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The scattering of light within paper can affect the tone characteristics of a printed halftone image. A halftone image is formed by
variation in the average reflectance, which is determined by the size of the ink dots. Photon migration within the paper from noninked
to inked regions tends to increase the photon absorption and thus decrease the halftone reflectance—the dots are effectively larger
than their physical size. This effect is known as optical dot gain or as the Yule-Nielson effect. The degree of optical dot gain depends on
the distance that the photons migrate within the paper, which in turn depends on the paper’s scattering and absorption characteris-
tics, and on the thickness of the paper. We develop a theory that expresses the halftone reflectance in terms of the halftone microstruc-
ture—the screen period, dot size, dot shape, and ink transmission—and the effects due to the paper. The paper effects are represented
in the theory by a point spread function, which is a conditional probability density that characterizes the photon migration within the
paper, and by the paper’s reflectance. We construct a model of photon transport within the paper by solving the transport equation
using a diffusion approximation, from which we derive a point spread function. We interpret the expanded Murray–Davies model of
halftone reflectance in terms of the theory developed here by giving a probabilistic interpretation to optical dot gain. We show that
optical dot gain can be related to a single numerical parameter. Using the diffusion point spread function, we show how this parameter
is related to the physical quantities that characterize the paper.
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Introduction
Recently there has been interest in the scattering of light
within paper and the effect this scattering has on the tone
characteristics of a printed halftone image.1–6 A halftone
image is formed by variation in the halftone reflectance,
which is determined by the size of the ink dots. Photon
migration within the paper, from noninked to inked re-
gions, tends to increase the photon absorption and thus
decrease the halftone reflectance—the dots are effectively
larger than their physical size. This effect is known as
optical dot gain, or as the Yule-Nielson effect, and depends
on the characteristics of the paper. This effect is particu-
larly pronounced when the distance the photons migrate
is comparable to the screen period.

In the first part of this article, we develop a theory
that expresses the halftone reflectance in terms of the
halftone micro-structure—the screen period, dot size, dot
shape, and ink transmission—and the effects due to the
paper. The paper effects are represented in the theory by
a point spread function (PSF), which is a conditional prob-
ability density that characterizes the photon migration
within the paper. It is shown that the effect that light
scatter has on the halftone reflectance can be expressed
in terms of a single quantity—a factor we call Z. This
factor is a function of the dot shape, dot size, screen pe-
riod, and the paper’s PSF.

The paper’s point spread function characterizes the pho-
ton migration within the paper, which depends on the
paper’s scattering and absorption characteristics, and on
the thickness of the paper. In the second part of the ar-
Original manuscript received April 25, 1997

© 1997, IS&T—The Society for Imaging Science and Technology.
ticle, we construct a model of photon transport within the
paper by solving the transport equation using a diffusion
approximation.7,8 From this we derive the diffusion point
spread function.

Using the diffusion PSF, we show plots of the halftone
reflectance for several typical values of the paper’s param-
eters. We introduce a phenomenological expression for Z
with one adjustable parameter and comparisons are made
between the phenomenological Z and the exact Z as calcu-
lated with the diffusion PSF.

In the third part of the article, we interpret the expanded
Murray–Davis model4 of halftone reflectance in terms of
the theory developed here by giving a probabilistic inter-
pretation of optical dot gain—the various processes that
give rise to optical dot gain are described in terms of prob-
abilities. We show that Z can be interpreted as a probabil-
ity: the conditional probability that a photon emerges from
the paper through a dot if it originally entered the paper
through a dot. We show that all other probabilities de-
scribing the effects of optical dot gain can be obtained from
this “dot–dot” probability.

Halftone Reflectance
In the following, we obtain an expression for the half-

tone reflectance (the average reflectance) from a region of
the halftone print, in terms of the halftone microstruc-
ture—the ink transmission and the size and shape of the
ink dots—and the effects of the paper.

The ink is laid onto the paper in the form of circular
dots with radius d, and the dot centers fall on a square
grid array (screen grid) with screen period r. We consider
a region of the halftone image that has a constant tone,
i.e., the size of the dots is constant over the region and the
region is large compared to the screen period.

The average reflectance is found by averaging the point
reflectance over the region:
    643



    
R = 1

(Nr)2 (region)∫ R(x, y)dA, (1)

where dA = dx dy is an element of area, N2 is the number
of dots in the region, and (Nr)2 is the area of the region.
The region consists of N2 cells of area r2, and each cell
contains one dot. (For simplicity, in all that follows, we
take the limit N → ∞.)

The point reflectance R(x,y) is the reflectance at the point
(x,y) and is given by9:
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The quantity H(x – x′, y – y′ is the point spread function,
and RpH(x – x′, y – y′) is the probability per unit area
that a photon entering the surface of the paper at point
(x′,y′) exits the paper at a point (x,y). The bare paper has
diffuse reflectance of Rp, so H(x,y) is normalized to unity.
It is assumed that the paper is isotropic, so H(x,y) is ra-
dially symmetric:

H(x,y) = 
    
H x2 + y2



 = H (ρ),

where ρ is the polar radial coordinate.
The transmission function T(x,y) is the transmittance

of the ink layer at point (x,y). Certainly, those areas of the
paper between the dots (no ink) have transmission of 1.
The areas covered by ink have a transmission T0. One can
express the transmission function as:

T(x,y) = 1 – (1 – T0) C (x,y), (3)

where the function C (x,y) is 1 if there is ink at x,y and 0 if
there is no ink at x,y. This function is a convolution of the
distribution function for the dots, and a function that de-
scribes the shape of the dots:

      

C (x, y) = circ
x2 + y2

d















* g, (4)

where the * indicates a convolution. The distribution func-
tion for the dots g(x,y) is:

    
g(x, y) = δ (x − nr)δ (y − mr),

n,m
∑ (5)

where r is the dot spacing (screen period) and δ(x) is a
Dirac delta function. The circ [u/d] is the shape function
for circular dots and is defined by:

    
circ[u / d] =

1, u ≤ d

0, u > d




, (6)

with d the radius of the dots. Thus, the expression

      

C (x, y) = circ
(x − nr)2 + (y − mr)2
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is equal to 0 for those points (x,y) where there is no ink,
and is equal to 1 for those points where there is ink.

Expanding Eq. 2 using Eq. 3 one obtains for the point
reflectance:

R(x,y) = [1 – (1 – T0) C (x,y) – (1 – T0)P(x,y)
+ (1 – T0)

2 C (x,y) P(x,y)] Rp, (7)

where P(x,y) is defined as:

      

P x y

x y H x x y y dx dy

( , )

( ' ' ) ( ' , ' ) ' ' .

=

− −∫∫ C (8)

The quantity P(x,y) is a double convolution and can be evalu-
ated by taking the inverse Fourier transform of the prod-
uct of the Fourier transforms of the convolution operands.

The Fourier transform of P(x,y) is

      

F

F F F

{ ( , )}

{ [ / ]} { ( , )} { ( , )}.

P x y

d g x y H x y

=
circ ρ (9)

The Fourier transform of circ [ρ/d] is readily obtained10:

      
F { [ / ]}

( )
,circ ρ π

d d
J kd

kd
= 2 1 2

(10)

where J1(x) is a first-order Bessel function k is the magni-
tude of the two-dimensional spatial frequency (in cycle/
unit length).

