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Clustering Rate Analysis in Controlled Time-Scale Sensitometry
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The paper presents a new methodology. Properly controlled sensitometry and analysis are used to unveil microscopic information from
macroscopic response. The growth rate concept of the hierarchically coupled driving-force model (HCD-Model) provides an aggregated
description that remains flexible enough to simulate sensitometric curves very precisely. By unique parameter identification and
coherent interpretation, we obtain a simultaneous insight into interacting subsystems as determined by photoelectronic and ionic
processes in combination with silver cluster nucleation and growth. Answers to substantial questions of AgX photophysics may be
postponed largely to the end of the investigation if relevant results from quantitative analyses have been made available. The ap-
proach is outstanding for studies of latent image formation under realistic conditions such as moderate exposure and properly selected
photomaterials.
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Introduction
AgX photophysics provides an important basis for any un-
derstanding of the photographic elementary process. But
real-time studies during exposure are commonly bound to
high-intensity sources that depart from normal imaging
recording and may profoundly modify the system under
investigation.1 Accordingly, latent image theory suffers
from serious shortcomings, as well. There are different
hypotheses that have been discussed in detail for which
molecular-scaled proof is not easy to supply.

With this in mind, we have engaged in developing a new
methodology. Properly controlled time-scale sensitometry
is used to reveal microscopic information from macroscopic
response. But we are faced with an unclear situation. We
need an aggregated description to reduce the number of
unknown parameters that have to be identified. This must
be provided by a coherent approach that remains flexible
enough to simulate sensitometric curves very precisely.

Our model considers latent image formation as a photo-
induced process of silver cluster nucleation and growth. We
obtain a purely deterministic description called a hierar-
chically coupled driving-force model (HCD-Model). The fit-
ting is carried out on sensitometric data that are
correspondingly transformed to represent the time-depen-
dent growth of a number of silver clusters of developable
size. The transformations are in accordance with the previ-
ous assumptions of Nutting2 and Silberstein.3 We identify
the Burton–Berg corrected density4 with the average value
of the fraction of developable silver halide grains by taking
into account that one latent image center should be required,
only, to develop a silver halide emulsion grain, completely.

This approach does not prefer any basic assumption that
has been discussed controversially, so far. Relevant con-
clusions are postponed to the end of the investigation, if
quantitative results have been made available from analy-
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ses of realistic curves. The method corresponds to a top-
down approach that differs substantially from both the
models of Bayer and Hamilton5 and of Gerth.6–10 Simula-
tions by these authors are bound strongly to very speci-
fied events according to a distinct concept of latent image
theory. Little opportunity exists to revise them afterward
in the context of final results. This article tries to give a
self-contained account of the interrelated aspects published
elsewhere in parts, up to now.11–17

Systems Analysis Fundamentals
Formalism of the HCD-Model Approach. To simu-

late the photographic response, we use a differential equa-
tion system as given by

dx dt A A x A x1 1 2 1 3 1
2/ = − − , (1)

dx dt B x B x B x x2 1 1 2 1
2

3 1 2/ = + − , (2)

dx dt C x x x x C xL3 1 1 3 2 2 2 31/ ( / )( )= − − , (3)

dx dt dx dt x K4 3 41/ / ( / )= − . (4)

The model involves four variables assumed the most
relevant for describing the process as considered here, i.e.,
the concentration of the photoliberated electrons in the
conduction band, in the case of x1; the total concentration
of silver clusters photolytically formed during exposure,
in the case of x2; the concentration of silver clusters of de-
velopable size, in the case of x3; and, the fraction of the
developable silver halide emulsion grains, in the case of
x4. All values are related to a distinct number of silver
halide grains as designated by K in Eq. 4.

But to specify a realistic emulsion, many parameters
are used as indicated by capital letters on the right side
of the equation system. The parameters reflect different
kinds of driving and retarding actions discussed more
below.
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Correspondance with Statistical Rules. Our model
deviates from the preference of statistics usually used for
simulating the photographic response. According to Nut-
ting,2 time-independent chance distributions have been
applied chiefly up to now.18 However, it does not seem very
promising to combine growth rate equations with statis-
tics for our purposes. We require a homogeneous descrip-
tion by one concept alone. Therefore, it seems very
important to demonstrate that our formulation obeys sta-
tistical rules as well.

We refer to Eq. 4 which puts the growth rate for the
number of developable grains dx4(t)/dt into a product of
two factors, i.e., into dx3(t)/dt and into [1 – x4(t)/K], respec-
tively. Thus, the rate of the developable grains is assumed
proportional to the rate of development centers, as desig-
nated by dx3(t)/dt. But the rate equation converges to zero
if x4(t) approaches a distinct number of silver halide grains,
as designated by K. This is due to the second factor that
represents a logistics term.

The integration may be carried out by variable separa-
tion according to

x t K e x t K
4 1 3( ) ( )( )/= − − , (5)

with the boundary conditions x4(t) = x3(t) = 0 for t = 0. Sur-
prisingly, the result is completely identical with the fa-
mous Svedberg formula,19 established in 1922. In this case,
a Poisson distribution function P(n) is assumed to desig-
nate the probability for the occurence of a grain with n
development centers if the average number of development
centers per grain amounts to ~n :

P n n e nn n( ) ~ / !
~

= − . (6)

The symbol ~n  in Eq. 6 is identical to the exponential
expression x3(t)/K in Eq. 5. From Eq. 6, we derive the frac-
tion of grains with no development center according to

P e n( )
~

0 = − . (7)

The difference from unity designates the fraction of
grains that involve one development center, at least. But
this is the same result as expressed within the brackets
on the right side of Eq. 5.

