28 The Yule–Nielsen
modification of the spectral Murray–Davies equation,15

which is expected to improve the prediction accuracy, is
as follows:

    
Rλ = aink Rλ ,ink

1/ n + (1 − aink )Rλ ,w
1/ n[ ]n

. (4)

An n of 1.7 has been suggested for general conditions
unless a priori knowledge about the particular ink and
paper is available.29 Alternatively, it is possible to deter-
mine the optimal n value and effective dot area optimiz-
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Figure 2. Yule–Nielsen’s n-values as a function of wavelength.
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ing Eq. 4 statistically. Because n is largely empirical, it
can be further enhanced to vary as a function of physical
dot area or wavelength. In the former case, extremely close
fits result between the measured and estimated spectral
reflectance factors in monochrome color ramps. However,
it is impossible to extend to a multicolor print because a
single n-value for the reflectance of the paper and for the
shoulder of the right side term of Eq. 4 cannot be deter-
mined under this assumption. The wavelength enhance-
ment can be readily applied as expressed in Eq. 5.

 
    

Rλ = (acRλ ,c
1/ nλ + amRλ ,m

1/ nλ + ayRλ , y
1/ nλ + akRλ ,k

1/ nλ

+ar Rλ ,r
1/ nλ + ag Rλ , g

1/ nλ + abRλ ,b
1/ nλ + awRλ ,w

1/ nλ )nλ .
(5)

Because, at most, four colors are observable as defined
by the halftone algorithm, Eq. 5 is rewritten as follows:

    
Rλ = akRλ ,k

1/ nλ + aP Rλ , p
1/ nλ + asRλ ,s

1/ nλ + awRλ ,w
1/ nλ( )nλ

,

(6)

where subscript p and s indicate primary (C, M, or Ye)
and secondary (R, G, or B) colors, respectively.

It is necessary to estimate n-values (nλ) and effective
dot areas (ai) for predicting the printed reflectance factors
using the model described by Eq. 6. It was first assumed
that the dot areas equaled the theoretical dot areas. Then,
nλ was optimized for each wavelength using the Simplex
nonlinear optimization method of SYSTAT30 with sum-of-
squares reflectance error of all colors of the modeling tar-
get as the minimization function. The nλ values are plotted
in Fig. 2. Second, the dot area in Eq. 6 was optimized for
each color of the modeling target by linear optimization
with sum-of-squares spectral error as the minimization
function. These statistically derived dot areas are shown
in Fig. 3 as data points. Figure 4 shows a reconstruction
result of the spectral reflectance factor of the magenta
ramp using Eq. 6 and values of optimized nλ and dot area.
The relationships between theoretical dot areas (defined
via the halftoning algorithm) and effective dot areas (de-
fined by the model coefficient for each linear optimization)
for each color type were described using fourth-order poly-

Figure 3. Relationship between theoretical dot area and statis-
tically derived effective dot area. Lines joining data were derived
using forth-order polynomial models.
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nomial equations (Eq. 7) and shown in Fig. 3 as lines. This
nonlinearity was expected and is often referred to as me-
chanical dot gain. Figure 3 also shows that the secondar-
ies had increased dot gain in comparison to the primaries,
presumably due to wetting of the paper. Although the use
of one-dimensional look-up tables to describe the
nonlinearity is more common and will result in improved
accuracy,31 they can lead to adverse effects when invert-
ing the model numerically. This will be described in greater
detail.

    f i (ai ) = k4,iai
4 + k3,iai

3 + k2,iai
2 + k1,iai + k0,i .      (7)

Following the flowchart shown in Fig. 5, colorimetric
coordinates can be estimated from digital signal values.
This flow consisted of (1) converting red, green, and blue
digital counts to theoretical dot areas of each color type
using the dot-on-dot halftone and the 100% GCR algo-
rithms, (2) converting theoretical dot areas of each color
type to effective dot areas using the polynomial equations,
(3) using the Yule–Nielsen modified Murray–Davies equa-
tion, Eq. 6, to estimate spectral reflectance factor, and (4)
calculating colorimetric coordinates.

The model effectiveness was evaluated by analyzing the
verification target. The average total color difference be-
tween measured and predicted colors in CIELAB was 4.2
with a maximum of 11.7. The histogram of color differ-
ences and projection vector diagrams from measured to
predicted colors in the a*b* and the L*C*ab planes are
shown in Figs. 6 and 7, respectively.