The Fourier transform of the dot distribution g(x,y) is
also readily obtained:

        
F { ( , )} ( / ) ( / ),g x y

r
k n r k m rx y= − −∑1

2 δ δ
n m,

(11)

where kx and ky are the x and y components of the spatial
frequency.

The Fourier transform of H(x,y) is the optical transfer
function (OTF) of the paper.11 Because of the assumed sym-
metry and reality of H(x,y), the paper’s OTF is identical to
its modulation transfer function (MTF) and is radially
symmetric in frequency space:

      H̃ (k) = F {H (x, y)}, (12)

where we define     H̃ (k)  as the MTF of the paper.
Taking the inverse Fourier transform of Eq. 9, one ob-

tains for P(x,y):

      

P x y

d
r
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,

=

− +∑π π
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where we define

      
J nm =

J1 2π n2 + m2 d / r





π n2 + m2 d / r
(14)

and

    H̃nm = H̃ ( n2 + m2 / r). (15)
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Note that       J 00 00 1= =˜ .H
One obtains the halftone, or average, reflectance from

the region by averaging the point reflectance R(x,y) over
all x,y. Using Eq. 7 in Eq. 1, there are four terms to inte-
grate. The first term is clearly equal to 1. The second term
is:
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(1 − T0 )π (d / r)2 .
(16)

The third term is:

    

(1 − T0 )
1

(Nr)2 P(x, y) dx dy∫∫ =

(1 − T0 )π (d / r)2 ,
(17)

because H(x,y) is normalized to 1.
The fourth term is:
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Substituting u = x – n′r and v = y – m′r the double integral
above can be written:
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The first exponential is equal to 1 for all n,m,n′,m′, and
the double integral is identically πd2

      J nm* ,  so that the fourth
term is

      
π 2 4

0
2 2

1( / ) ( ) ˜ .
,

d r T H
n m

nm nm− ∑ J (20)

Thus, one writes the average reflectance from the region as

      
R R T Tp= − − + −[ ]1 2 1 10

2
0

2µ µ( ) ( ) ,Z (21)

where µ is the fractional area covered by the dots* µ =
π(d/r)2, and

* This expression for Z with Jnm given by Eq. 14 is strictly correct only for
d ≤ r/2 (or µ < π/4), such that no dot overlap occurs. For π/4 < µ ≤ 1, then
µ = (π/2 – 2θ + sin2θ)/(1 + cos 2θ) with cosθ = 2/(2d), and Jnm is somewhat
different from Eq. 14, but can be readily calculated from Eq. 23.

(18)
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Z = ∑ I Hnm

n m
nm

,

˜ ,
2

(22)

The series Z completely contains the effects of the opti-
cal dot gain. It is a function of dot shape, dot size, screen
period, and the scattering characteristics of the paper. It
is shown in the section on Dot and Nondot Reflectance
that µZ is the probability that a photon exits the paper
through a dot if it originally entered through a dot and
that one can interpret Z –1 as an effective scattering area.

Although the expression for   R  has been derived for cir-
cular dots, the average reflectance has the same form as
Eq. 21 for dots of any shape, with Z given by Eq. 22 and
the definition of Jnm generalized. If the dots have a shape
function given by w(x,y), and lie on a grid with period r,
then one defines Jnm as

      
J nm =

w(x, y) exp[2π i(nx + my) / r]dx dy∫∫
w(x, y)dx dy∫∫

. (23)

For example, if the dots are square with sides of length d,
then w(x,y) = rect(x/d) rect(y/d), where rect(u) = 1 if |u| ≤
1/2 and zero otherwise, and

Jnm = sinc (nd/r) sinc (md/r),

with sinc (v) = sin(πv)/(πv).
To give the expression for   R  a physical meaning, we

consider two extreme cases: the lateral scattering length
is much larger than the screen period and the lateral scat-
tering length is much smaller than the screen period. (We
set Rp = 1 for simplicity.) The lateral scattering length is
defined as the first moment of H(ρ),

    ρ = ρH (ρ)dA,∫ (24)

and is the average lateral distance a photon travels. The
value   1 / ρ  is approximately the spatial bandwidth of the
paper.

If ρ  is much larger than the grid length, ρ /r > 1, then

    H̃ (k) ≈ 0  for k ≥ 1/r. Therefore,     H̃nm ≈ 0  for n,m ≠ 0, and

Z ≈ 1. (25)

The average reflectance in this case is

    

R = 1 − 2(1 − T0 )µ + (1 − T0 )2 µ2 =

= [1 − µ(1 − T0 )]2 .
(26)

The reflectance of the ink is     Ri = T0
2  (the paper reflec-

tance is taken to be 1), so the average reflectance can be
expressed as:

    R = [1 − µ(1 − Ri
1/ 2 )]2 , (27)

which is the Yule-Nielson equation6 with n = 2. One can
interpret this equation in terms of probabilities by writ-
ing it as

    

R = µRi
1/ 2 (1 − µ) + µRi

1/ 2[ ] +

(1 − µ) (1 − µ) + µRi
1/ 2[ ]. (28)
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One can interpret   R  as the probability that an incident
photon is reflected from the paper,     µRi

1/ 2  as the probabil-
ity that the photon enters the paper through an inked area,
and (1 – µ) as the probability the the photon enters the
paper through a noninked area. The photon is said to be
“completely” scattered if the probability that it exits
through an inked or noninked area is proportional to the
ink and noninked areas and is independent of whether
the photon entered through an inked or noninked area, as
indicated in Eq. 28. The first term on the right represents
light entering the paper through an inked area and the
second term represents light entering the paper through
noninked regions. For both, after entering the paper, the
light is “completely” scattered, and exits through a nondot
region with probability 1 – µ and through a dot with prob-
ability µ R1/2. That Z ≈ 1 indicates that the light is com-
pletely scattered and a high degree of optical dot gain
exists. This interpretation is generalized in the section on
Dot and Nondot Reflectance.

If the lateral scattering length is very small compared
to the grid length,     ρ / r → 0, then     H̃ (k) ≈ 1  for all k < 1/

  ρ → ∞. Then     H̃nm ≈ 1 for all relevant n,m, and Z ≈
∑n,m|Jnm|2. This sum can be evaluated exactly by using
the definition of Jnm, Eq. 23, and noting that |w(x,y)|2 =
w(x,y), ∑ exp[2πin(x – x′)/r] = rδ(x – x′), and ∫ w(x,y) dx dy =
πd2. One finds

Z ≈ 1/µ. (29)

The average reflectance in this case is

    R = 1 − µ(1 − Ri ). (30)

This is the Murray–Davies equation,4,12 the average re-
flectance without scattering within the paper, which is the
Yule-Nielson equation with n = 1. In this case no optical
dot gain occurs.

Photon Transport and the Diffusion PSF
In this section we obtain the distribution function for the

photons within the paper by solving the transport equation
using a diffusion approximation.13,14,15,16,17,18,19,20 The photon
distribution is then used to construct a diffusion point
spread function.