We consider the equivalence as the first proof of the rel-
evance of our approach. The result is due to the influence
of the retarding action, as expressed by the second factor
above. It should be emphasized that retarding influences
are very important for other levels of the model too.

Reference to the Lotka-Volterra Model. The Lotka-
Volterra Model is well known for describing the dynamic
balance between hares and foxes.20 We speak of the preda-
tor–prey concept, in a more general sense. But our ap-
proach considers a similar situation. Four aggregated
subsystems are designated by x1 to x4, and we obtain some
sort of growth rate coupling to provide interaction be-
tween them.

All levels are driven by a particular input value that
corresponds to the photon absorption rate as designated
by the driving-force parameter A1, in Eq. 1. This param-
eter must be adjusted to an average number K of silver
halide grains as in Eq. 4. In this way, we obtain an anal-
ogy with the given “territory,” as assumed for defining the
occupation densities in the predator–prey concept. But in
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comparison with the latter, we may profit from substan-
tial simplifications as summarized in the following:

1. Rate coupling occurs in a unidirectional way only. In
other words, no feedback occurs between subsequent
levels in a reciprocal way, as designated by the rate
equations for the four variables x1 to x4, respectively.

2. Nonlinearity, as originally introduced by mixed ex-
pressions of different variables like x1x2 or x1x3, is fi-
nally reduced, owing to the substitution of the variable
x1 by the constant limit value x1L, as outlined below.

References to AgX Photophysics
Use of the Tichonov Theorem. With respect to fur-

ther application, we present the model in the integral
form*:

    x4 = K Dabsolut − Fog( ) / Dmax − Fog( ), (8)

x K x K3 41= − −ln( / ), (9)

    
x2 = x2L 1 − e− x1Lt( ), x2 = 0 if t = 0, B3 = 1, (10)

    
x1L = − A2 / 2A3 + A2

2 / 4 A3
2 + A1 / A3( )1/ 2

if A3 ≠ 0, (11)

    x1L = A1 / A2 if A3 = 0 if A2 ≠ 0. (12)

Burton–Berg corrected densities are transformed accord-
ing to both Eqs. 8 and 9 to obtain the growth of the num-
ber of developable grains, as derived from time-scale
sensitometry. All subsequent equations contain the limit
value x1L instead of the variable x1. The reason is demon-
strated by corresponding simulations as performed with
our model in Fig. 1.

The variable x1 reaches a steady-state value in a very
short time (on the order of microseconds), whereas changes
of the other variables take longer (on the order of millisec-
onds and more). Because of the great difference between
the time constants, we obtain no dynamic interference
between photoelectron excitation and the other processes
connected with silver cluster nucleation and growth. Such
a situation corresponds to the Tichonov theorem† as es-
tablished in 1952.21 Therefore, we may approximate the
variable of the process with the shortest time constant by
the constant limit value of the steady state as derived from
the photostationary condition dx1/dt = 0 in Eq. 1.

But in Eq. 10, a second limit value x2L appears. The ex-
pression has been obtained by direct integration of Eq. 2,
considering the Tichonov theorem as mentioned before.
From the stationary condition dx2/dt = 0, we may derive

        x2L = B1 + B2x1L     for      B3 = 1. (13)

* The factor K is introduced for customary reasons in accordance with
previous publications where the corresponding value has been assumed
always arbitrarily as K = 1000. The consideration of a multitude of emul-
sion grains seems more convenient, in our opinion, than the restriction to
one grain alone. Furthermore, we have the opportunity for a reasonable
calibration in this way, which may provide more convenient orders of
magnitude for the parameters to be identified.

† The term is well known in systems analysis,27 because Tichonov was the
first to give a strong definition from a mathematical point of view. In today’s
physics and natural sciences, however, equivalent formulations are used
preferably, as termed as slaving principle or adiabatic deviation.28
Dünkel et al.



Figure 1. Demonstration of the Tichonov theorem. The growth curve simulations with the HCD-Model are in accord with the results
of the analysis of a diagnostic x-ray film as presented in Fig. 2. The photo steady-state for the variable x1 is reached well before silver
cluster nucleation and growth become remarkable. The asterisk by the parameter C2 is a note that according to the rate Eq. 3, the
parameter C2 must be dimensionless if the corresponding dimension (s-1) is assigned to the parameter C1.
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The discussion of this last result will be postponed to
the relevant section below.

Grain Size Influence. This influence is correlated with
the photon absorption rate as obtained for a distinct num-
ber of emulsion grains. We obtain a direct dependence on
the average size of the emulsion grains. The greater the
emulsion grain the greater the photon absorption rate per
grain, and the greater the speed of all other processes as
mediated by the limit value x1L, according to Eq. 12, for
example.

But another aspect is worthy of mention. Both param-
eters A1 and K are unique and have to be determined by
Clustering Rate Analysis in Controlled Time-Scale Sensitometry
direct measurement independently of any fitting at sensi-
tometric curves. Thus, a well-equipped sensitometer with
proper radiometry is required to obtain the absolute num-
ber of photons to be absorbed per unit time and unit area.
This must be supplemented by microscopy and related
methods to characterize the grain size and density within
the photographic layer.