Omatsu Model. A model that can predict reproduced
reflectance factor for a three-color dot-on-dot printer has
been suggested by Omatsu et al.32 This model considers
the scattering effect of the light within the paper. A
Gaussian function is hypothesized to model the point
spread function of the scattered light within the paper.
This results in Eq. 8.

    

R = akRk
1/ 2 + asRs

1/ 2 + apRp
1/ 2 + awRw

1/ 2{ }2

+2exp(−π 2σ 2 / L2 ){(Rs
1/ 2 − Rk

1/ 2 ) sin(πak )

+(Rp
1/ 2 − Rs

1/ 2 ) sin π (ak + as )( )
+(Rw

1/ 2 − Rp
1/ 2 ) sin π (ak + as + ap )( )}2 / π 2 ,

   (8)
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Figure 4. Spectral reflectance curves of magenta ramp measured
(dashed line) and predicted (solid line) based on Eq. (6).
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where σ is a length of the scattered light, L is the screen
resolution of a printer, and subscripts p and s indicate pri-
mary and secondary. If σ is 0, Eq. 8 reduces to the
Neugebauer equation, and if σ is infinity, it reduces32 to
the Yule–Nielsen equation where n equals 2.0. Coefficient
σ was defined as a single value in the original model. In
similar fashion to n, σ is extended to vary as a function of
wavelength because light scattering is, in general, wave-
length dependent. It is difficult to measure coefficient σλ
directly. However, it is possible to optimize these coeffi-
cients for the measured colors of the printer statistically.
In this case, a single coefficient αλ was considered instead
of elements of the exponential function in Eq. 8. There-
fore, it was not necessary to measure the screen resolu-
tion L directly. Accordingly, Eq. 8 reduces to Eq. 9.
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R R a
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2

22 2 2)sin ( ) } /π πa a ak s p+ +( )
  (9)

Optimizing the coefficients in the Omatsu model was
performed in a similar fashion to optimizing the coeffi-
cients in the Murray–Davies–Yule–Nielsen model. It was
first assumed that the effective dot areas were equal to
the theoretical dot areas. Then the αλ was estimated for
each wavelength in a fashion similar to that used to esti-
mate nλ. The optimized αλ values are plotted in Fig. 8.
With defined αλ values, the effective dot areas were esti-
mated for each sample from the modeling target minimiz-
ing sum-of-squares spectral reflectance factor error. The
resulting effective dot areas are shown in Fig. 9 as data
points. Figure 10 shows reconstructed spectral reflectance
curves of the magenta ramp using this model. The rela-
tionships between theoretical dot areas and effective dot
areas were described using sixth-order polynomial equa-
tions (Eq. 10) and shown in Fig. 9 as lines.

fi(ai) =

k6,iai
6 + k5,iai

5 + k4,iai
4 + k3,iai

3 + k2,iai
2 + k1,iai + k0,i . (10)

The effectiveness for the Omatsu model was also evalu-
ated using the verification target. The average color dif-
ference was 3.9∆E*ab with a maximum of 11.4∆E*ab. The
∆E*ab histogram and the a*b* and the L*C*ab projection
vector diagrams are shown in Figs. 11 and 12, respectively.

Discussion. The nλ and σλ coefficients should be
smooth functions; however, abrupt changes were observed
in both coefficients, as shown in Figs. 2 and 8. It seems
that these changes correspond to steep portions of the spec-
tral reflectance factors of the primary and secondary inks.
Figure 13 shows the average reflectance factor of the mod-
eling data set. It is obvious that a similar trend is observed.
Jagged functions can often result because each data point
is based on an independent optimization. The jaggedness
can be minimized by imposing a constraint, often based
on the first derivative of the spectral reflectance factor. It
seems that these kinds of fluctuations of the average re-
flectance factor affected the nλ and σλ coefficients.