The diffusion approximation assumes that any photon
current is due only to gradients in the photon density. A
number of authors13,14,20 have discussed the conditions un-
der which this approximation is valid: (1) that the albedo
be close to 1 and (2) that the average distance that light
travels in the medium be greater than the transport mean
free path or, equivalently, that the optical thickness be
greater than 1. As discussed below, these conditions are
amply satisfied by most papers. Groenhuis et al.13 compared
the diffusion approximation to a Monte Carlo calculation,
and found excellent agreement for the range of parameters
we use here.

Paper consists of a very complex network of layered cel-
lulose fibers plus filler pigments such as titanium dioxide
or calcium carbonate.21 The transparent, flattened fibers
have ~75 µm width, ~8 µm thickness,22 and an index of
refraction23 n ≈ 1.5 so that light is scattered as it enters
and exits a fiber as well as being internally reflected within
the fiber. The thickness of paper (newsprint or bond) is
typically 10 to 18 fiber layers.22 The degree of absorption
within white paper is quite small—the paper opacity is
due to scattering.
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Our model treats the paper in a simplified way. We ig-
nore fiber orientation,22 and multilayer structure,24 and
we assume that the paper is isotropic and homogeneous.
The validity of these assumptions is discussed in the con-
clusion. We do not consider the fiber network as such, but
we characterize the paper by its thickness and by two ex-
perimentally determined parameters that characterize
scattering and absorption. In the section on Halftone Re-
flectance with Diffusion PSF, we indicate how these pa-
rameters can be measured. Our analysis assumes uncoated
paper, but the model can be adjusted in a simple way to
include coated paper.21 As most papers consist of approxi-
mately equal volumes of cellulose and air,21 we consider
the “paper medium” to be cellulose with index n = 1.5 and
that the photons scatter at the fiber–air boundaries within
the paper.

In our model, photons are incident on the paper surface
at a single point and these injected photons are scattered
within the paper. We calculate the distribution of these
scattered, nearly diffuse, photons. The diffusion point
spread function is the normalized outward flux of these
diffuse photons as a function of the distance from the point
of incidence.

Because of the symmetry, we work in cylindrical coor-
dinates ρ, z, φ and choose the +z axis perpendicular to
and pointing into the paper surface (pointing downward),
with z = 0 on the paper top surface, the side from which
the light is incident. The light is incident on the point z
= 0, ρ = 0, and is traveling in the +z direction. The paper
has thickness t, so the bottom surface of the paper is at
z = +t.

Our model treats photons as billiard balls undergoing
elastic collisions with stationary scatterers and traveling
at the speed c between collisions. We assume any interfer-
ence effects average to zero. All the material quantities
are wavelength independent, consistent with our assump-
tion of “white” paper and “black” ink. The quantities that
describe the photon flux are implicitly wavelength depen-
dent, and for simplicity we assume arbitrary monochro-
matic radiation.

Diffusion Equation. We assume that a stream of pho-
tons traveling in the +z direction is incident on the paper
at the origin. The scattering of these injected photons is
the source of the diffuse photons.

We start with the steady-state transport equation for
the photon distribution7

      

ŝ ⋅ ∇f (r, ŝ) =

−γ t f (r, ŝ) +
γ s

4π
p(ŝ, ŝ' )

(4π )∫ f (r, ŝ' )dΩ' , (31)

where       f ( , ˆr s),  the photon distribution, is the number of
photons per unit volume per unit solid angle at position r
travelling in direction     ̂s . This is related to the specific
intensity I(r,    ̂s) (power per unit area per unit solid angle)
as I(r,    ̂s ) = cεf(r,    ̂s ) where ε is the energy of the mono-
chromatic photons. Below we separate the photon distri-
bution function into two parts: one part describing the
injected photons and the other the diffuse photons. The
extinction coefficient is: γt = γs + γa with γs, γa the scatter-
ing and the absorption coefficients, respectively. The phase
function p(    ̂ ˆs s, ′ ) is the normalized differential scattering
cross section and is the probability per unit solid angle
that a photon originally traveling in direction     ̂s ′ is travel-
ing in direction     ̂s  after scattering. The phase function is
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normalized such that 1/(4π) ∫ p(    ̂s ,    ̂s ′)dΩ′ = 1 and depends
only on the angle between     ̂s  and     ̂s ′: p(    ̂s ,    ̂s ′) = p(    ̂s •    ̂s ′).
Following Groenhuis et al.,13 we choose a phenomenologi-
cal phase function that consists of a term representing
isotropic scattering and a term that represents forward
scattering

      p(ŝ, ŝ' ) = (1 − g) + 4πgδ (ŝ ⋅ ŝ' −1), (32)

where g is the average cosine of the scattering angle,

      g ≡ ŝ ⋅ ŝ'  =       p(ŝ ⋅ ŝ' )ŝ ⋅ ŝ∫ ' dΩ.  The value g is an anisot-
ropy parameter: g = 1 indicates the scattering is forwardly
peaked, g = 0 indicates isotropic scattering, and g = –1
indicates the scattering is backwardly peaked. Separat-
ing the forward scattered part from the isotropic part en-
ables one to separate the photon distribution into a diffuse
distribution that consists of photons whose initial injected
velocity has relaxed and a distribution of photons that have
their initial injected velocities.

Using the phenomenological expression for p(    ̂s•    ̂s ′), the
transport equation can be written

      
ˆ ( , ˆ) – ( , ˆ) ( , ˆ ) ,( )s r s r s r s⋅ ∇ = + ′

′ ′∫f f f dtr
sγ γ
π π4 4 Ω (33)

where the transport coefficient, γtr, is defined by

γtr = γs′ + γa (34)

with the effective scattering coefficient γs′ = γs(1 – g). The
transport coefficient is the inverse of the transport mean
free path l* = 1/γtr,

18 which is the distance over which a
photon’s velocity relaxes, and is proportional to the paper’s
optical thickness τ = γtr t.

The photon distribution is separated into two parts: a
term representing the unscattered and forward scattered
injected photons       fi ( , ˆr s) and a term representing the
(nearly) diffuse photons fd (r,     ̂s)

      f (r, ŝ) = f i (r, ŝ) + f d (r, ŝ), (35)

where  fd (r,     ̂s) describes those photons scattered such that
their initial injected velocity has relaxed and  fi (r,     ̂s ) de-
scribes those photons that have essentially the same ve-
locities with which they were injected.

Inserting Eq. 35 into Eq. 33 one sees that the injected
photon distribution satisfies

      

d
dz

f i (r, ŝ) = –γ tr f i (r, ŝ),

so that the distribution of injected photons is

      
f i (r, ŝ) =

S0δ (ρ)
c2πρ

exp(−γ tr z)
δ (ŝ ⋅ k̂ – 1)

2π
, (36)

where     ̂k  is a unit vector along the +z axis and S0 is the
number of photons per unit time injected.