Photoelectron Excitation Process. This process is un-
derstood quite controversially by different concepts of cur-
rent latent image theory. According to Gurney and Mott, a
pair generation of free electrons and holes is assumed. But
Mitchell1 discusses an Auger decay of excitons at so-called
Vol. 41, No. 5, Sept./Oct.  1997     523



donor centers that excludes the generation of holes in the
usual case.

In Eq. 1, however, such a distinction does not play a
primary role. Photoexcitation of free electrons is thought
to depend directly on the photon absorption rate as ex-
pressed by A1. In addition, two loss processes of different
kinetic order are assumed for photoelectron trapping at
isolated states and for band-to-band recombination with
holes. The corresponding terms are designated by both
parameters A2 and A3, respectively. This is a standard
formulation as usually applied to describe photoexcitation
in semiconductor systems.22

By identifying the limit value x1L, we get the photoelec-
tron lifetime τ according to

          τ = x1L/A1. (14)

This is one of the most important quantities we derive
with the help of our model. The reversal of τ yields the
trapping parameter A2, provided that the recombination
parameter A3 may be assumed as zero. Accordingly we
obtain

          τ = 1/A2. (15)

The validity of Eq. 15 has been proven in many studies
where a linear relationship has been found between both
quantities x1L and A1.

Silver Cluster Nucleation Process. Silver cluster
nucleation involves an initial stage leading to subimage
formation. The clusters are still smaller than the size nec-
essary for initiating development. But they may act as
concentration centers to gather photoelectrons and mo-
bile silver ions at the same site by further exposure.

In the approach in Eq. 2, no distinct specification has
been made whether the subimages should be assumed as
Ag2 aggregates or as Ag

4

+  concentration centers according
to direct photolysis or to the photoaggregation theory, re-
spectively.1

By considering the Tichonov theorem, we get a more
concise description for both the differential and integral
form, as given by

dx2 /dt = x1L(x2L – x2) (16)

and

x x eL
x tL

2 2 1 1= − −( )

referring to Eq. 10. In this way, silver cluster nucleation
should be described uniquely by both limit values x1L and
x2L. But the latter are not constant quantities if the pho-
ton absorption rate is varied.

According to Eq. 2, we get two driving terms that desig-
nate first- and second-order processes depending on the
photoelectron density. The parameters are B1 and B2, re-
spectively. The former process may be assigned to a step-
by-step mechanism via photoelectron capture at deep
traps. The latter considers higher ordered condensation
as assumed by the thermodynamic phase-building con-
cept,23 for example.

But Eq. 2 involves yet a third term with a negative sign.
We obtain a mixed expression as designated by B3x1Lx2. The
retardation should be due to different reasons that will not
be explained in detail, i.e., restricted number of sensitivity
centers, competition effects, thermal decay, etc.. Therefore,
Eq. 2 reaches a limit value by extended exposure too.
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Now, we refer to a special assumption made in Eq. 13
by setting B3 = 1. With explicit consideration of B3 we
obtain a relevant formulation instead of Eq. 13 accord-
ing to

x2L = B1/B3 + (B2/B3)x1L. (17)

Equation 17 turns out to be overestimated. It is impos-
sible to identify all three parameters independently. Simi-
larly, we may derive a complete formulation for Eq. 10
with explicit inclusion of B3, as given by

    
x2 = x2L 1 − e− B3x1Lt( ). (18)

A product of two unknown quantities enters the expo-
nential term, i.e., the retarding parameter B3 and the limit
value x1L. Neither can be determined individually. There-
fore, we need some supplementary arguments to justify
the assumption above.

1. The main support is provided by the photoelectronic life-
time determination as derived from Eq. 14. In this
way, a relevant order of magnitude could be revealed
by all our studies to lie in the microsecond range.13

2. We restrict the consideration to very low values of x1L

where deep traps should be efficient only and where
the higher order driving term may be neglected. Ac-
cordingly, we get two types of concentration centers
solely, i.e., the sensitivity centers as connected with
B1 and the subimage centers as expressed by x2. Pro-
vided the efficiency of electron capture is the same,
the reaction rate constant must be the same as well.
This will correspond to the parameter B3, in both cases.
By designating the number of sensitivity centers with
B1

∗ , we derive from Eq. 2 two expressions as given by

B B B1 3 1= * (19)
and

dx dt B x B xL2 3 1 1 2/ ( )*= − . (20)

Thus, x2 converges to the number of sensitivity
centers, exactly, if the limit value x1L is very low. But as
for the identification of B3, we have to refer to the same
arguments as stressed in No. 1 above.

3. The parameter B3 may be assumed to have a constant
quantity in contrast to the limit value x1L. Thus, corre-
sponding changes of the unresolved product B3x1L may
be interpreted properly as changes in x1L. We are
speaking of an efficient photoelectron density, there-
fore, if the identification of x1L refers to the unresolved
product above.

Silver Clustering Growth. As stated before,
subimages need further exposure to reach a critical size.
The growth rate is given by Eq. 3. By considering the
Tichonov theorem, we obtain two major terms with a posi-
tive and a negative sign as expressed by C1x1Lx2 and by
C1C2x1Lx3, respectively. Thus, the driving action is assumed
dependent on the actual value of x2, whereas retardation
appears as feedback in dependence on the actual value of
x3. The direct influence of the first level of photoexcitation
is mediated by the limit value x1L.

