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The Yule-Nielsen effect, also called optical dot gain, has often been modeled based on convolutions between halftone dot patterns and
a point spread function PSF characteristic of the paper. An alternative approach to modeling the Yule-Nielsen effect employs probabil-
ity functions that describe the fraction of reflected light emerging between halftone dots and under dots. The probability model is
shown to fit experimental data on the Yule-Nielsen effect for a variety of different types of halftone geometries, including both AM and
FM halftones. The particular form of the functions is shown to be dependent on the halftone geometry, but all forms examined con-
tained a parameter w, which is a quantitative index of the magnitude of the Yule-Nielsen effect. The w parameter in all cases was
shown to be related exponentially to the MTF constant kp of the paper.
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Introduction
The reflectance R of a halftone image is governed by the
reflectance of the paper Rp, the reflectance of the ink dot
Ri, the fraction of the area of the image covered with dots
F, and the degree of lateral scatter of the light in the pa-
per. The lateral scatter of light in the paper is often called
the Yule-Nielsen effect. As shown previously, the relation-
ship between F, Rp, and Ri is well modeled by the Murray-
Davies Eq. 1,

R = FRi + (1 – F)Rp, (1)

and the Yule-Nielsen effect causes the ink and paper
reflectances Ri and Rp to decrease as F increases.1,2 In the
previous report, the variation of Ri and Rp with F was mod-
eled based on a probability function Pp, which described
the probability that a photon will emerge under a halftone
dot after entering the paper between halftone dots.2 The
previous study involved application of the probability model
to tone reproduction in traditional clustered halftone dots.
The current report extends the probability model to other
types of halftones including disperse dots, error diffusion,
and similar FM systems. Assumptions made in the model
and experimental tests of the model are: (1) no penetration
of the dot into the paper occurs, (2) the halftone dots obey
the Beer-Lambert law, and (3) negligible contribution from
total internal reflection occurs between dots and paper.
Variation from these three assumptions will be the subject
of later studies. This study is concerned with the impact of
halftone geometry on the probability function Pp.
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Background
The earliest halftone model to account for the Yule-

Nielsen effect assumed Ri and Rp to be constants and em-
ployed3–5 an empirical power factor n as a modification to
Eq. 1.

R(F) = [FRi
1/n + (1 – F)Rp

1/n]n. (2)

Equation 2, called the Yule-Nielsen equation, often does
a very good job of modeling tone reproduction, but the
physical significance of the n power factor is not entirely
clear. Moreover, Eq. 2 does not describe the way in which
Ri and Rp vary with F. Thus, other strategies for modeling
the effect have been investigated and reported in the lit-
erature. The most fundamental modeling approach is a
convolution between the geometric pattern of the halftone
dots G(x,y) and the point spread function (PSF) of light in
paper.6–9 This requires knowledge of the PSF of paper or
the corresponding MTF in the Fourier domain. The MTF
of the paper may be modeled empirically as follows:

    
MTF

kp

( )
( )

,ω
ω

=
+

1
1 2 (3)

where kp is proportional to the average distance light trav-
els laterally before emerging from the paper and ω is the
spatial frequency in the Fourier domain.10

An alternative tone reproduction model is based on prob-
ability functions for lateral motion of light in paper.2,11,12

Instead of modeling the MTF or PSF of the paper, a prob-
ability function Pp is modeled to describe the probability
that a photon that enters the paper between the halftone
dots will emerge under a halftone dot. Conceptually Pp can
be derived from PSF. However, the PSF function of paper is
typically modeled empirically, so empirically modeling Pp

serves as a somewhat simpler starting point. As described
previously,2 this probability function governs the reflectance
of the paper between the halftone dots,
    637



Rp = Rg[1 – Pp(1 – Ti)], (4)

where Rg and Ti are the reflectance of the not-printed pa-
per and the transmittance of the printed ink, respectively.
Both Rg and Ti are constants independent of F.

The Pp function is also related to the probability Pi that
a photon that enters the paper by first passing through a
halftone dot also returns under the dot. The relationship
between the two probabilities was shown to be

(5)

from which the reflectance of the halftone dot may be cal-
culated.2

Ri = RgTi[1 – Pi(1 – Ti)]. (6)

The overall reflectance of the halftone image is then
calculated with Eq. 1. Thus, knowledge of the constants
Rg and Ti and of the probability function, Pp yields a tone
reproduction model of R versus F. The key part of the model
is a knowledge of the probability function Pp.