The transport equation for the diffuse photon distribu-
tion is

      
ŝ ⋅ ∇f d (r, ŝ) = –γ tr f d (r, ŝ) +

γ s '
4π

f d (r, ŝ' )dΩ' +
1

4πc
S(r),

(4π )∫
(37)
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where the source term for the diffuse photons is

      

S(r) = cγ s ' f i (r, ˆ ′s )
(4π )∫ dΩ' =

γ s ' S0
δ (ρ)
2πρ

exp(−γ tr z). (38)

One makes the diffusion approximation by expanding the
diffuse photon distribution in a series of spherical harmon-
ics and keeping only the first four terms: the l = 0, m = 0;
and the l = 1, m = –1, 0, 1 terms. One can then write  fd (r,
    ̂s) as

      
f d (r, ŝ) =

1
4π

u(r) +
3

4πc
j(r) ⋅ ŝ, (39)

where u(r) is the diffuse photon density (number of pho-
tons per unit volume) and is equal to

      
u(r) = f d (r, ŝ)

(4π )∫ dΩ, (40)

and j(r) is the diffuse photon current density (number of
photons per unit area per unit time) and is equal to

      
j(r) = c f d (r, ŝ)

(4π )∫ ŝ dΩ. (41)

Integrating Eq. 37 over all solid angles, one obtains a con-
tinuity equation

      ∇ ⋅ j(r) + γ acu(r) = S(r). (42)

Multiplying Eq. 37 by     ̂s , using Eq. 39 for  fd (r,     ̂s) and
integrating over all solid angles, one obtains

      
j(r) = –

c
3γ tr

∇u(r). (43)

This expression characterizes the diffusion approxima-
tion—the photon current is due only to the gradient in the
photon density.

Combining Eqs. 42 and 43 and defining the diffusion
coefficient D = cl*/3 = c/(3γtr), one obtains the diffusion
equation

      D u u∇2 ( ) — ( ) = – ( ).r r rc Saγ (44)

In the following, we solve this equation, with appro-
priate boundary conditions, by constructing a Green’s
function.

Boundary Conditions. There are two boundaries, the
top surface and the bottom surface of the paper. (Note
that we choose the +z axis pointing downward.) Photons
are incident on the paper top surface at one point, the
origin. Away from the origin, there is no inward photon
flux on the top or the bottom surface, only an outward
flux of the internally scattered photons. There is, how-
ever, some internal reflection at the boundaries. This
internal reflection can be considered an inward travel-
ing flux equal to the outgoing flux times the Fresnel re-
flectance.19

We define the partial photon currents j+ (ρ, z) and j– (ρ, z)

      
j+ (ρ, z) = c

0≤θ ≤π / 2∫ f (ρ, z; ŝ)ŝdΩ (45)
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and

      
j− (ρ, z) = c

π / 2≤θ ≤π∫ f (ρ, z; ŝ)ŝdΩ, (46)

where j(ρ, z) = j+(ρ, z) + j_(ρ, z). Using Eq. 39 in Eqs. 45 and
46, one can express j± as

      
j± (ρ, z) = ± c

4
k̂u(ρ, z) +

1
2

j(ρ, z) (47)

or, using Eq. 43

      
j± (ρ, z) = ± c

4
k̂ u(ρ, z) –

D
2

∇u(ρ, z), (48)

where     ̂k  is a unit vector pointing in the +z direction.
As indicated above, there is no external inward flux ex-

cept at the origin. However, the internally reflected flux
can be treated as incoming flux at the boundary, i.e., the
flux directed inward at the paper surface is equal to the
reflected part of the outwardly directed flux. In the Ap-
pendix, we show that this internal reflection can be ap-
proximated by an effective Fresnel reflection coefficient
RF, so that the boundary conditions are

      k̂ ⋅ j+ (ρ,0) = RF k̂ ⋅ j− (ρ,0) (49)

for the top surface and for the bottom surface

      k̂ ⋅ j− (ρ, t) = RF k̂ ⋅ j+ (ρ, t), (50)

where we assume a black (or no) backing. Using Eqs. 47
and 43, one can express the boundary conditions as

    

c
4

u(ρ,0) − D
2

∂
∂z

u(ρ, z) z=0=

= RF
c
4

u(ρ,0) + D
2

∂
∂z

u(ρ, z) z=0






(51)

for the top surface and

    

c
4

u(ρ, t) + D
2

∂
∂z

u(ρ, z) z= t=

= RF
c
4

u(ρ, t) − D
2

∂
∂ z

u(ρ, z) z= t










(52)

for the bottom surface. Thus, one obtains a mixed homo-
geneous boundary condition for the top surface

    
u(ρ,0) − t

τδ
∂

∂ z
u(ρ, z) z=0= 0 (53)

and for the bottom surface

    
u(ρ, t) + t

τδ
∂

∂ z
u(ρ, z) z= t= 0, (54)

where τ is the optical thickness

τ = γtrt (55)
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and δ is defined as

    
δ = 3

2
1 − RF

1 + RF
. (56)

Because of reflection at the boundaries, some internal
reflection of the injected photons will occur. This may be
significant if τ ≈ 1. This can be accounted for by adjusting
the definition of the source term S(r). With infinite mul-
tiple reflections between the top and bottom surfaces and
normal specular reflection of the injected photons, one finds
the source term

      
S(r) =

γ s ' S0δ (ρ)
2πρ

exp(−γ tr z) + RN exp −γ tr (2t − z)[ ]
1 − RN

2 exp(−2τ )
, (57)

where RN is the internal normal reflectance of the injected
photons, and is evaluated in the Appendix. If τ ≥ 2, the ex-
pression for S(r)  reverts to the previous definition, Eq. 38.

Green’s Function Solution.  The solution to the dif-
fusion equation, Eq. 44, is found using a Green’s function

u(ρ, z) = (1/D) ∫ S(ρ′, z′) G(ρ, z; ρ′, z′) ρ′ dρ′ dz′,    (58)

where the Green’s function G(ρ,z; ρ′, z′) is the solution to

    

∇ −





=

− − −

2

2

c
D

G z z

z z

aγ ρ ρ

δ ρ ρ δ πρ

( , ; ' , ' )

( ' ) ( ' ) /( )
(59)

and satisfies the boundary conditions Eqs. 53 and 54. Such
a Green’s function is given by

    

G z z

z z I t K tn n n n
n

( , ; ' , ' )

( ) ( ' ) ( / ) ( / ).

ρ ρ

ψ ψ σ ρ σ ρ

=

< >
=

∞

∑ 0 0
1

(60)

The orthonormal eigenfunctions ψn(z) defined on the in-
terval [0,t] are

ψn(z) = An cos(µn z/t – λn) (61)

with normalization factor

    
An =

4µn / t
2µn + sin 2(µn − λ n ) + sin 2λ n











1/ 2

. (62)

The eigenvalues µn are determined by

    
tan µn =

2τδµn

µn
2 − (τδ )2 , (63)

and the phase λn is given by

    
cot λ n =

µn

τδ
. (64)

The quantity I0 and K0 are modified Bessel functions, σn is
defined by
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),
    σn
2 = µn

2 + 3γ trγ at2 , (65)

and ρ< is the smaller of ρ, ρ′, and ρ> the larger.
Using Eqs. 63 and 64, it can be shown that

µn = (n – 1)π + 2λn, (66)

so that

ψn(t) = (–1)n + 1 ψn(0) (67)

and the normalization factor can be written as

    
An =

2µn / t
µn + sin 2λ n











1/ 2

. (68)

Inserting the expression for S(r), Eq. 57, into Eq. 58,
one finds that u(ρ,z) is

    

u(ρ, z) =
S0

2πD
1

1 − RN
2 exp(−2τ )

γ s ' tτ
τ 2 + µn

2
n
∑

× ψ n (0) (1 + δ ) − RN exp(−2τ )(1 − δ )[ ]{
−ψ n (t) exp(−τ ) (1 − δ ) – RN (1 + δ )[ ]}ψ n (z)K0 (σnρ / t

where we have used the boundary conditions, Eqs. 53 and
54. Figure 1 shows u(ρ, z) as a function of z for several val-
ues of optical thickness τ. One sees that the density is maxi-
mum some distance inside the paper due to loss of photons
at the surface and that the density then decreases at greater
depths because of scattering and loss through the lower
surface. The lower the optical thickness, the lower the over-
all density because fewer photons are scattered.