But in addition, we must consider a second factor as given
by (1 – x3/x2L). Its influence provides greater flexibility to
Dünkel et al.



analyze experimental curves over the global range. We
obtain an additional action that prevents in any case the
variable x3 from becoming greater than the limit value
x2L. We believe this should be consistent with a more ad-
equate simulation as well, because retardations from dif-
ferent origins would be considered more properly in this
way. Unfortunately, the formulation becomes more com-
plicated too. We obtain a Riccati differential equation dis-
cussed next.

Parameter Identification
Basic Problem. This problem is the most delicate one

with which we are faced. The number of unknown param-
eters remains disproportionately large, despite all approxi-
mations as made so far, and no possibility exists for any
direct identification in some analytical way. We have to
refer to an indirect access by more expensive calculations
to compare experimental with calculated data.

Below we consider the mathematical background more
thoroughly. A crucial step is the integration of the Riccati
differential equation. This is required to fit correspond-
ingly transformed data that respresent the time-depen-
dent growth of the variable x3. The values for the variable
x3 are available from monochromatic time-scale sensito-
metry by transformations with the help of Eqs. 8 and 9,
respectively.

Riccati Differential Equation. Starting from our
model, we obtain this equation by a sequence of several
steps. A summary should provide some help to follow fur-
ther arguments.

1. We start with the model as originally given by Eqs. 1
through 4.

2. Under adequate consideration of the Tichonov theorem,
the dynamic variable x1 is replaced by the constant
limit value x1L according to the saturation condition
dx1/dt = 0 to be applied to Eq. 1.

3. With the substitution above, the integration of Eq. 2
is performed by variable separation in an analytically
closed form to get Eq. 10. If not noted otherwise, we
make use of the boundary condition as designated in
Eq. 10. This means the retardation parameter is
adjusted arbitrarily to the value of B3 = 1.

4. In Eq. 10 a second limit value has to be considered
that is designated by x2L. In a similar way as above,
the constant value resulting from the saturation con-
dition dx2/dt = 0 will be given by Eq. 13.

5. A substitution is carried out in Eq. 3 with respect to
the dynamic variable x2, i.e., the variable on the right
side of Eq. 3 is replaced by the integral function as
provided by Eq. 10. In this way, Eq. 3 will be trans-
formed into

    
dx dt C x x x x e C xL L L

x tL
3 1 1 3 2 2 2 31 1 1/ / ( )= −( ) − −[ ]− (20)

Multiplication of the right side in Eq. 20 and rearrange-
ment lead to an expression:

 
    
y' + a3 1 − e− a1t( ) + a4[ ]y − a4 / a2( )y2 − a2a3 1 − e− a1t( ) = 0,

(21)

with y′ = dx3/dt, y = x3, a1 = x1L, a2 = x2L, a3 = x1LC1, a4 =
x1LC1C2.

Eq. 21 exhibits an inhomogeneous differential equation
of first order as indicated by three terms, i.e., by the dif-
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ferential term involving the first derivative y′, by the lin-
ear term depending on y, and by the inhomogeneous term
that does not depend on y, respectively. But in addition,
there is a nonlinear term depending on the square of the
integral function y, i.e., on y2. This is a special type of non-
linear differential equation, namely the Riccati differen-
tial equation, as mentioned before.24

The renaming in Eq. 21 avoids unwieldy expressions
as designated by a3 and a4, respectively. But the renam-
ing has been applied to both limit values x1L and x2L, too.
This may seem unnecessary and quite confusing, because
the physical meaning should be clearly expressed. How-
ever, proper standardization by four similar symbols fa-
cilitate further calculations requiring increasingly
complex formulas.

Solution by a Polynomial Approach. The method is
based on the linear independence between terms of differ-
ent polynomial order, because direct integration of the
Riccati differental equation is too complicated to provide
any successful approach.24 By the calculations below, we
obtain some supplementary information about the process
itself. Straightforward application of the calculations may
help consolidate parameter identification if not completely,
in parts at least.

Thus, we substitute all time-dependent functions in Eq.
21 by a corresponding polynomial series as established
according to

    y t b b t b t b t b t b t( ) ,...,= + + + + +0 1 2
2

3
3

4
4

5
5 (22)

    ′ = + + + +y t b b t b t b t b t( ) ,....1 2 3
2

4
3

5
42 3 4 5 (23)

    ( ) / ! / ! / ! ....,1 2 3 41
1 1 11
2 2 3 3 4 4− = + + − +−e a t a t a t a ta t (24)

The polynomial series in Eq. 22 is assumed to be a gen-
eral result for the integral function for which we have to
search. Equation 23 is the first derivative of Eq. 22. Equa-
tion 24 is used to substitute exponential functions as in-
volved in Eq. 27. The right side represents the Taylor series
approximation leading to an alternating sign between sub-
sequent terms of rising order.25

In the final step, we obtain a set of equations for each
power of t by considering the rule of linear independence
that defines the conditions for the polynomial coefficients
as assumed by Eq. 22. But the procedure involves contin-
ued multiplications between polynomial series as substi-
tuted in Eq. 21. Fortunately, we do not have to calculate
ad infinitum. The important result is a recursive scheme
summarized next.

1. Both first terms are missing on the right side of the
polynomial approach as given by Eq. 22. Accordingly,
we obtain

b b0 1 0= = . (25)

The proof will not be demonstrated in detail. But if we
assume the clustering rate is zero for t = 0, the result in
Eq. 25 appears correct because both Eqs. 22 and 23 must
converge then to zero as well.