Color difference statistics of the two models are com-
pared with one another in Table I. The average color dif-
ferences of the two models are very similar in spite of using
Iino and Berns
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Figure 5. Forward model flowchart of prediction model for dot-on-dot and 100% GCR algorithm using spectral Yule–Nielsen modified
Murray–Davies equation.
different model theories; the trends shown in Figs. 7 and
12 are similar to each other. Moreover, the maximum color
difference for the models correspond to the same sample
of the verification target. Figure 14 shows the three spec-
tral reflectance factor curves of this sample and its esti-
mates. The predicted curves are almost the same; however,
the measured data are very different. It is possible that
the halftoning algorithm described by Eqs. 1 and 2 is not
strictly adhered to. Manufacturers often adjust particu-
lar colors due to color (e.g., hue shifts) or spatial (e.g., reso-
lution and sharpness) artifacts. This was tested for the
color shown in Fig. 14 and another color with different
digital counts but yielding the identical dot area for the
magenta ink. When both samples were viewed under a
microscope, it was clear that the magenta dot areas were
quite different. If the printer driver was optimized for cer-
tain colors, it would be impossible to account for this in a
generalized model. It is possible that the verification tar-
Building Color-Management Modules Using Linear Optimization 
get contained only a few of these optimized colors. Alter-
natively, the poor result may be due to random error, al-
though this seems unlikely.

These two models have similar predicting performances
according to Table I. In comparison between Eqs. 6 and 9,
it is expected that the computational loads of Eq. 6 and
the first term of Eq. 9 are almost the same. It is obvious
that the Omatsu model (Eq. 9) needs more computational
time, a disadvantage when building device profiles. More-
over, the spectral Yule–Nielsen equation has some exten-
sion ability for random-dot halftone printers. For example,
this modification can be extended to the well-known
Neugebauer equation.28 Conversely, it is difficult to extend
the Omatsu equation for random dot patterns because the
model is based on the assumption of a fixed dot-on-dot
pattern. It does not allow for the existence of more than
one primary, secondary, and tertiary color present. Because
of these reasons, the spectral Murray–Davies equation
I. Desktop Color System      Vol. 42, No. 1, Jan./Feb.  1998     83
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modified by the Yule–Nielsen spectral-n-values correction
was selected as the model for building a device profile.

Scanner Forward Model
Several methods for building scanner device profiles

have been described in the literature: polynomial regres-
sion methods,7,33 look-up-table and interpolation methods,34

and spectral reconstruction methods.8–12 Although the last
technique is preferred for drum scanners, when applied
to the scanner used in this research, the results were un-
acceptable.12 As a consequence, a polynomial regression
model was used. Generally, this method is separated into
two stages.6,7,33 The first stage characterizes an expected
nonlinear relationship between device signals and lumi-
nance factor of a neutral target. However, because the gray
scale of the Kodak Ektacolor Q-60R1 was not completely
neutral, an alternate approach was taken. In this case,
the device signals of each channel were related mathemati-
cally with the corresponding tristimulus value of the gray
scale. The red channel was related to tristimulus X, green
to tristimulus Y, and blue to tristimulus Z of the gray-
scale samples. Equation 11 was used to characterize this
nonlinear relationship:

    
f i (di ) = (ξ i

di

255
+ ηi )

γ i + ζ i , (11)

where d is digital count, subscript i indicates a channel,
and ξ, η, ζ, and γ are model coefficients. Each coefficient
was determined for each channel of the scanner individu-
ally using nonlinear optimization where the objective func-
tion minimized the sum-of-squared errors of the cube root
of tristimulus values of the gray steps of the Q-60R1. This
objective function greatly improves the correlation to per-
ceived differences by incorporating the cube-root function
used in the CIELAB equations.33

The second stage transforms the linearized drive sig-
nals to approximations of tristimulus values.7,33 This step
can be thought of as color correction. Based on previous

TABLE I. Color Difference Statistics for Predicted Printed Col-
ors by Two Models

Model Statistics Modeling Verification
target target

Spectral Average ∆E*ab 2.3 4.2
Yule–Nielson Model Maximum ∆E*ab 5.1 11.7

Standard deviation 1.3 2.5

Average ∆E*ab 2.1 3.9
Omatsu Model Maximum ∆E*ab 5.0 11.4

Standard deviation 1.5 2.3
84     Journal of Imaging Science and Technology
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Figure 7. Error vectors of predicted colors based on Eq. 6 for the
verification target. Vector tail locates the measured coordinate;
vector head locates the predicted coordinate.

research with this scanner,33 a 3 × 9 color-correction ma-
trix was hypothesized consisting of linear, squared, and
covariance terms shown by Eq. 12. The matrix coefficients
were estimated using nonlinear optimization with the
same nonlinear objective function used to characterize the
scanner’s tone reproduction. The matrix resulted in an
average ∆E*ab of 2.1 with a maximum ∆E*ab of 8.1 for the
Q-60R1. This is a reasonable result given that the system
spectral responsivities of the scanner are very different
from CIE 1931 color matching functions weighted by
illuminant D65.