Diffusion Point Spread Function. The diffusion point
spread function is equal to the normalized diffuse photon
flux from the top surface of the paper. This can be obtained
from the partial diffuse photon current in the –z direc-
tion, given by Eq. 46, at z = 0. The diffuse photon flux
through the top surface is

Figure 1. Photon density u(ρ,z) as a function of z in units of t, γa

= 0, and ρ = 0.5t. The top surface of the paper is z = 0. (a) τ = 1, (b)
τ = 2, (c) τ = 4, (d) τ = 8.

(69)
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      F– (ρ) = −(1 – RF )k̂ ⋅ j– (ρ,0). (70)

Using Eq. 47 and the boundary condition Eq. 53, one
obtains for the diffuse photon flux

    
F– (ρ) = c

2
1 − RF

1 + RF
u(ρ,0). (71)

The diffuse reflectance of the paper surface is the total
diffuse flux out divided by the flux in, S0

    
Rp = 1 S0( ) F− ρ( )∫ dA = c

2S0

1 − RF

1 + RF
2π u

0

∞
∫ ρ,0( )ρ dρ. (72)

Using Eq. 69 for u(ρ,0), the integral over K0 evaluates to
t2/σn

2. Noting that (ct/D) (1 – RF)/(1 + RF) = 2τδ, Eq. 56,
that cos(µn – λn) = (–1)n+1 cosλn, Eq. 67, and that τδcosλn/µn

= sinλn, Eq. 64, we can define, using Eq. 62

    

q
t

R

R

R

n
s

N n

n n

n n

N

n
N

=
− − + µ

µ
µ +

× + − − −[ ]{
+ − − − − +[ ]}

( ' )
exp( )

sin
sin

( ) exp( )( )

( ) exp( ) ( ) ( ) .

γ τ
τ τ

λ
λ

δ τ δ

τ δ δ

1 2
1 2

2

1 2 1

1 1 1

2 2 2

2

(73)

Thus, the reflectance can be expressed as

    
Rp = qn / σn

2 .
n
∑ (74)

Note that if τ ≥ 2 and the scattering coefficient is much
greater than the absorption coefficient (always true for
white paper), then the expression for qn can be significantly
simplified

    
qn ≈ 1 + δ

1 + (µn / τ )2
µn

2 sin 2λ n

µn + sin 2λ n
.

The point spread function is the normalized diffuse pho-
ton flux out of the surface

    

H (ρ) = F _ (ρ)

2π
0

∞
∫ F _ (ρ)ρdρ

or

    
H (ρ) = 1

2πRpt2 qnK0 (σnρ / t).
n
∑ (75)

That H(ρ) is infinite at the origin is consistent with
measurements made of the PSFs of photographic emul-
sions by Gilmore.25

The normalized diffusion line spread function is readily
obtained from the point spread function

    
l(x) = H (ρ)dy

−∞
∞

∫
or, using Eq. 75,
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l(x) = 1

2t Rp
(qn / σn ) exp[−σn x / t].

n
∑ (76)

Figure 2 shows the LSF for various γs′ and γa. For sake
of comparison, the functions have been normalized in the
figure such that l(0) = 1.

The MTF is readily obtained by taking the Fourier trans-
form of l(x) [or the Hankel transform of H(ρ)] and is found
to be

    
H̃ (k) = 1

Rp

qi

(2πkt)2 + σ i
2 .

i
∑ (77)

Figure 3 shows the MTF for the same γs′ and γa as in
Fig. 2. Using the definition Eq. 15 one writes     H̃nm  as

    
H̃nm = 1

Rp

qi

(2π )2 (n2 + m2 )(t / r)2 + σ i
2 .

i
∑ (78)

Figure 2. Line spread function l(x), x in units of t. (a) γs′t = 1.5
and γat = 0, (b) γs′t = 1.5 and γat = 0.25, (c) γs′t = 5.0 and γat = 0, (d) γs′t
= 5.0 and γat = 0.25. Plots are normalized such that l(0) = 1 for
comparison.

Figure 3. Modulation transfer function     H (k), k in units of t–1. (a)
γs′t = 1.5 and γat = 0, (b) γs′t = 1.5 and γat = 0.25, (c) γs′t = 5.0 and γat
= 0, (d) γs′t = 5.0 and γat = 0.25.
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The scattering length, defined as the average lateral
distance a photon travels before exiting the paper, using
Eq. 24 is

    
ρ = tπ

2Rp
qi / σ i

3 .
i

∑ (79)

As indicated earlier, <ρ>–1 is approximately the spatial
bandwidth of the paper. Figure 4 shows a plot of <ρ>/ l*   as
a function of the thickness of the paper: t/l* = τ. In the
figure, the mean free path l* is held constant while the
paper thickness t is varied. For a given mean free path,
the scattering length increases as the paper thickness in-
creases. If there is no absorption, the scattering length
increases without bound as <ρ> ∝ t → ∞. The distance the
photons migrate is limited by the transmission through
the far side as can be inferred from Fig. 1. If absorption
occurs, however, the scattering length reaches a limit for t
→ ∞ as shown in curves 4(b) and 4(c).

Figure 5 shows <ρ> as a function of the optical thick-
ness (paper thickness held constant) for several different
screen periods, where <ρ> is expressed in units of grid
spacing r. Recall that the ratio <ρ>/r determines the de-
gree of optical dot gain. One sees, as expected, the scatter-
ing length decreases with the optical thickness.

Note that our model satisfies the conservation of en-
ergy: with γa = 0 the total reflectance plus transmittance
is equal to 1. The total reflectance is the diffuse reflec-
tance, Eq. 74, plus the reflectance of the injected photons

    
Rp (injected) =

(1 − RN )RN exp(−2τ )

1 − RN
2 exp(−2τ )

,

so that the total reflectance is

    
Rp (total) = qn / σn

2 +
n
∑ (1 − RN )RN exp(−2τ )

1 − RN
2 exp(−2τ )

. (80)

The transmittance is the total flux emitted from the
lower surface divided by the incident flux and consists of
the diffuse transmittance plus the transmittance of in-
jected photons. The diffuse transmittance is

Figure 4. Scattering length <ρ> as a function of optical thick-
ness τ, mean free path constant. <ρ> is in units of mean free path
ltr. (a) γa = 0, (b) γa = 0.01, (c) γa = 0.02, (d) γa = 0.03.
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      T p (diffuse) = (1 / S0 )(1 − RF )∫ k̂ ⋅ j− (ρ, t) dA. (81)

Using Eqs. 47, 54, 69 and 73:

    
T p (diffuse) =

n
∑ (−1)n+1 qn / σn

2 . (82)

The transmittance of injected photons is

    
T p (injected) =

(1 − RN ) exp(−τ )

1 − RN
2 exp(−2τ )

,

so that the total transmittance is

    
T p (total) =

n
∑ (−1)n+1 qn / σn

2 +
(1 − RN ) exp(−τ )

1 − RN
2 exp(−2τ )

. (83)

Figure 6 shows the transmittance of injected photons
and diffuse photons as a function of τ.