2. Accordingly, the coefficient b2 is the first to play an
efficient role. From our procedure, we obtain

  b2 = (1/2) a1a2a3. (26)
Vol. 41, No. 5, Sept./Oct.  1997     525



The result does not involve any retarding influence con-
nected with the parameter a4. In the beginning, we obtain
a concentrated charge that combines all relevant driving
influences from different levels as expressed by the prod-
uct above.

3. The subsequent coefficient is derived as

    
b3 = (1 / 3) 1 / 2( )a1

2a2a3 + a4b2[ ]. (27)

Returning to Eq. 26, we obtain a negative sign. An addi-
tional feature is the involvement of a4. Some indication of
a recursive scheme is already evident. To calculate the co-
efficient b3, we must determine the coefficient b2 first. But
this aspect will concern us in more detail next.

4. For simplicity we will differentiate now between the
situations of whether we analyze the beginning or the
global range of the curve.

In the first case, we may neglect the logistics factor as
involved in Eq. 20, i.e., the factor (1 – x3/x2L). Consequently,
we obtain a proportionally simple expression to determine
the polynomial coefficients for all indices n greater than 2
with a recursive formula:

    bn = (−1)n (1 / n) 1 / (n − 1)![ ]a1
n−1a2a3 + (−1)n−1 a4bn−1. (28)

It is easy to prove that Eq. 28 corresponds to Eq. 27 for
n = 3.

5. The second case of the complete Riccati differential
equation leads to a recursive formula as well. But we
obtain a more sophisticated expression as given by

    

bn = (−1)n (1 / n) 2 / (n − 1)![ ]a1
n−2b2 + a4bn−1{ }

− (1 / n)a3
i=1

n−3

∑ −1( )i+1 1 / i!( )a1
ibn−1− i











...− a4 / a2( )
i=2

n−3

∑ bn−1− ibi





.

(29)

The last formula will be valid for n ≥ 4, whereas the
coefficients with smaller indices are described as above,
i.e., by Eqs. 25 through 27.

It is out of our scope now to undertake each mathemati-
cal exercise to prove the strong validity of the recursive
formulas by complete induction. The important question
we are concerned with next may be formulated as follows.
What can we sift out to consolidate parameter identifica-
tion properly?

Methodology of Parameter Fitting and Identifica-
tion. It seems advantageous to restrict the analysis to the
beginning of the curve. All relevant information is included,
and quite simplified equations may be used. However, this
way is not very promising in reality. Data scatter becomes
too great, and the unknown truncation error of the poly-
nomial approach may not be well observed.

We present a compromise. We use numerical integra-
tion for fitting the global range. But the basic equation is
modified by considering some specified solutions obtained
before. The methodology is outlined as follows:
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1. For the analysis of the beginning range, three poly-
nomial coefficients are required to identify the para-
meters involved in Eq. 21. This means all parameters
may be determined with the help of both Eqs. 26 and
28 if the values for the first three polynomial coeffi-
cients are known, i.e., the values for b2 to b4. The
correspondingly transformed equations are given else
where13 and will not concern us here in detail.

But in the context above we emphasize that we obtain a
product a2a3 only. Neither of the two parameters may be
determined individually unless we use supplementary
assumptions that will help us to solve this problem too.23

2. For identifying the polynomial coefficients, computer
programs are available that rely on function minimi-
zation.13 According to our experience, however, the cor-
rect determination of the coefficient b4 appears seriously
compromised. This is owing to the truncation error of
the polynomial approach that may not be well observed.

Below we present alternative access that seems inter-
esting from both a theoretical and a practical point of view.
By considering Eq. 25, we may subdivide Eq. 22 by the
squared exposure time t2 according to

y t b b t b t b t b tt( ) / .. .2
2 3 4

2
5

3
6

4= + + + + . (30)

Because the values on the left side of Eq. 30 are avail-
able from sensitometric data, proper extrapolation should
reveal the first polynomial coefficient b2:

lim /( )
t

y t bt
a0

2
2= . (31)

To identify both the coefficients b3 and b4, we use a re-
cursive procedure as given by

      
lim
ta0

y2 (t) − b2[ ] / t = b3 with y2 (t) = y(t) / t2
(32)

and

      
lim
ta0

y3 (t) − b3[ ] / t = b4 with y3 (t) = y2 (t) / t2 − b2 / t.  (33)

The approach could be applied successfully in the case
of undisturbed data as obtained from simulated results.
In the case of empirical data, however, the scatter is too
large for a straightforward identification using Eq. 33.

3. For fitting by numerical integration, we rewrite the
Riccati differential equation:

    
dy / dt = (1 − y / a2 ) (2 ⋅ b2 / a1) (1 − e− a1 ⋅t ) − a4 y[ ]. (34)

Equation 34 corresponds to Eq. 20. As introduced by Eq.
21, the parameters a1 and a2 are identical with both limit
values x1L and x2L. But in addition, there appears the coef-
ficient b2 that has been involved by considering the result
of the polynomial approach as given in Eq. 26. Detailed
explanation is given below.

4. In the fitting process, we have to adjust three quanti-
ties, mainly, i.e., b2, a1, and a4. As for the fourth
parameter a2, no significant influence occurs on the
Dünkel et al.