The combination of Eqs. 11 and 12 was used as the scan-
ner device profile that transformed digital representations
of Ektacolor images to approximate tristimulus values for
the 1931 CIE standard observer and illuminant D65. The
∆E*ab histogram and the a*b* and the L*C*ab projection
vectors are shown in Figs. 15 and 16, respectively.
Iino and Berns
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Building the Color-Management Module
The color-management module (CMM) developed in this

research consisted of concatenating the scanner and printer
device profiles and a rudimentary color gamut mapping into
a 333 CLUT. Cubical linear interpolation was used to esti-
mate values between the nodes.35 Ordinarily, color appear-
ance is also included in the CMM.36,37 However, both the
original and reproduced images are reflection prints; in this
case, they will have identical viewing conditions. As a con-
sequence, color appearance matching reduces to tristimulus
Building Color-Management Modules Using Linear Optimization
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Figure 10. Spectral reflectance curves of magenta ramp mea-
sured (dashed line) and predicted (solid line) based on Eq. 11.
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Figure 11. Color difference histogram of model performance
based on Eq. 11.

matching, obviating the need for an explicit color appear-
ance model except for gamut mapping.

The number of nodes of the CLUT, the orientation of
the nodes within a three-dimensional space, and the type
of subspace volume all affect the interpolation and extrapo-
lation accuracy.2 Because these issues were outside the
scope of this research, a large CLUT was used that, hope-
fully, minimized these artifacts.

Visual and colorimetric evaluations indicated that the
ink-jet color gamut was considerably smaller than the
photographic color gamut, particularly in the lightness di-
mension. This is exemplified in Figs. 7 and 16 in the L*C*ab

plots; the minimum L* for the ink-jet printer was around
20 while the minimum lightness for the photographic pa-
per was about 5. There was also a noticeable difference in
the color of each substrate. The differences in the chro-
matic dimensions for these two devices, as shown in the
b*a* plots, were modest. For the current research goals,
the following gamut-mapping strategy was employed. More
elaborate methods are described in Refs. 39 to 45.

The RLAB color appearance model46 was used to define
the color appearances of the two media according to Eq. 13:

    

LR = 100(Y / 100)1/ 2.3 ,

aR = 430[(X / 100)1/ 2.3 − (Y / 100)1/ 2.3 ],

bR = 170[(Y / 100)1/ 2.3 − (Z / 100)1/ 2.3 ],
(13)

where the exponent was defined based on average-sur-
round viewing, typical of hardcopy. RLAB was selected due
to its computational simplicity and improved accuracy in
 I. Desktop Color System      Vol. 42, No. 1, Jan./Feb.  1998     85
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Figure 12. Error vectors of predicted colors based on Eq. 11 for
the verification target. Vector tail locates the measured coordi-
nate; vector head locates the predicted coordinates.

defining color appearance in comparison to CIELAB. The
white and black points of the two media are shown in Table
II. Because of these large differences and our research goal
to evaluate colorimetric accuracy, the color gamut of the
photographic target was linearly compressed using Eq. 14.
The compressed data were used to redefine the “original”
colorimetric coordinates of this medium. Residual differ-
ences in color gamut were accounted for during the printer
inversion by employing minimum ∆E*ab clipping.

    

LR
destination =

24.0; LR
original < 6.4

0.85LR
original + 18.35; 6.4 ≤ LR

original ≤ 89.0
94.0; LR

original > 89.0,









aR
destination = aR

original ,

bR
destination = bR

original . (14)
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Inverse Printer Forward Model. It is difficult to de-
rive an inverse function of the forward printer model ana-
lytically because the model equations are impossible to
solve mathematically. Therefore, it is necessary to use an
iterative method to invert the forward printer model. Two
iteration methods were evaluated, the Newton-Raphson
and the Simplex methods.

Newton–Raphson Method. Suppose that the first ap-
proximation to finding a root of an equation of the form
f(x) = 0 is xn. An improved approximation, xn+1, is given by
Eq. 15 according to the Newton–Raphson method47 where
f ’(xn) is the derivative of f(xn). The same procedure is re-
peated to achieve a better approximation and the itera-
tion continues until the function value becomes less than
some prescribed small value.

    
xn+1 = xn + ∆x = xn −

f (xn )
f ' (xn )

. (15)

Expanding the Newton–Raphson method to the three-
dimensional color space,48 an application for the inversion
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Figure 14. Reflectance curves of measured (thick line) and pre-
dicted by Yule–Nielsen model (thin line) and by Omatsu model
(dashed line). These predicted curves gave maximum color dif-
ferences for the verification target.

