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A mathematical analysis has been performed on rotor dynamics of a high-speed polygonal mirror scanner motor in digital electropho-
tography. The rotor is assumed rigid and vertically supported by air bearings with an effective length that is not negligible compared
to the rotor length. The model is a four-degree-of-freedom system that includes the gyroscopic effect and nonorthogonal force of the air
bearing. The model also includes the effects of longitudinal bearing length and radially unstable magnetic stiffness of a driving motor
and/or a magnetic bearing. A simulation program was coded to calculate complex eigenvalues, static and dynamic stability, critical
speeds, unbalance responses, and external excitation responses. The results indicated that although the effects of bearing length and
magnetic unstable stiffness were ignored in the past, these simplifications result in substantial error for the evaluation of rotor
dynamics. The model is utilized to realize high-performance scanner motors.
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Introduction
A polygonal mirror scanner motor is used in the exposure
subsystem of digital xerography to scan a laser beam and
to write latent images on the photoreceptor.1 The rotation
of the mirror must have (1) stable, constant velocity and
low vibration to realize high image quality, (2) high-speed
rotation for high print speed and high-resolution machines,
(3) long life, (4) small heat loss, and (5) low acoustic noise.
Instead of conventional ball bearings, self-acting herring-
bone-grooved air bearings are used to meet these require-
ments,2 in particular for high-speed machines. The
self-acting grooved air bearing was developed to suppress
the instability of non-grooved bearings and is being utilized
not only for laser scanner motors but also for videotape re-
corders. Its fundamental statics and dynamics were origi-
nally investigated by Vohr and Chow3 based on a smoothed
overall pressure distribution model in the 1960s, and then
many numerical methods were proposed for the practical
design of the bearing as reviewed by Castelli and Pirvics.4

Nevertheless, we can utilize charts calculated by Hamrock
and Fleming5 to design the optimal bearing for maximum
radial load capacity without numerical calculations.

Three major differences exist between ball and air bear-
ings with respect to rotor dynamics. The first is that the
reaction force induced by an air film of the air bearing is
not orthogonal, i.e., displacement direction of a shaft does
not coincide with the force direction of the bearing. It is
well known that this induces dynamic instability called
“half-frequency whirl” and extensive theoretical and ex-
perimental work has been done to realize highly stable
bearing rotor systems.6–8 The second difference is that the
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stiffness of the gas bearing is not induced without rota-
tion and is small in the low-speed region. Because mag-
netic negative stiffness is induced by the motor and a
passive thrust magnetic bearing9,10 even at zero speed, to-
tal stiffness of the rotor system is negative and the rotor
is statically unstable in the very low-speed region. This
induces dry contact between the rotor and shaft at speeds
lower than the threshold, and the lifetime of the bearing
is reduced by the frequent start–stop operation. The third
difference is that the effective axial length of the air bear-
ing is not negligibly short compared to the rotor length.
Figure 1 shows a typical scanner motor supported by gas
journal bearings. The total length of the two bearings is
almost 80% of the rotor length. Although extensive work
has been done to simulate rotor dynamics supported by
journal bearings, the status ignored the length of the air
bearing.11–14 The conventional assumption is that the con-
centrated reaction force is applied at the center of the jour-
nal bearing. This simplification results in substantial error
in some cases for the evaluation of rotor dynamics.

Figure 1. Configuration of a polygonal mirror scanner motor sup-
ported by air bearings.
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A modified mathematical model is presented in this re-
port to realize a sophisticated design on the rotor dynam-
ics of the scanner motor supported by air bearings. The
model is a four-degree-of-freedom system that includes not
only the gyroscopic effect and non-orthogonal force of the
air bearing but also the effects of longitudinal bearing
length and radially unstable magnetic stiffness of the driv-
ing motor and/or magnetic bearing. A simulation program
was coded to calculate complex eigenvalues, static and dy-
namic stability, critical speeds, unbalance responses, and
external excitation responses. It was indicated how bear-
ing length and magnetic unstable stiffness, which have
been ignored in the past, influence rotor dynamics and
stability. The model is utilized to realize high-performance
scanner motors.

Vibration Model
The following simplifications were made to derive a

simple but realistic linear vibration equation:
(1) The rotor, mass m, the polar moment of inertia Ip,

and the lateral moment of inertia Id, is rigid and
axisymmetric, but a small static unbalance ε and
dynamic unbalance τ exist in the rotor.