Figure 2. Example for fitting and analysis of correspondingly transformed data as obtained by monochromatic time-scale sensitom-
etry  with orthochromatic x-ray film T-TX-MFO (Typon AG, Switzerland) The absolute value of the photon absorption rate has been
determined as 1.7 × 106  photons/s and K = 1000 emulsion grains for irradiation at 425 nm.
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bending of the curve provided its value is assumed
to be proportionally large. For better insight into the
interaction between these quantities, we consider Eq.
35 as given by

    

dy / dt = (1 − y / a2 )

2 ⋅ b2 (t − a1t
2 / 2 + a1

2t3 / 3!− a1
3t4 / 4!...) − a4 y[ ].  (35)

Equation 35 has been derived from Eq. 34 by using the
Taylor series approximation instead of the exponential
term. We recognize the only driving action as assigned to
the complex coefficient b2 while both parameters a1 and a4

are bound to retarding actions.

5. By considering the above results, we may subdivide
the fitting into two different steps:

The first involves the identification of the polynomial
coefficient b2. Thereby, we may profit from its driving in-
fluence. This allows an approximate adjustment in the
beginning of the curve. But other methods may be applied
too, i.e., function minimization of the polynomial approach
or corresponding extrapolation with the help of Eq. 31.

The second step refers to the simultaneous identifica-
tion of both parameters a1 and a4. This procedure is more
delicate, because of the reversal influence of both values
on each another. But as we have found, each of the pa-
rameters influences the global bending in some specific
way. Thus, sufficiently unique identification is possible if
the fitting is performed very carefully.

6. But regardless of whether the adjustment is performed
by operator scan or automatically, in each case proper
discrepancy factors are required to optimize the fit.
Given a number m of data provided from time-scale
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sensitometry, two discrepancy factors have been used
as follows:

The variance as given by

    
V = 1 / m( ) y j − y(t j )[ ]2

j =1

m

∑












1/ 2

, (36)

and the R value is given by

    
R = y j − y(t j )[ ] / y j .

j =1

m

∑ (37)

Analysis by Computer Dialog. An example is demon-
strated in Fig. 2. The graph depicts the time-dependent
growth of the variable x3, with K = 1000 emulsion grains.
We get a well optimized fit between sensitometric data and
simulated results. The photomaterial was orthochromatic
x-ray film T-TX-MFO from Typon AG, Switzerland. Time-
scale exposure has been carried out with monochromatic
irradiation at 425 nm. (For further details see Ref. 17).

The corresponding discrepancy factors are given at the
top right side of the graph. The column indicates the three
quantities that have been systematically varied, i.e., b2,
a1, and a4, respectively. The limit value a2 is an approxi-
mated result and does not influence seriously the fitting
process. The photon absorption rate was 1.7 × 106/s and
with K = 1000 grains. This should correspond to a photo-
electronic lifetime of τ = 1.0 × 10-5 s, according to Eq. 14.

An instructive result is the limit value x3L. The correspond-
ing saturation condition in Eq. 3 leads to an expression:

    

x3L = (2b2 ) / (a1a4 ) =

= 2(a1a2a3 / 2)[ ] / (a1a4 ) =

= (a2a3 ) / a4 = x2L / C2 .
(38)
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With our results, we obtain x3L = 2422. Accordingly, about
two and a half latent image centers should be formed on
average per emulsion grain by extended exposure with the
photon absorption rate as indicated above.

Outlines of Systematic Research
What Does the Exercise of Fitting Tell Us? The con-

solidation of parameter identification is a very important
step for getting straightforward information in further re-
search. But a coherent interpretation has to be secured as
well. Below we consider two major lines that are interre-
lated in a substantial way, i.e., the analysis ggregation of
the response curve to obtain a photophysically well-speci-
fied insight into more detailed aspects and the proper com-
bination of the results in context with systematic studies
of more or less expressed effects in photographic behav-
ior, e.g., low-intensity reciprocity law failure (LIRF), de-
velopment influence, spectral dependence, influence of
temperature, and double exposure effects. The interpre-
tation of the first line is summarized as follows:

1. At the most aggregated level, we get the time-depen-
dent growth curve of the variable x3. The result is as-
sumed to reflect the actual number of latent image
centers to be photolytically formed. From our model,
we may derive a unique turning point once correspond-
ing parameters have been identified. This point may
be used to calculate a specified value that character-
izes the maximum spectral quantum sensitivity for
the photon absorption rate A1 to be applied, i.e., by
determining the minimum number of absorbed pho-
tons needed to form a single latent image center.

2. A primary result of the fitting process is the polyno-
mial coefficient b2. But for further interpretation, we
may not use this value alone, because of the unspeci-
fied combination of different driving forces, as ex-
pressed by the unresolved product in Eq. 26.

However, we are faced with a substantial question by
considering Eq. 31. Is there any similarity with the con-
cept of inertial speed? We believe the answer is somehow
yes, but first we should consider the great difference be-
tween both concepts. Inertial speed26 refers to the expo-
sure axis on a logarithmical scale, whereas the polynomial
coefficient correlates strikingly with the photon absorp-
tion rate because of its dependence on the square of the
limit value x1L. Accordingly, b2 changes drastically with A1,
quite in corresponding contrast to the rather constant be-
havior of the inertial speed as designated by the formula-
tion of the adjective inertial itself.

But nevertheless, both concepts relate to the sensitivity
in the beginning range of a photographic characteristic
curve. In this context, we have found an interesting corre-
lation if the development conditions are changed. The de-
tails are provided later in this article.