Figure 13. Averaged reflectance factor of 57 modeling samples.

TABLE II . Maximum and Minimum Lightness of Original and
Printer

LR
max LR

min

Original (Q-60R1) 89.0 6.4
StyleWriter Pro 94.0 24.0
Iino and Berns



of the printer forward model [fx(dr,dg,db)] is described be-
low. The tristimulus values corresponding to the initial
digital counts of dr0, dg0, and db0 are approximated as X0,
Y0, and Z0. The small change of tristimulus value ∆X ac-
cording to the small changes of digital counts ∆dr, ∆dg, and
∆db is expressed in Eq. 16, similar in form to Eq. 15.

    

X0 + ∆X = fx(dr0 + ∆dr , dg0 + ∆dg , db0 + ∆db ),

= fx(dr0 , dg0 , db0 ) + ∆dr∂fx / ∂dr

+∆dg∂fx / ∂dg + ∆db∂fx / ∂db ,

= X0 + ∆dr∂X / ∂dr + ∆dg∂X / ∂dg + ∆db∂X / ∂db .
   (16)

Tristimulus Y and Z values are obtained in similar fash-
ion. These relationships are expressed in a matrix repre-
sentation as follows:

    

∆X
∆Y
∆Z















=
∂X / ∂dr ∂X / ∂dg ∂X / ∂db

∂Y / ∂dr ∂Y / ∂dg ∂Y / ∂db

∂Z / ∂dr ∂Z / ∂dg ∂Z / ∂db















∆dr

∆dg

∆db













 . (17)

By multiplying the inverse matrix of the first right side
term of Eq. 17, Eq. 18 is obtained.

    

∆dr

∆dg

∆db













 =

∂X / ∂dr ∂X / ∂dg ∂X / ∂db

∂Y / ∂dr ∂Y / ∂dg ∂Y / ∂db

∂Z / ∂dr ∂Z / ∂dg ∂Z / ∂db















−1
∆X
∆Y
∆Z














. (18)

The digital counts for correction ∆dr, ∆dg, and ∆db are
calculated from the differences between the target
tristimulus values and their approximations (∆X, ∆Y, and
∆Z) using Eq. 18. The corrected digital counts dr1, dg1, and
db1 in Eq. 19 would result in a better approximation. The
same procedure is repeated until the color difference be-
comes less than a defined tolerance.

    

dr1 = dr0 + ∆dr ,

dg1 = dg0 + ∆dg ,

db1 = db0 + ∆db .
                          (19)

Ideally, the partial derivatives are calculated from the
forward models analytically.49,50 However, because the for-
ward printer model was complicated, it is more efficient
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Figure 15. Color difference histogram of model performance for
the scanner model based on Eqs. 17 and 19.
Building Color-Management Modules Using Linear Optimization 
to calculate the partial derivatives numerically. To imple-
ment the numerical approximation it was necessary to ex-
trapolate the input digital counts beyond the usual 0 to
255 range to avoid a zero determinant when calculating
an inverse matrix. The polynomial equations, which ex-
pressed the relationship between theoretical dot areas and
effective dot areas in the printer forward models, were
used in the Newton–Raphson method to obtain a reason-
able extrapolation. In addition, it was easy for the polyno-
mial equations to set small changes of digital counts (∆dr,
∆dg, ∆db). For these two reasons, polynomial equations
were preferred to one-dimensional look-up tables.

The initial digital counts for the iteration were set49 to
the midpoint of the input space dr0 = dg0 = db0 = 128. Small
digital count changes for calculating the partial deriva-
tives numerically were set to ∆dr = ∆dg = ∆db = 1.0 because
the minimum change in digital counts is one unit. The
digital count range was not limited. The tolerable color
difference that was the condition for stopping iteration
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Figure 16. Error vectors of regression scanner model for Q-60R1.
Vector tail locates the measured coordinates; vector head locates
the predicted coordinates.
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was set to 1.0 ∆E*ab. The final digital counts were clipped
to 0 and 255 if beyond the normal operating range.