It can be shown numerically using Eqs. 80 and 83 that
if γa = 0

Rp(total) + Tp(total) = 1 (84)

independent of any of the paper’s other parameters. Fig-
ure 7 shows Rp(total) and Tp(total) as a function of τ.

The scattering and absorption coefficients γs′ and γa can
be fixed for a particular paper by equating the measured
transmittance and reflectance of the paper to the calcu-
lated values as given by Eqs. 80 and 83. Using standard
techniques,26 one measures the reflectance of the paper
against a black background to get Rp and the reflectance
off a stack of papers gives R∞. The measured transmission
is then given by

    
T p = (1 / R∞ − Rp ) (R∞ − Rp ) . (85)

Note that if the specular reflectance is excluded in the
measurements of Rp and R∞, then only the first terms of
Eqs. 80 and 83 should be used.

Figure 5. Scattering length <ρ> as a function of optical thick-
ness τ, paper thickness t constant. <ρ> in units of grid period r.
(a) t/r = 0.25, (b) t/r = 0.5, (c) t/r = 1.0, (d) t/r = 2.0.
Optical Dot Gain in a Halftone Print
The calculations of this section have assumed black back-
ing, i.e., none of the transmitted flux is reflected back into
the paper. If there is a backing with non-zero reflectance,
then the equations of this section must be modified. In fact,
flux reflected off the backing decreases the paper’s spatial
bandwidth. If the paper lies on a surface with reflectance
Rb, then some of the outward flux is reflected back into the
paper so that the inward flux on the lower surface of the
paper is the outward flux multiplied by Rb. The boundary
condition for the lower surface is in this case

      k̂ ⋅ j− (ρ, t) = RF k̂ ⋅ j+ (ρ, t) + (1 − RF )Rbk̂ ⋅ j+ (ρ, t), (86)

where the first term on the right represents the internally
reflected flux and the second term represents the flux re-
flected by the backing. (This ignores any multiple reflec-
tion between the backing and the paper.) Using Eqs. 47
and 43, this can be expressed as

    

c
4

u(ρ, t) + D
2

∂
∂z

u(ρ, z) z= t=

RF + (1 − RF )Rb[ ] c
4

u(ρ, t) − D
2

∂
∂z

u(ρ, z) z= t





.

(87)

Figure 6. Transmittance of diffuse and injected photons as a
function of optical thickness τ with γa = 0.

Figure 7. Reflectance and transmittance of diffuse and injected
photons as a function of optical thickness τ with γa = 0.
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Defining

    
δ ' = 3

2
1 − RF − Rb + RF Rb

1 + RF + Rb − RF Rb
,

one obtains the homogeneous mixed boundary condition
for the bottom surface

    
u(ρ, t) + t

τδ '
∂
∂z

u(ρ, z) z= t = 0. (88)

The equation defining the eigenvalues in this case is

    
tan µn =

τ (δ + δ ' )µn

µn
2 − τ 2δδ '

. (89)

Halftone Reflectance with Diffusion PSF
One is particularly interested in the series Z , Eq. 22,

because this factor contains the effects of the optical dot
gain. As noted in the discussion preceding Eqs. 25 and 29,
if there is no scattering (<ρ>/r ≈ 0) then Z (µ) ≈ µ–1 and for
complete scattering (<ρ>/r >> 1) Z (µ) = 1. This suggests
that Z may be approximated by µ raised to a negative power
between 0 and 1:

Z (µ) = µ–s (90)

with

0 ≤ s ≤ 1. (91)

In fact, this is a very good approximation for Z as cal-
culated with the diffusion PSF. Figure 8 shows the curves
µ2 Z (µ) and µ2–s versus µ for a moderate degree of optical
dot gain. The parameter 1 – s is an index of optical dot
gain. If 1 – s = 0, no scattering and no optical dot gain
occur (see Eq. 30), and for 1 – s = 1 the light is “com-
pletely” scattered and maximum optical gain occurs (see
Eq. 26). Figure 9 shows the parameter s as a function of
τ for several t/r.

Figure 8. µ2Z and µ(2–s) as a function of µ; where µ2Z is the line
and µ(2–s) are the boxes. (a) γs′ = 2, γa = 0, and t/r = 1; (b) γs′ = 12, γa

= 0.2 and t/r = 1.
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Figure 10 shows the halftone reflectance Eq. 21 using
the diffusion PSF. Also shown in the figure are Eqs. 30
and 27 for the case of no scattering and complete scatter-
ing for comparison. Also shown is the reflectance with a
best fit s in µ2–s. In all curves, the halftone reflectance in
given in terms of the paper reflectance     R / Rp .

Dot and Non-Dot Reflectance
There has been some interest in expressing optical dot

gain in terms of an expanded Murray-Davies model.4 In
this model, the average reflectance of inked areas     Ri (µ)
and noninked areas     Rn (µ)  are functions of dot size. In
the following, we express the expanded Murray-Davies
model in terms of the theory developed here and use this
model to give a physical interpretation of the series Z.

The total reflectance from a region is the sum of     Ri (µ)
and     Rn (µ), weighted by their relative contributions

Figure 9. The parameter s as a function of optical thickness τ for
various γa t/r. (a) γat = 0.2, t/r = 0.75; (b) γat = 0, t/r = 0.75; (c) γat =
0.2, t/r = 1.25; (d) γat = 0, t/r = 1.25.

Figure 10. Halftone reflectance as function of percent area cov-
ered by ink. (a) Comparison of   R  as calculated with Z (solid
line) and µ–s (boxes); τ = 12, γat = 0.2, and s = 0.53. Also shown
are the reflectances for no scattering (b) Z = µ–1 (s = 1) and com-
plete scattering (c) Z = 1, (s = 0). The ink transmittance is T0 =
0.01 and t/r = 1.
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    R = µRi (µ) + (1 − µ)Rn (µ), (92)

where µ is the fractional area covered by ink and 1 – µ is
the noninked area. One can find     Ri (µ)  and     Rn (µ)  by aver-
aging R(x,y) over the inked and noninked areas, respectively

      
R

Nr
x y R x y dAi ( )

( )
( , ) ( , )µ =

µ ∫
1

2 C (93)

and

      
R

Nr
x y R x y dAn ( )

( )( )
( ( , )) ( , ) ,µ =

− µ
−∫

1
1

12 C (94)

where µ(Nr)2 is the area that is inked; C (x,y) is 1 if the
point x,y is in an inked area and 0 otherwise, Eq. 4; and
R(x,y) is the point reflectance, Eq. 7. Note that

[C (x,y)]2 = C (x,y)

and

      

1
(Nr)2 C (x, y)dA = µ∫ ,

      

1
2

2

( )
( , ) ( , ) ( )

Nr
x y P x y dAC Z= µ µ∫

Carrying out the integration in Eqs. 93 and 94, one
obtains

      R R T Ti p( ) [ ( ) ]µ = − − µ0 01 1 Z (95)

and

      
R R Tn p( ) ( ) ( ) .µ = − − µ

− µ
− µ









1 1

1
10 Z (96)

By examining these expressions for     Ri (µ)  and     Rn (µ),
one can infer a physical meaning for the series Z.