3. More specified information provides the limit value
x3L. We may derive this result from the polynomial
coefficient given before by using Eq. 38. Via this value,
we get the quotient between the limit value x2L for sil-
ver cluster nucleation and the retardation parameter
C2 for silver cluster growth. In other words, the effi-
ciency of the former process is related to the ineffi-
ciency of the latter, because of dispersity and other
effects. However, it may be believed that the limit
value x3L reflects changes of the nucleation speed pre-
ferably in systematic studies where the photon ab-
sorption rate is changed. Dispersity effects that
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influence silver cluster growth should not be changed
very significantly for the moderate exposure condi-
tions as applied in our studies.

4. More profound analysis provides the identification of
the limit value x2L itself. From the dependence on the
limit value x1L, we obtain access to both driving pa-
rameters of silver cluster nucleation speed, i.e., to both
parameters B1 and B2, made available with the help
of Eq. 13.

However, from Eq. 26 we obtain the undissolved product
a2a3 only and not the value of a2 alone. To solve the prob-
lem, we may refer to a method published elsewhere.13 Thus,
it appears convenient to approximate the parameter a2 by
a reasonably low value, if the photon absorption rate is not
very great as well, e.g., by a2 = 4000 related to K = 1000.
This allows us to unveil the parameter a3, and also the value
of C1 by using the corresponding expression a3 = C1 • x1L

from Eqs. 21 and 26, respectively. The identified value of
C1 may then be applied properly for other exposure ranges
as well to decompose the product above.

We believe that both parameters B1 and B2 are bound
preferably to the activation of the mobile Ag+ ion system
as required for silver cluster nucleation in subimage for-
mation. But, different mechanisms for photoelectron trans-
fer should be reflected as well. Thus, the first process is
assumed to proceed preferably via a conduction band
mechanism, while the second may be bound to some
trapped-state dynamics for providing a higher order
mechanism in dependence on the photoelectron density.

5. A very instructive result is the limit value x1L. We get
a photophysically well-defined quantity that correlates
directly with the photoelectron excitation character-
istics. The value may be used to determine the photo-
electron lifetime τ. This access is unique in comparison
with direct measurements, where strong excitation is
required that deviates strikingly from image like ex-
posure. By way of our determination, we may proceed
to very sophisticated studies of realistic emulsions to
elucidate the dependence on smooth changes of a num-
ber of correlated influences such as the photon ab-
sorption rate and the wavelength of monochromatic
radiation during exposure. Both photoelectron exci-
tation and silver clustering become clearly discrimi-
nated from each other. But they may be observed si
multaneously with good resolution as well.

Analysis of LIRF. This effect has been well established
in all photomaterials studied so far, i.e., in diagnostic x-
ray films from different producers.11,13–17 From monochro-
matic time-scale sensitometry, we always found a
significant LIRF if the photon absorption rate has been
systematically diminished by 1 to 3 orders of magnitude.

The mechanism is largely independent of the primary
way of photoexcitation, which has been changed from in-
trinsic AgX lattice absorption to sensitizing dye absorption
by varying the exposure wavelength from 425 to 550 nm,
respectively. There was never a serious influence on the
photoelectron lifetime dependent on both the spectral
change before and the photon absorption rate. But we found
a steep correlation between both limit values x1L and x2L, in
accordance with Eq. 13.

Thus, the LIRF could be attributed to the changing effi-
ciency of the silver cluster nucleation process owing to a
strong influence of the nonlinear term as expressed by the
product     B2x1L

2  in Eq. 2. The unveiled mechanism is in
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good agreement with previous explanations of LIRF as
made by other authors on the basis of the thermodynamic
phase-building theory,23 for example.

By comparing photomaterials from different producers,
some changes could be unveiled in a quantitative sense
only, i.e., higher photoelectron lifetimes might correlate
with lower limit values x2L, and vice versa. This reflects
some pecularities between the ripening states that deserve
further attention by more directed studies.

The results above differ from those of corresponding
studies with monochromatic exposure lower than 400 nm,
which will be discussed more below.

Influence of Development. Changing development
conditions provide substantial proof of our methodology.
AgX photophysics do not depend on a subsequent step.
This must be properly reflected by our analysis as well.

Below we refer to results as published elsewhere.14 The
proof has been carried out by a cross experiment. Both
the development and the photon absorption rate have been
varied between two distinct regimes.

Accordingly, diagnostic x-ray film HS 90 has been ex-
posed with monochromatic radiation at 425 nm for two
different photon absorption rates varying by 3 orders of
magnitude. Then, development has been carried out ei-
ther in a standard way (i.e., T 30) used normally to obtain
maximum speed for diagnostic application or with a sec-
ond procedure (i.e., R09) on the basis of para-aminophenol.
The second procedure is well-known for achieving rather
equilibrated gradations.

Standard development provides higher speed, but not
in every case. The difference was restricted to the higher
photon absorption rate only. This has been reflected by
the limit values x1L, while the limit value x3L, has been left
almost unchanged.

The results exclude any change of the so-called devel-
opment criterion between both regimes that refers to a
different critical size of the latent image center for cata-
lyzing development. But the influence on the limit value
x1L may be interpreted quite properly by considering a to-
pological effect that occurs in light-exposed AgX microc-
rystals. Thus, photoelectrons shift increasingly into the
subsurface region if the photon absorption rate is raised,
and latent image formation will be shifted too. In this case,
the centers may be made available by standard develop-
ment because of the high sulphite content, but not by sur-
face development with R09.

In this last context, we refer to the concept of inertial
speed once more. The method applies to density-scale sen-
sitometry. But the analysis is restricted to the beginning
of the curve where the photon absorption rate may be as-
sumed as rather small. The topological shift should not
yet play a significant role. Thus, the inertial speed too
might be basically independent of corresponding changes
of the development regime, which is quite in accord with
previous statements made many decades ago.