(2) Because the rotor is vertically supported, bearing
forces are assumed isotropic.

(3) The effect of gravity is neglected.
(4) Two kinds of bearings are defined: one is concen-

trated, such as the ball bearing with force acting
on a concentrated position of the rotor, and the
other is distributed bearing with substantial length
compared with the rotor, such as the air bearing
and the electrical motor. The bearing force in the
distributed bearing is assumed to be uniformly dis-
tributed in the axial direction.

(5) The displacement and the gradient of the rotor are
small to satisfy the linearity. The bearing force is
also assumed to be linear with respect to the dis-
placement and the gradient of the rotor.

(6) A casing on a coordinate o-x,y,z is excited and moves
in the lateral direction (X0, Y0) and leans (Θx, Θy)
from a stationary coordinate 0-XYZ.

(7) The rotational speed ω is constant.

The system configuration is shown in Fig. 2. Because
the rotor is assumed rigid, the system has four degrees of
freedom (x, y, θx, θy).

Vibration Equation
A fundamental vibration equation corresponding to the

model is10

  M
˙̇X + (C + ωL)Ẋ + KX = F, (1)

where
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Here, M is a mass-inertia matrix, C is a damping matrix,
L is a gyroscopic matrix, K is a stiffness matrix, X is a
displacement-gradient vector,     ̇x ≡ dx / dt, ˙̇x ≡ d2x / dt2 ,
and t is time. The superscript T indicates a transposed
vector and the underline means complex. An external force
vector F consists of the unbalance force and the casing
excitation force.

    

F = εmω 2eiωt , τ (Id − Ip )ω 2ei(ωt+α )( )T
−

− M ˙̇X0 − ωLẊ0 ,X0 = (X0 + iY0 ,Θx + iΘ y )T ,
(7)

where α is an angle between the static and dynamic un-
balance positions. Because the damping and the stiffness
of the distributed bearing are derived by the equation,
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elements in the damping and stiffness matrices are ex-
pressed as follows:
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Figure 2. Vibration model.
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where c and k are the damping and stiffness of the con-
centrated bearings; ∆c and∆k are the damping and stiff-
ness per unit length of the distributed bearings; L1 and L2

are the distances from the gravitational center of the ro-
tor to the upper and lower end of the distributed bearings;
l is the distance from the gravitational center of the rotor
to the concentrated bearings; n and m are the numbers of
concentrated and distributed bearings, respectively; and
the superscript “ ′ “ means nonorthogonal.

Effect of Bearing Length
Because     ∆c L1 − L2 = c and     ∆k L1 − L2 = k, the second

terms on the right sides of Eqs. 9, 10, 13, and 14 are equal
to the constants when the bearing force is applied to the
center of the bearing. This means that bearing length does
not affect the dynamics related to the cylindrical mode,
even if the force is assumed to be applied to the center of
the bearing. But because the ratio of the second terms on
the right sides of Eqs. 11 and 12 to that with the concen-
trated bearing assumption is
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the bearing length affects the dynamics of the conical
mode. Figure 3 shows how L2/L1 affects R1/2, which is pro-
portional to the damping ratio, natural frequency, and
critical speed of the conical mode. Clearly, these param-
eters are underestimated for the concentrated assump-
tion of the gas bearing.
Rotor Dynamics of Polygonal Mirror Scanner ... Air Bearings in D
Complex Eigenvalues and Stability
Substitution of the free vibration solution r = r0 exp(λt),

θ = θ0 exp(λt) into Eq. 1 gives the following characteristic
equation:

(a4 + ib4)λ4 + (a3 + ib3) λ3 + (a2 + ib2) λ2

      + (a1 + ib1) λ + a0 + ib0 = 0, (16)

where
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The Newton-Raphson method was used to solve Eq. 16.
Four sets of the natural frequency ω0 and modal damping ζ0

are calculated from the four complex eigenvalues λ = λr + iλi.

    

ω0 = λ i , ζ0 = −λ r

λ r
2 + λ i

2
.