In testing the above method, many in-gamut colors did
not converge: they either diverged to a gamut surface or
oscillated between two values. Limitations using the New-
ton–Raphson method are well known. To minimize prob-
lems of oscillation, the minimum change in digital count
(∆dr, ∆dg, ∆db) was reduced from unity to 0.1. To improve
convergence, Eq. 20 was used51 instead of Eq. 15. Accord-
ing to this correction, ω is set to 1 at the first step. If no
improvement occurs in the function result, ω is reduced to
1/2. If no improvement again, ω is reduced to 1/4, etc. This
correction is continued until the function result improves.

    
xn+1 = xn − ω f (xn )

f ' (xn )
0 < ω ≤ 1 (20)

The flowchart of a computer program of the Newton–
Raphson method implemented in this research is shown
in Fig. 17.

Oscillations and divergences for most colors were sup-
pressed by the ω correction and reduced step size, though
at the cost of increased computational time. Colors either
at the boundary or outside of the gamut still resulted in
convergence problems.

Simplex Method. The Simplex method is a direct search
method. Because it does not rely on calculating deriva-
tives, convergence problems encountered using the New-
ton–Raphson method are not expected to occur. However,
this reduction of information tends to increase the num-
ber of iterations to achieve convergence. (Note that add-
ing ω also increases the number of iterations such that
the two methods require about the same amount of total
computational time.) Using four operations (reflection, ex-
pansion, contraction, and reduction), the minimum point
of a function is obtained.51.52

In this research, initial digital counts were first set to
dr0 = dg0 = db0 = 128 as employed using Newton–Raphson.
However, the iteration often stopped despite large residual
color differences, a result of local minima. Thus, choosing
the initial values is very important using the Simplex
method. The initial digital counts that resulted in the few-
est problems with local minima were: dr0 = 255X/Xn, dg0 =
255Y/Yn, and dg = 255Z/Zn where X, Y, and Z were the
tristimulus values of the target color and Xn, Yn, and Zn,
were the illuminant tristimulus values. Therefore, the ini-
tial simplex was defined51 as follows:

      

P0 = [255X / Xn ,255Y / Yn ,255Z / Zn ],

P1 = [255X / Xn + s1,255Y / Yn + cs2 ,255Z / Zn + cs3 ],

P2 = [255X / Xn + cs1,255Y / Yn + s2 ,255Z / Zn + cs3 ],

P3 = [255X / Xn + cs1,255Y / Yn + cs2 ,255Z / Zn + s3 ],

(21)

where

    

c = 1 / ( n + 1 + 2), n = 3,
si = scale factors.

The CIELAB color difference between the target color
and its prediction defined the minimization function. Also,
the best and worst simplexes were defined as sets of val-
ues obtained from the minimum and the maximum re-
sults of the minimization function among given simplexes,
88     Journal of Imaging Science and Technology
respectively. Any of the following conditions resulted in
termination: (1) if the differences between element val-
ues of the best and the worst simplexes were less than 0.5
digital value, (2) if the color differences for both best and
worst simplexes were the same, and (3) if the number of
iterations exceeded a defined maximum iteration num-
ber. When one of three termination conditions was detected
and the residual color difference from the final simplex
was still larger than the defined tolerance of 1.0 ∆E*ab,
the calculation resumed using the final simplex from the
first calculation as an initial simplex to avoid termina-
tion at a local minimum. This routine was very effective
in converging at the true minimum. The following sim-
plex coefficients were used as recommended by Kowalik
and Osborn:53 Reflection coefficient = 1.0, Expansion coef-
ficient = 2.0, and Contraction coefficient = 0.5. These same
values were also used successfully by Ohta for photo-
graphic systems.54 The flowchart of the Simplex method
used in this research is shown in Fig. 18.

The range of input digital counts was limited between
0 and 255 at the entrance of the printer forward model for
obtaining an existing approximated root using a sawtooth
function (Fig. 19). Although it is possible for the Simplex
method to limit the range of input values before the printer
model,54 the range of digital counts in the simplex calcu-
lation was, instead, constrained by the sawtooth function.
This function was extremely effective in ensuring conver-
gence at the true minimum. If the input values are sim-
ply clipped and not extended by the sawtooth function,
the calculation will terminate prematurely because no in-
cremental improvement occurs.

The method worked well without oscillation and diver-
gence problems. However, it took, on average, about 30 it-
erations for convergence without the recalculation routine.