Spectral Dependence in Extended Studies. Both
studies provide an important conclusion. The usual un-
derstanding of photographic behavior was basically con-
firmed, and the method may be considered as well proved.
Thus, we may start on further investigation of more sub-
stantial aspects.

Below we extend the measurement to higher quantum
energies beneath 400 nm. This spectral range is assumed
to be a turning point for AgX photophysics according to
Mitchell.1 Direct photolysis of the AgX lattice should be
Clustering Rate Analysis in Controlled Time-Scale Sensitometry
excluded for absorbed photons with lower quantum ener-
gies (i.e., for wavelengths beyond 400 nm), because of the
first law of thermodynamics. Mitchell discusses an Auger
decay of excitons at so-called donor centers. They should
be involved actively within the primary process of
photoexcitation to overcome the energy deficit.

The Auger decay should lead to the creation of photo-
electrons, but not of holes normally. This is in contrast to
the concept of pair generation of photoelectrons and holes
as assumed generally by the direct photolysis theory of
latent image formation, according to Gurney and Mott.
Mitchell allows such a possibility for spectral ranges with
higher quantum energies only, i.e., for wavelengths below
400 nm.1

The results of our investigation are depicted in Fig. 3.
The equidensities have been derived from monochromatic
time-scale sensitometry above and below 400 nm. The cru-
cial point of the proof is the reliability of the photon ab-
sorption rate as indicated on logarithmic scale at the
ordinate. Meticulous measurements were performed with
different methods (by using a photodiode and a thermo-
pile head) to exclude deficient calibration of the radiom-
eter for the varying spectral ranges studied.

We obtained unique hints of drastic changes of the el-
ementary process by crossing the 400-nm range. On a mac-
roscopic scale, we obtained a drop in quantum sensitivity,
i.e., the sensitivity was somewhat less at below 400 nm com-
pared to above. But the major effects were found on a mi-
croscopic scale. For higher quantum energies, we observed
an expressed dependence of the photoelectron lifetime on
the photon absorption rate. This differs strikingly from the

Figure 3. Equidensities as derived from monochromatic time-
scale sensitometry for the same photomaterial as used in Fig. 2.
The wavelength has been varied above and below the 400 nm
range. All curves relate to the Burton-Berg corrected density of
0.5. At the ordinate, the phototon absorption rate A1 are desig-
nated as absolute values on a logarithmic scale. The numbers at
the single points within the graph indicate the photoelectron life-
time in microseconds.
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rather uniform behavior as found for lower quantum ener-
gies above the 400 nm range.

The results may be well understood within the frame-
work of the photoaggregation theory as expressed by
Mitchell.1 The lack of holes should be reflected quite prop-
erly by the uniform behavior of the photoelectron lifetime
as observed for the range of lower quantum energies (i.e.,
beyond 400 nm). In a similar way, the appearance of holes
should be reflected as well, i.e., by the increase of the pho-
toelectron lifetime in dependence on the photon absorption
rate as observed for higher quantum energies at lower than
400 nm. This may be explained by assuming a hole attack
at donor centers that would open an additional pathway
for photoelectron generation according to

Ag h Ag Ag + Ag Ag e2 2
+ + ++ → → + → ∆ 2 .

The last step is a thermally activated one. It is likely,
that the decay probability correlates with thermal energy
dissipation in dependence on the photon absorption rate.

Conclusion and Outlook
It may be concluded that the methodology offers great

future prospects. Clustering rate analysis is a promising
method to unveil microscopic information from properly
controlled time-scale sensitometry. The approach is unique
for adequate studies of latent image formation under rel-
evant conditions of camera-sensitive exposure and with
realistic photomaterials.

The method has stood the test with respect to different
criteria. The uniqueness of parameter identification could
be established, and the interpretation was always in ac-
cord with the usual understanding of major effects in pho-
tographic behavior studied so far. Thus, a basic problem
has been adequately solved, i.e., the use of dynamical con-
cepts of systems analysis to describe latent image forma-
tion in some aggregated way that remains flexible enough
to analyze relevant photophysics properly as reflected in
sensitometric curves.

The subsequent disaggregation of the macroscopic re-
sponse provides an outstanding tool. We obtain insight into
a series of hierarchically ordered subsystems as determined
by photoelectronic and ionic processes in combination with
silver cluster nucleation and growth. Mechanistic conclu-
sions should be consolidated more properly in this way than
by ingenious reconstruction from single process investiga-
tions performed under differently specified conditions.

The method seems capable of resolving substantial ques-
tions of latent image theory by proper combination of re-
sults from meticulous studies provided the exposure and
development conditions are varied systematically. Our
analyses very strikingly support some arguments as ex-
pressed by the photoaggregation theory of Mitchell.1 The
corresponding conclusions have been drawn from the de-
termination of the photoelectron lifetime in dependence
on both the spectral range and the photon absorption rate.
The wavelength range of 400 nm could be established as a
threshold for primary photoexcitation quite in accord with
the predictions of Mitchell.

The methodology remains open to further sophistication
and improvement in extended studies. Of great future in-
terest should be the ingenious combination of simulation
methods acting on differing principles by a top-down and a
bottom-up approach. But this requires the precise fitting of
sensitometric data for all methods that have to be compared.
Relevant studies are planned for the future.
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