The physical interpretation of Z is motivated by consid-
ering the probabilities that a photon is reflected from an
inked or a noninked region. We can define PR(i) [or PR(n)]
as the probability that a photon is reflected from an inked
[or noninked] area and PI(i) [or PI(n)] as the probability
that a photon is incident on an inked [or noninked] area.
We can define the conditional probability P(i|i) [or P(i|n)]
as the probability that if a photon originally entered the
paper through an inked area, it exits the paper through
an inked [or noninked] area and P(n|i) [or P(n|n)] as the
probability that if the photon originally entered the paper
through a noninked area, it exits the paper through an
inked [or noninked] area. To value T0 can be interpreted
as the conditional probability that if a photon enters or
exits an inked area, it is transmitted through the ink. Then
the following relations hold

PR(i) = PI(n) P(n|i) T0 + PI(i) P(i|i) T0
2, (97)

PR(n) = PI(n) P(n|n) + PI(i) P(i|n) T0. (98)

(For simplicity, we let Rp = 1.) Clearly,
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PI(i) = µ, PI(n) = 1 – µ (99)

and

    PR (i) = µRi (µ) PR (n) = (1 − µ)Rn (µ). (100)

The conditional probabilities are related in that

P(i|i) + P(i|n) = 1, (101)

P(n|i) + P(n|n) = 1, (102)

and a “detailed balance” holds

PI(i) P(i|n) = PI(n) P(n|i). (103)

If we define β = P(i|i), then by Eq. 101

P(i|n) = 1 – β (104)

and by Eqs. 99 and 103

    
P(n|i) = µ

1 − µ
(1 − β ) (105)

and by Eq. 102

    
P(n|n) = 1 − µ

1 − µ
(1 − β ). (106)

Inserting Eqs. 104 through 106 into Eqs. 97 and 98 one
obtains

    Ri (µ) = T0 [1 − (1 − T0 )β ], (107)

    
Rn (µ) = 1 − (1 − T0 )

µ
1 − µ

(1 − β ). (108)

Comparison of Eqs. 107 and 108 with Eqs. 95 and 96
shows that β = µZ ; one interprets µZ as the probability
that a photon on entering a dot will exit through the dot.
Specifically, we can interpret Z –1 as an effective scattering
area Z –1 = µscat. The scatter of photons within the paper
increases the size of the area from which the photon might
exit the paper after having entered through a dot. This
larger area is the scattering area µscat. The probability that
a photon exits through the dot is the ratio of the dot size µ
to the scattering size µscat, P(i|i) = µ/µscat. Hence, if Z –1 = µ,
the scattering area is the same as the physical dot size: no
optical dot gain. If Z –1 = 1, then the scattering area is equal
to the size of the screen cell: the photons are completely
scattered.

As indicated above, Eq. 90, µs is a good approximation to
1/Z  when Z  is calculated using the diffusion PSF. When
this approximation is used the dot and nondot reflectances
are

    Ri (µ) = RpT0 [1 − (1 − T0 )µ1− s ] (109)

and

    
Rn (µ) = Rp [1 − (1 − T0 )

µ
1 − µ

(1 − µ1− s )]. (110)
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The expression for     Ri (µ)  is identical to the phenomeno-
logical expression used by Arney et al.4 to fit their data.
The expression for     Rn (µ)  is not the same as theirs, how-
ever, the difference in numerical value is small.

Conclusion
In the preceding, we have developed a theory of optical

dot gain. The theory is expressed in terms of an effective
dot size Z –1, which is a measure of the migration of pho-
tons within paper. We have derived a PSF by solving the
transport equation in the diffusion approximation. The
PSF is a function of two experimentally determined pa-
rameters that describe the scattering and absorption char-
acteristics of the paper.

Several ways exist to improve the model. We assumed
that the paper was homogeneous and isotropic, which is
clearly not the case for real papers. In real papers a sig-
nificant degree of flocculation exists that results in local
variation in grammage. In addition, the paper-forming
process gives significant orientation to the fibers that re-
sults in directionality. There has been a lot of recent work
on the statistics of fiber distribution,23,24 and an improve-
ment in our model would incorporate this work.

As indicated earlier, the paper fibers are flattened with
a width-to-thickness ratio of 10 and the fibers lie in the
plane of the paper. This results in a layered structure
with transport properties in the vertical direction differ-
ent from those in the horizontal direction. This struc-
ture is dealt with only partially in the current theory. In
particular, the internal reflection within the fibers will
be significantly different in the two directions. This dif-
ference in internal reflection tends to increase the hori-
zontal flow of scattered photons over the vertical; the net
flow of photons in the plane of the paper is greater than
that in the perpendicular direction. For a given trans-
mission, this will result in a decreased spatial bandwidth.
An improved model would take into consideration this
layered structure of paper.27

In addition, we are currently applying the theory to a
color halftone print.

Appendix
In the following we show how internal reflectance within

paper can be characterized by an effective reflectance co-
efficient,19 and expressed in terms of a boundary condition.

For papers considered here, the volume ratio of air to
fiber is approximately 1. We can, therefore, take the pa-
per medium as cellulose and consider the internal reflec-
tance that occurs at the paper surfaces when light passes
from within the paper to outside the paper. Including in-
ternal reflection partially accounts for the layered struc-
ture of paper. The reflectance is given by the Fresnel
reflection coefficient, which is a function of the angle at
which the photons approach the surface. This reflected
flux can be considered incoming at the surface, so that the
partial current into the paper at the surface is equal to
the outgoing flux times the Fresnel reflectance. Our treat-
ment closely follows that of Haskell et al.,19 except here
we include the effects of a rough surface.

Effective reflectance can be obtained by averaging over
all angles. For the top surface this is, using Eq. 46,

      

k̂ ⋅ j+ (ρ,0) =

c
ŝ⋅n̂≥0∫ RF (θ ) f d (ρ,0; ŝ)ŝ ⋅ n̂dΩ, (A1)
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where θ is defined by cosθ =     ̂s ⋅ n̂ , with     ̂n  the (outward)
unit vector normal to the surface. The value RF(θ) is the
Fresnel reflection coefficient for unpolarized light

    

RF (θ ) = 1
2

sin(θ − θ ' )
sin(θ + θ ' )







2

+ 1
2

tan(θ − θ ' )
tan(θ + θ ' )







2

,

if 0 ≤ θ ≤ θc

= 1, if θc ≤ θ ≤ π / 2

(A2)

where θ′ is given by Snell’s Law n sinθ = sinθ′, n is the
index of refraction of cellulose n = 1.5, and θc is the critical
angle for total internal reflection given by sin θc = 1/n.