The Pp Function and AM Halftone Dots
The previous study suggested the following empirical

model for Pp for a clustered dot, AM halftone,2

         Pp = F [1 – (1 – F)w + (1 – Fw)], (7)

where w is an empirical power factor. By selecting a value
for w, the Pp function may be used sequentially in Eqs. 4,
5, 6, and 1 to calculate reflectances Ri, Rp, and R versus
dot area fraction F. The value of w is selected to provide
the best fit between the model and experimental data.

An experimental test of this halftone model was made
by placing halftone patterns, formed on high-contrast pho-
tographic film, into vacuum contact with paper as shown
in Fig. 1. As described earlier,12 the film halftones were
generated with a commercial graphic arts image setter.
The resulting halftone image was then examined with a
microdensitometer as described previously,1,2 and the re-
flectance of the paper between the dots Rp and the mean
reflectance R were measured directly. Figure 2 illustrates
data for halftones at 3.3 and 5.2 dot/mm (85 and 133 lpi)
on noncoated paper. The halftone film dots have a density
above 2.0 allowing the approximation Ri = 0, thus simpli-
fying the analysis. The value of w was adjusted to fit the

Figure 1. Schematic of film-based halftone dots in contact with
paper using a vacuum hold down.
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data on Rp versus F, as illustrated in Fig. 2. The experi-
ment was repeated with AM halftone patterns ranging
from f = 2.6 to f = 5.9 dot/mm (65 to 150 lpi). The experi-
ment was also performed with several papers, both coated
and noncoated, having MTF constants (kp in Eq. 3) over
the range 0.2 mm < kp < 1.0 mm, as determined in an
earlier project.10 Figure 3 shows the relationship between
the values of w, determined by fitting the model to the
data, and the product kp f. As described previously, the re-
lationship between w and kp f may be approximated13

closely by the exponential function of Eq. 8.

    w = 1 − e− Akpf . (8)

The value of A is chosen to provide the best fit between
Eq. 8 and the experimental data in Fig. 3. For the AM
clustered dot halftone, a value of A = 0.5 provides a good
fit to the data.

Figure 2. Experimental values of Rp versus F for AM halftone
gray scales at f = 3.3 and 5.2 dot/mm (85 and 133 lpi) on noncoated
paper of kp = 0.449 mm-1. The lines through the data are the model
with w = 0.54 and 0.77 using the model of Eqs. 7, 4 and 1.

Figure 3. Measured values of w versus the product of the half-
tone frequency f in dot/mm and the paper MTF constant kp in
mm– 1 for AM halftones in vacuum contact with papers of various kp.
Arney and Katsube



The Pp Function and AM Halftone Lines
The w parameter is an index of the magnitude of the

Yule-Nielsen effect, and Eq. 8 provides a quantitative re-
lationship between w and the kp of the paper and the half-
tone dot frequency f. One may speculate the value of A is
related to the type of geometric pattern G(x,y), of the half-
tone pattern. To test this hypothesis, halftones of differ-
ent geometric patterns were generated on film and
measured exactly as described above. One type of pattern
examined was the AM halftone line.13 This is a halftone in
one dimension G(x) rather than two G(x,y). The line fre-
quency varied over the range 2.4 < f < 7.7 lpm (60 to 195
lpi), and at each line frequency the image reflectance R
was controlled as a function of the width of the halftone
line. As the line width increased, F increased, resulting in
a decrease in R, just as with traditional halftone dots.

The films containing the halftone lines were placed in
contact with the coated and noncoated papers as before,
and measurements were made of Rp and R versus F at each
line frequency f. Equations 7, 4, and 1 were fit to the ex-
perimental values of Rp and R versus F. The resulting val-
ues of w were then plotted as shown in Fig. 4 and compared
with Eq. 8 at A = 0.5. No difference between the halftone
dots and the AM lines could be detected experimentally.