System Evaluation. The forward scanner profile,
gamut resizing, and inverse printer profile including
gamut mapping were concatenated to form a single CLUT.
Software developed by the RIT Research Corporation35 was
used to perform the three-dimensional cubical interpola-
tion. This software was written as a plug-in filter for Adobe
PhotoShop. Thus, image data, based on scans using the
JX-610, were transformed to image files that when sent
to the ink-jet printer, would result in colorimetric color
reproduction. The colorimetric coordinates of the prints
were measured spectrophotometrically to evaluate colori-
metric accuracy. The largest CLUT available in this soft-
ware package, 333, was used to minimize potential artifacts
caused by the cubical sampling and deterioration of the
profile near gamut boundaries. The corners of the input
space RGB cube might be transformed to unexpected val-
ues because their corresponding colorimetric coordinates
are outside of the printer gamut. In addition, colors that
place a border between the outside and inside of the printer
gamut might be transformed to unexpected points. Larger
CLUTs result in fewer artifacts. Because both profiles are
analytical in nature, it is straightforward to build a CLUT
of any size.

The projected error vectors from the reproduced tar-
get colors of Q-60R1 are shown in Figs. 20 and 21 based
on the Newton–Raphson and the Simplex methods, re-
spectively. Reproduced colors with large color differences
from target colors in Fig. 20 correspond to those in Fig.
21. It seemed that these colors were almost outside of
the printer gamut. The directions of error vectors were
very different and depended on the iteration method. Ac-
cording to the large-error target colors, reproduced col-
ors from the Simplex method were located nearer to the
target colors than those from the Newton–Raphson
Iino and Berns
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Figure 17. Program flowchart of iteration method for backward printer model using the Newton–Raphson, where Th_∆E is tolerable
color difference, ITMAX is the number of maximum iteration times, WCMAX is the number of maximum ω correction times, and
FWMD is the printer forward model.
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Figure 20. Error vectors of reproduced colors by concatenating
device profile made by the Newton–Raphson iteration method.
Vector tail locates target coordinate; vector tail locates reproduced
coordinate.
Building Color-Management Modules Using Linear Optimization
method. The Simplex method can find true minima for
colors near the edge or outside of the gamut, whereas
the Newton–Raphson method could not. Color difference
histograms between the target colors and their reproduc-
tions are shown in Fig. 22. Fig. 22(a) and 22(b) represent
the Q-60R1 colors following lightness remapping. Figures
22(c) and 22(d) were constrained to include only common
gamut colors. The color difference statistics are given in
Table III. The Simplex method resulted in less errors than
the Newton–Raphson method. It is also obvious that the
substantive difference between the two methods occurred
outside of the printer gamut. The Newton–Raphson
method was unstable resulting in mapped colors at un-
expected locations. Apparently, the usual limitations of
the Newton–Raphson method are amplified beyond
gamut boundaries preventing the accurate location of the
printable color based on minimum ∆E*ab clipping. In par-
ticular, data extrapolation caused errors in calculating
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Figure 21. Error vectors of reproduced colors by concatenating
device profile made by the Simplex iteration method. Vector tail
locates target coordinate; vector tail locates reproduced coordinate.
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the partial derivatives that were not overcome by limit-
ing the digital range between 0 and 255. The Simplex
method did not appear to suffer from this limitation. The
sawtooth function improved convergence to the true so-
lution. For common gamut colors, the two methods were
similar in performance.

The system performance can be quantified by calculat-
ing the average color difference of the CLUT. Average ∆E*ab

values below about 2.5 are below visual threshold55 while
average values below about 6 result in acceptable color
reproduction accuracy for pictorial images.55,56 The aver-
age of all the colors was 5.9 while the average error for
common gamut colors was 4.9 when using the Simplex
algorithm. Thus, the CLUT based on the Simplex method
would yield acceptable color reproduction accuracy for ap-
plications appropriate to the use of ink-jet printers.

Conclusions
A color-management module or CMM was developed and

tested for a desktop color system consisting of a flat-bed
scanner imaging photographic reflection prints and an ink-
jet printer using coated ink-jet paper. The first step was
to develop forward models for the scanner and printer. The
second step was to define a gamut mapping strategy. The
third step was to concatenate the scanner forward model,
gamut mapping strategy, and an inverse model of the
printer into a 333 CLUT, thereby defining the CMM.