(17)

A pair of complex eigenvalues corresponds to the cy-
lindrical mode and the other pair corresponds to the coni-
cal mode. The mode shapes are shown in Fig. 3. One of
each mode is forward, if its natural frequency is positive,
and backward in the case of negative frequency. Here,

Figure 3. Mode shapes and effect of bearing length.
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Kθ
.'
forward means that the direction of the whirling vibra-
tion is the same as the rotational direction and backward
means that the rotor whirls in opposite direction to the
rotational direction. Due to the gyroscopic effect, the for-
ward whirling frequency increases and the backward
decreases in accordance with the increase of rotation
speed. If the modal damping is negative, the correspond-
ing mode is dynamically unstable. It is well known that
nonorthogonal stiffness k′ and ∆k′ reduces the forward
whirling stability.11–13 However, the results of numerical
calculations confirm that damping of the gas bearing is
usually large enough to compensate for the dynamic in-
stability due to nonorthogonal stiffness and the rotor is
sufficiently stable. This coincides with the experimental
result that no self-excited vibration occurred in the ac-
tual rotor.

But, negative stiffness of the radial-stable-type pas-
sive magnetic bearing and/or the cylindrical motor makes
the rotor supported by the air bearings statically unstable
at very low speeds, because stiffness of air bearings is
not induced without rotation, which is small in the low
speed region, whereas magnetic negative stiffness exists
even at zero speed. Dry contact between the rotor and
shaft is induced at speeds lower than the threshold. Fig-
ure 4 shows an example of the calculated relationship
among the threshold frequency, the negative stiffness of
the motor, and the stiffness of the air bearing. Param-
eters used for the calculation were; mg = 0.16 kg, Idg =
3.64 × 10–6 kgm2, Ipg = 2.62 × 10–6 kgm2, L1mag = –10.55 ×
10–3 m, L2mag = 16.15 × 10–3 m, L1airbrg1 = 3 × 10–3 m, L2airbrg1

= 23 × 10–3 m, L1airbrg2 = –1 × 10–3 m, and L2airbrg2 = –21 × 10–3 m.
These values correspond to the actual motor shown in
Fig. 1. Because dry contact reduces the lifetime of the
air bearing, it is preferable to avoid frequent start–stop
operation and to keep the rotor speed higher than the
threshold.

Critical Speed
Critical speed is when the forward whirling frequency

coincides with the rotation frequency. Two critical speeds
exist: the lower corresponds to the cylindrical mode and

Figure 4. Statically unstable threshold speed caused by mag-
netic negative stiffness of the electrical motor. The rotor is sup-
ported by two air bearings, airbrg1 and airbrg2, and the stiffness
of the air bearing is assumed proportional to the speed.
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the higher corresponds to the conical mode. The rotor is
usually operated under the first critical speed, i.e., the sys-
tem is designed to be sub-critical. This also coincides with
the experimental observation that no resonance peak of the
vibration, which synchronized with the rotational frequency,
was observed below the operation frequency 600 Hz.

Unbalance Response
Unbalance response is calculated by the following

equations:

r = r0 exp(iωt),  θ = θ 0 exp(iωt), (18)

where
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The reaction force per unit length of the bearing fbrj at j is

    
f brj = − ∆kj + ω∆c j

' − i ∆kj
' − ω∆c j( ){ }r0 j exp(iωt). (19)

Integration of Eq. 19 gives total reaction force Fbrj of the
gas gearing.
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Characteristics of the unbalance response have been re-
ported elsewhere.14,15

External Excitation Response
The general external excitation response is numerically

calculated as an initial value problem using the Runge-
Kutta method. Because the external excitation force usu-
ally contains not only forward but also backward
components and its frequency is not the same as the rota-
tion frequency, the response also contains backward and
forward whirling not synchronized with the rotational fre-
quency.10,15 These characteristics are largely different from
those of the unbalance response. These issues will be re-
ported in a separate study.

Conclusion
Rotor dynamics of the polygonal mirror scanner mo-

tor supported by air bearings have been mathematically
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investigated, in particular from two singular viewpoints.
One is the effect of the axial bearing length. The bear-
ing length does not affect dynamics related to the cylin-
drical mode. But the damping ratio, the natural
frequency, and the critical speed of the conical mode are
underestimated, if the effect of the bearing length is
neglected, i.e., if the bearing force is assumed to be ap-
plied to the center of the bearing. The other is static
instability in the very low-speed region. This instabil-
ity occurs because the stiffness of the air bearing is not
induced without rotation and is small at the very low-
speed region, whereas the magnetic negative stiffness
of the motor and/or magnetic bearing does occur even
at zero speed.
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