The Pp Function and FM Halftone Dots
Stochastic halftones, produced by a proprietary error

diffusion algorithm, were also examined to determined the
utility of the probability model for tone reproduction with

Figure 4. Measured w versus kp f for AM halftone lines: x are
coated papers and •• noncoated papers.
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this type of halftone. The algorithm for generating this
type of halftone involves varying the frequency of occur-
rence of square dots with dots remaining at a constant
size. Thus the FM halftone varies F by varying f at a fixed
dot area, while the AM halftone varies F by varying dot
area at a fixed f. Figure 5 illustrates the stochastic half-
tone with the physical size of the dot labeled λ.

The stochastic halftones were generated on film and
were placed in vacuum contact with the paper samples as
before. Experimental measurements of Rp and R were
again measured, and the model of Eqs. 7, 4, and 1 applied
as shown in Fig. 6. In this case the fit between the data
and the model was not good, especially for the Rp data.
The problem was anticipated to be the probability func-
tion Pp of Eq. 7. By trial and error, the following function
for Pp was found to provide an excellent fit between the
data and the model, as illustrated in Fig. 7.

Pp = w [1 – (1 – F)B]. (9)

The most notable difference between the AM systems
and the FM stochastic system is that Rp does not tend to-
ward zero in the FM system but levels out to a finite value
as F approaches zero. This occurs because, as illustrated
in Fig. 5, the size of the halftone “hole” remains constant
as F approaches unity, and the “holes” simply move far-
ther and farther apart as F approaches unit. The reflec-
tance of the paper in this “hole” thus reaches a constant
value greater than zero.

Stochastic halftones at different dot sizes λ were also
measured, as illustrated in Fig. 8. It was observed that all
fit the model of Eqs. 9, 4, and 1, with the same value of B
= 1.2 but with w values that increased as λ decreased. All
combinations of halftone λ with papers of different kp were
measured, and in every case B = 1.2 and the relationship
between w and kp/λ was found to follow a function analo-
gous to Eq. 8, as illustrated in Fig. 9.

    w = 1 − e− Akp / λ . (10)

The Pp Function and FM Halftone Lines
One-dimensional FM halftones were also examined, but

their behavior was found to be much different from the
FM dots. Figure 10 illustrates the FM lines generated on
film for this project. If the linewidth λ is maintained con-
stant, then the space between the lines decreases progres-
sively toward zero. The spaces behave more like AM
halftones, and indeed the measured behavior of Rp versus
F, shown in Fig. 11, is closer to the AM model of Eq. 7 than
to the FM model of Eq. 9. Measurements of w versus kp/λ
were made, as before, and found to fit well with Eq. 10
with a value of A = 0.24, as shown in Fig. 12.
Figure 5. Illustration of stochastic FM halftone dot pattern. The dots are square with sides of length λ.
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Figure 6. The values Rp and R versus F for stochastic halftones
with dots of λ = 0.133 mm on noncoated paper of kp = 0.449 mm–1,
fit with the model of Eqs. 7, 4 and 1.

Figure 7. The values Rp and R versus F for stochastic halftones
with dots of λ = 0.133 mm on noncoated paper of kp = 0.449 mm–1,
fit with the model of Eqs. 9, 4 and 1, w = 0.61 and B = 1.2.
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Figure 8. The value Rp versus F for stochastic halftones of λ =
0.133, 0.063, and 0.021 mm (top to bottom) on noncoated paper
of kp = 0.449 mm– 1, fit with the model of Eqs. 9, 4 and 1 for w =
0.61, 0.85, and 0.95 (top to bottom) and B = 1.2 for all.

Figure 9. Measured w versus kp/λ for stochastic FM halftone
dots, fit with Eq. 10 at A = 0.24. x are coated and ■■ noncoated
papers.
Figure 10. Illustration of a halftone line pattern that is FM in terms of the lines, but AM with respect to the spaces between the lines.
Arney and Katsube