Eq. A1 is a good approximation only if the normal is
parallel to the z axis. In fact, the (uncoated) paper surface
is rough and the surface normal     ̂n  will vary from point to
point. This tends to decrease the effective Fresnel reflec-
tance. An effective reflectance is more accurately obtained
by averaging Eq. A1 over     ̂n . One can define a normalized
probability density       P(n̂)  that gives the probability per
unit solid angle that the normal has direction     ̂n. By our
assumption of paper isotropy,       P(n̂)  is independent of the
azimuthal angle φ and can be written

      
P(n̂) = 1

2π
P(cos θ n̂ ),

where     θ n̂  is defined by cos    θ n̂  =     ̂n ⋅ k̂
Averaging Eq. A1 over     ̂n,

      

k̂ ⋅ j+ (ρ,0) =

c
n̂⋅k̂≥0∫ ŝ⋅n̂≥0∫ RF (θ ŝ ) f d (ρ,0; ŝ)ŝ ⋅ n̂P(n̂)dΩŝdΩn̂ ,       (A3)

and expanding both sides of Eq. A3 using Eqs. 39 and Eq.
47, one obtains

      

c
4

u(ρ,0) + 1
2

k̂ ⋅ j(ρ,0) =

Ru
c
4

u(ρ,0) − nzRj
1
2

k̂ ⋅ j(ρ,0),
(A4)

where

    
Ru = 2

0

π / 2
∫ RF (θ ) cos θ sin θ dθ ,

    
Rj = 3

0

π / 2
∫ RF (θ ) cos2 θ sin θ dθ ,

and

    
nz =

0

π / 2
∫ cos θ sin θP (cos θ ) dθ ,

which can be written as

      

c
4

u(ρ, t) + 1
2

1 + nzRj

1 − Ru
k̂ ⋅ j(ρ, t) = 0. (A5)

Defining the effective Fresnel reflection coefficient as

    
RF =

nzRj + Ru

2 + nzRj − Ru
, (A6)
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this becomes

      

c
4

u(ρ,0) + 1
2

1 + RF

1 − RF
k̂ ⋅ j(ρ,0) = 0 (A7)

or

      
ˆ ( , ) ˆ ( , ).k j k j+ –⋅ = − ⋅ρ ρ0 0RF (A8)

One analyzes the bottom surface in a similar manner to
obtain, using Eq. 45

      
ˆ ( , ) ˆ ( , ).k j k j+ –⋅ = ⋅ρ ρt R tF (A9)

To evaluate RF, one must choose a suitable P(cosθ). If the
paper is coated, then P(cosθ)sinθdθ = P(x) dx = δ(x – 1)dx,
with P(x) defined on the interval [0,1]. In this case (flat
surface) obviously   nz  = 1. Even for uncoated paper one
expects that P(x) is sharply peaked at x = 1, because the
fibers are flattened in the paper-making process.24

A simple model of the noncoated paper surface treats
the fibers as elliptical rods, i.e., rods with elliptical cross
section lying in the plane perpendicular to the z axis and
the major axis also in the plane perpendicular to the z
axis.22 The average z component of the normal is then found
by averaging over the upper half of the elliptical curve.
Assuming uniform probability for the angle that param-
eterizes the elliptic curve, a straightforward calculation
gives

    
nz =

−
−2

1
1

2

2

π
ε

ε
εarctan ,

with ε the ratio of the major to minor radii. One sees that
the flatter the fiber is (ε → ∞), then   nz → 1. The ratio of
fiber width to thickness is typically24 ε = 10, and one ob-
tains   nz  = 0.941.

With this value of   nz , and the index of refraction for
cellulose n = 1.5, one obtains for RF the value RF = 0.574.

We need also the reflectance for the injected photons
Rn. By our model, these photons are normally incident on
the paper surface and the reflectance is given by Eq. A2
for θ = 0, or

    
RN = n − 1

n + 1






2

= 0.04. (A10)

Nomenclature
An = normalization factor for ψn(z), Eq. 62

circ [u/d] = shape function for circular dots, Eq. 6
C(x,y) = array function equal to 1 if point x,y is cov-

ered by ink and 0 otherwise. It is a convo-
lution of the dot distribution function and
the dot shape function, Eq. 4

d = radius of circular dots
D = diffusion coefficient, Eq. 44
δ = a parameter that expresses the effective in-

crease in mean free path due to internal
reflection, Eq. 56
Optical Dot Gain in a Halftone Print
f(r, s) = photon distribution, Eq. 35
fi(r, s) = injected photon distribution, Eq. 36
fd(r, s) = diffuse photon distribution, Eq. 39
F_ (ρ) = diffuse photon flux through paper top sur-

face, Eq. 70
g = anisotropy parameter for phenomenologi-

cal phase function, Eq. 32
g(x,y) = dot distribution function, Eq. 5

G(ρ,z; ρ′,z) = Green’s function solution to diffusion equa-
tion, Eq. 60

γs, γa = scattering and absorption coefficients for
paper, Eq. 31

γs′ = effective scattering coefficient, does not in-
clude forward scattered photons, Eq. 34

γtr = transport coefficient, inverse of transport
mean free path, Eq. 34

H(ρ) = radial point spread function (PSF), Eqs. 2
and 75

    H̃ (k) = modulation transfer function (MTF), Fou-
rier transform of the PSF, Eqs. 12 and 77

    H̃nm = MTF evaluated at k =     n2 + m2 / r,  Eqs.
15 and 78

j(r) = diffuse photon current density, Eq. 41
j±(r) = partial photon current densities, Eqs. 45

and 46
Jnm = Fourier transform of dot shape function

normalized to J00 = 1, evaluated at k =

    n2 + m2 / r,  Eqs. 14 and 23
k = spatial frequency in lines/unit length

K0 = modified Bessel function of the second kind
l* = transport mean free path, distance over

which velocity relaxes
l(x) = line spread function, Eq. 76

λn = phase of ψn(z), Eq. 64
µ = dot area fraction

µn = eigenvalue of longitudinal differential opera-
tor, Eq. 63

n = Yule-Nielson n-parameter (section on Half-
tone Reflectance only); index of refraction
(everywhere else)

PR(a), PI(a) = probability a photon is reflected from or in-
cident on region a, with a = i (inked) or n
(noninked), Eqs. 99 and 100

P(a|b) = probability that if photon enters paper
through a it exits paper through b, Eqs. 97
and 98

p(s, s′) = phase function, which is the normalized
differential scattering cross section, Eq. 32

ψn(z) = orthonormal eigenfunction in Green’s func-
tion expansion, Eq. 61

qn = expansion coefficient for diffusion PSF,
Eq. 73

r = screen period
R(x,y) = reflectance at x,y, Eq. 22

  R = reflectance averaged over a region, Eq. 21

  Ri = average reflectance of inked regions,
Eq. 93

  Rn = average reflectance of non-inked regions,
Eq. 94

Rp = reflectance of bare paper, Eq. 74
RF = effective Fresnel reflection coefficient,

Eq. A6
RN = internal normal reflectance of injected pho-

tons, Eq. A10
<ρ> = lateral scattering length, Eqs. 24 and 79
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S(r) = source function for diffuse photons, Eq. 38
σn = eigenvalue of radial differential operator,

Eq. 65
t = paper thickness

T(x,y) = transmittance of ink layer at x,y, Eq. 23
T0 = transmittance of ink
Tp = paper transmittance, Eq. 83

τ = optical thickness of paper, number of trans-
port mean free paths in paper thickness,
Eq. 55

u(r) = diffuse photon density, Eq. 69
Z = Z-series, Eq. 22
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