Two candidate models were evaluated for the printer: a
spectral expansion of the Yule–Nielsen–Murray–Davies
equation where both the n value and reflectance factor
were functions of wavelength, and a spectral expansion of
the Omatsu equation where the path length of scattered
light within the substrate was a function of wavelength.
For both models, polynomial equations were used in pref-
erence to one-dimensional LUTs when characterizing sub-
system nonlinearities. Both spectral models were combined
with a dot-on-dot halftoning algorithm with 100% GCR.
The model parameters were optimized based on primary
and secondary color ramps, 57 samples in total. The two
models had equivalent prediction accuracy. Because of its
simplicity, the Yule–Nielsen–Murray–Davies based model
was used to define the color gamut of the printer.

Multiple linear regression was selected to transform
mathematically the scanner into an approximate imaging
colorimeter when digitizing photographic reflection prints.
The model consisted of a nonlinear stage that character-
ized the photometric nonlinearity of the scanner and a
second-order 3 × 9 matrix that approximated the colori-
metric conversion process. The model coefficients were op-
timized using an IT8.7/2 color target. In similar fashion
to the printer models, equations were used to character-
ize the nonlinearities rather than one-dimensional LUTs.

The gamut mapping strategy consisted of linearly com-
pressing the lightness range of the photographic color
gamut to match the lightness range of the ink-jet color
gamut. The RLAB color appearance space was used. Re-

TABLE III. Colorimetric Performance Statistics of Device Profiles

Targets and statistics Iteration method
Newton–Raphson Simplex

All target Avg. ∆E*ab 8.9 5.9
Max. ∆E*ab    32.9 17.8
Std. dev. 5.6 3.5

Inside gamut target Avg. ∆E*ab 7.0 4.9
Max. ∆E*ab 15.9 12.4
Std. dev. 3.4 2.6
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maining colors outside of the compressed photographic
gamut were clipped to the ink-jet gamut boundary by mini-
mizing the interpoint distance in CIELAB (i.e., minimum
∆E*ab clipping).

Perhaps the key element in building the CMM is in-
verting the printer forward model. That is, printer driver
values (for this printer, dr, dg, and db) are required from
input colorimetric data (e.g., RLAB, CIELAB, tristimulus
values). Two linear optimization techniques were evalu-
ated: the Newton–Raphson method and the Simplex al-
gorithm. Because the Newton–Raphson method is based
on calculating first derivatives, equations were preferred

Figure 22. Color difference histograms of reproduced colors us-
ing device profiles made by the Newton–Raphson and the Sim-
plex methods.
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in comparison to one-dimensional LUTs when describ-
ing subsystem nonlinearities of a device’s color gamut.
This resulted in a more accurate numerical approxima-
tion when defining the derivatives and enabled a reduc-
tion in step size to 0.1 digital counts. This was critical in
order to minimize oscillations and divergences. For col-
ors well within the two color gamuts, the Newton-
Raphson method always converged quickly. When the
input colorimetric coordinates corresponded to the
printer’s color gamut boundary or beyond, convergence
problems occurred because the first derivative ap-
proached zero. A step-size function, ω, was used to re-
duce the step size as an aid in improving convergence
problems. In some cases, this resulted in convergence,
though at a significant loss of computational speed. How-
ever, there were still instances of incorrect solutions. In
other words, the termination condition did not correspond
to the minimum ∆E*ab clipping algorithm. The Simplex
algorithm is a direct search method. As such, it did not
suffer from the limitations associated with calculating
derivatives. However, in the gamut mapping region, it
could also terminate at the wrong values if the objective
function contained the usual constraint of limiting the
feasible solution (digital data constrained between 0 and
255). This was alleviated by introducing a sawtooth func-
tion that constrained data extrapolation and facilitated
proper convergence.

Several conclusions can be drawn from this research.
The first is that model-based printer models result in an
efficient method of building CMMs once the basic model-
ing research in performed. Having completed this research,
device profiles can be easily built by printing a test target
of 57 colors and measuring the spectral reflectance factor
of each sample. This is an easy manual operation and can
be performed each time consumables are changed.

The second conclusion concerns the choice of iterative
technique. It is clear that methods based on calculating
first derivatives are problematic when incorporating
gamut mapping strategies. The simplex method used in
this research was an effective linear optimization method.
We would expect that all derivative-based methods
(whether first or second derivatives) would have conver-
gence problems for this application, though we have not
tested this conclusion. Using direct search methods, one
can eliminate the need for equation-based definitions of
subsystem nonlinearities. This is beneficial when simple
models such as polynomials do not well fit the measured
data.
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