Figure 11. The value Rp versus F for an FM line halftone with λ
= 0.053 mm in vacuum contact with a paper of kp = 0.449 mm– 1.
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Figure 12. Measured w versus kp/λ for FM halftone lines, fit
with Eq. 10 at A = 0.24: x are coated and ■■ noncoated papers.
Figure 13. Illustration of a halftone line pattern that is FM in terms of the spaces between the lines, but AM with respect to the lines.
Figure 14. The value Rp versus F for an FM space halftone with
λ = 0.212 mm in vacuum contact with a paper of kp = 0.449 mm-1.
Figure 15. Measured w versus kp/λ for FM halftone spaces, fit
with Eq. 10 at A = 0.24: x are coated and ■■ noncoated papers.
Another set of one-dimensional FM halftones was con-
structed as illustrated in Fig. 13. These FM halftones are
FM with regard to the space between the lines. The spaces
are of a fixed λ with varying frequency of occurrence of
the spaces. In this case, as illustrated in Fig. 14, the be-
havior is much like the FM stochastic halftone and fits
well with Eqs. 9, 4, and 1. Moreover, all of the halftone
gray scales constructed with FM spaces were fit with the
same value of B = 2.0 and w versus kp/λ was well fit by Eq.
10 at A = 0.13, as shown in Fig. 15.
Conclusion
The probability model of halftone behavior is not really

a different model from the PSF/MTF models already pub-
lished by other researchers. Rather, the probability model
is an empirical simplification. The paper PSF is the fun-
damental probability function describing lateral light scat-
ter, and the Pp functions should be derivable from a
convolution of the dot geometries with the PSF. However,
because the PSF is typically modeled empirically, build-
ing a halftone model starting with an empirically derived
t of Halftone Geometry Vol. 41, No. 6, Nov./Dec.  1997     641



Pp function is reasonable. The thrust of the current work
is to show some useful Pp models for different halftone
geometries and how they relate to the PSF/MTF through
the empirical kp constant.

The probability model of the Yule-Nielsen halftone ef-
fect appears applicable experimentally to halftones of any
type by selecting the appropriate function for Pp. Table I
above summarizes the results for the cases examined in
this project. In all cases, a w parameter can be defined
within the Pp function that characterizes the magnitude
of the Yule-Nielsen effect. In all cases, the w parameter is
related exponentially to the paper MTF constant kp and
either λ for FM halftones or f for AM halftones. The val-
ues of A and B are characteristic of the particular geomet-
ric pattern used to form the halftones.

Three simplifying assumptions were made in this study:
Ti = 0, perfect hold-out, and zero internal reflection be-
tween the dots and the paper. All three are of consider-
able practical interest and will be examined in future
studies. The first two are reasonable assumptions to make
with the experimental film systems used in this study, but
the assumption that no internal reflection exists is per-
haps significantly far from the truth.11 If, however, mul-
tiple internal reflections have a significant effect on the
film halftones, the effect is the same for all of the halftone
geometries in this study. Thus, the values of A and B may
depend not only on the geometry of the halftones G(x,y),
but also on the degree of internal reflection between the
halftones and the paper. Differences in A and B between

TABLE I. Summary of Pp Functions and Values of Parameters A
and B for the Geometric Halftone Patterns Used in the Current
Study

Halftone geometry  A  B Pp Equation

AM line 0.5  —  7
AM dot 0.5 —  7
FM line 0.24 —  7
FM space 0.13 2.0  9
Stochastic 0.24 1.2  9
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patterns, then, may be considered relative differences due
to differences in halftone geometry. Evidence that inter-
nal reflections may be significant in the current study can
be found in the experimental value A = 0.5 for the AM
halftone lines. A previous study of the theoretical behav-
ior of AM lines derived13 a value of A = 0.66. The differ-
ence between this theoretical value and the value observed
with the film halftones may indeed be the result of mul-
tiple reflections between the film and the paper. Such re-
flections would increase the mean free path kp of the light,
thus making the experimental data plot with a lower value
of A.

The potential utility of a probability model of halftones
is in its simplicity. Models based on PSF convolution with
the halftone geometry G(x,y) are intrinsically cumber-
some computationally. Moreover, more complex three-di-
mensional geometries such as ink penetration into the
paper, nonuniform ink coverage, physical dot gain, etc.,
make convolution models still more cumbersome to imple-
ment. Huntsman11 and Maltz,12 for example, have shown
the probability approach as more amenable to complex
systems. Future studies will examine the utility of the
current probability approach to modeling more complex
halftone systems.
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