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A Maximum Entropy Algorithm for Holographic Structure Completion in
Macromolecular X-ray Crystallography
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We discuss the historical origin of the holographic concept in the field of crystallography and its relation to modern applications of
similar ideas to the problem of structure completion in macromolecular x-ray crystallography. For structure completion, the identifi-
cation of the diffracted amplitude from the known part of the structure with a reference wave enables the recovery of the unknown
part of the electron density from the diffraction intensities. In this article, we show how this may be achieved by means of a maximum
entropy algorithm.
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Introduction
Holography is a subject that today is most familiar in its
optical applications and, particularly, in its apparent abil-
ity to store and reconstruct three-dimensional images that
appear suspended in thin air. In fact, the main expansion
of the field of optical holography1 did not occur until the
1960s, following the development of the laser with its abil-
ity to generate light with coherence lengths of the order of
about a meter. A study of the historical record shows that
holography owes its invention more to the subject of crys-
tallography than optics.

In this article we discuss the relation between the his-
torical origins of the holographic concept and its modern
application to the problem of structure completion in the
x-ray crystallography of proteins.2–4 For structure comple-
tion, the idea exploited is that during structure solution a
partial model of the molecule may have been constructed
with the remainder unknown. Treating the diffraction
amplitudes from the known parts of the structure as a
reference wave, an algorithm based on the conjugate gra-
dient method was used4 to determine the electron density
from the unknown part using the information from the
diffraction pattern now interpreted as a hologram.

We propose and demonstrate the effectiveness of an al-
ternative algorithm, based on the maximum entropy prin-
ciple,5 for implementing a holographic scheme for the
problem of structure completion in the x-ray crystallogra-
phy of biological macromolecules.
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Crystallography—The Original Inspiration for
Holography

In his famous article that marked the invention of ho-
lography, Gabor6 acknowledged his debt to prior ideas from
the field of x-ray crystallography. The basic task in that
field is to recover the spatial distribution of the electron
density within the unit cell of a crystal from measured
intensities of Bragg spots on a diffraction pattern.

If the amplitude of a Bragg reflection is written

      
Ag = f j exp ig ⋅ r j{ },

j
∑ (1)

where fj is the scattering factor of the atom j at a position
rj within a unit cell, the corresponding intensity on a dif-
fraction pattern is

      
Ig = f j

* f k exp ig ⋅ rk - r j( ){ }.
j ,k
∑ (2)

The stationary-phase condition shows that any attempt
to recover the structure of the unit cell by a direct Fourier
transformation of the measured data by an algorithm of
the form

      U (r) = Ig exp∫ −ig ⋅ r{ } (3)

will yield a function |U(r)|2 that peaks at positions r equal
to rk –rj for all values of k and j. In other words, such a
simple Fourier transform can yield only the pair-correla-
tion function, or Patterson function as it is known in x-ray
crystallography. In general, such a function is insufficient
to determine a structure fully.

An important early insight was the realization that if
one of the atoms in the unit cell had a scattering factor f0,



for example, that was much larger than the others, much
more information could be obtained about the structure
by a transform of the same form as Eq. 3. Placing the heavy
atom at the origin of the coordinate system, Eq. 2 may be
written as

      

Ig = f0
2 + f0

* f j exp ig ⋅ r j{ } +
j ≠0
∑ f0 f j

* exp −ig ⋅ r j{ }
j ≠0
∑

+
k≠0
∑ f j

* f k exp ig ⋅ rk − r j( ){ }.
j ≠0
∑

(4)

It is apparent that if

|f0| >>|fj| (5)

for all j ≠ 0, then the double summation in Eq. 4 may be
neglected. Consequently, application of a transform of the
form of Eq. 3 to the remaining terms in Eq. 4 will yield a
function |U(r)|2 that would be expected to peak at posi-
tions r = 0, rj, and –rj. If, in addition, the heavy atom is at
the center of a centro-symmetric unit cell, even the value
–rj will mark an atom location, and thus the function
|U(r)|2 will correctly map the relative atom positions
within the unit cell.

Early in the development of x-ray crystallography,
Bragg7,8 invented an ingenious device that he called an x-
ray microscope, that exploited the above idea to recover
directly the projection, along one of the crystal axes, of
the electron density of a unit cell of a substance with 2-D
projection of the above type.

The point of the heavy-atom method is that if the ampli-
tude from one of the atoms is very large, the diffraction
pattern consists basically of the sum of the intensity from
that atom and the interference between the amplitudes from
the known heavy atom and those from the unknown scat-
terers. This is the feature used in all holographic methods.

Structure Completion in x-ray Crystallography
Formulation of the Problem. Now let us move the

clock forward to the modern era in x-ray crystallography
where researchers are grappling with ever more compli-
cated structures, such as those of biological macromol-
ecules. In the process of determining the structures of
macromolecules, modern crystallographers may be faced
with the need to reconstruct a missing part of the mol-
ecule from the knowledge of a partial model and the mea-
sured diffraction intensities.

This problem is reminiscent of the heavy-atom method,
except now the known part of the structure plays the role
of the heavy atom. But, unlike the case considered earlier,
we require a technique that would work for any type of
crystal symmetry. The holographic method proposed re-
cently by Szöke and colleagues2–4 regards the contributions
to the Bragg amplitudes from the known part of the struc-
ture as a reference wave and those from the unknown part
as an object wave. The x-ray diffraction pattern is regarded
as a hologram, and one seeks an algorithm that can re-
cover the object wave and, hence, the missing part of the
structure in analogy with the holographic reconstruction
process.

Suppose that the unit cell of the crystal is divided into a
set of voxels centered on a uniform grid of points. Let the
number of electrons from the known part of the structure
in the voxel centered on the position ri be ni. Then the
contribution from the known part of the structure to the
A Maximum Entropy Algorithm ...Completion in Macromolecular
amplitude of the Bragg reflection g will be given by the
discrete Fourier transform:

  
Rg = ni exp ig ⋅r i( ).

i
∑ (6)

The set of amplitudes Rg may be identified with a holo-
graphic reference wave. If the set of contributions to the
same Bragg amplitudes from the unknown part of the elec-
tron density in the unit cell are represented by Og, the
total intensity of the Bragg reflection may be written

Ig = |Ag|
2, (7)

where

Ag = Rg + Og. (8)

The recovery of the unknown amplitudes Og from a set of
measured intensities Ig and the known amplitudes Rg, is
the classic problem of holography. Of course, once the com-
plete set of object wave amplitudes, Og is recovered, the
electron distribution {ui}, defined on the same voxel grid,
may be found by an inverse Fourier transform.

As a test case, we considered the molecule of the pro-
tein bovine pancreatic trypsin inhibitor (BPTI), also con-
sidered by Maalouf et al.3 We took the atomic coordinates
listed for BPTI in the Protein Data Bank (entry 6PTI) and
used them to calculate the structure factors Ag to 3-Å reso-
lution, using standard crystallographic software. A known
partial structure was produced by deleting the atoms com-
prising amino acid residues 1 through 28 (approximately
50% of the structure) and the remaining atomic coordi-
nates used to calculate Rg.

The best estimate of the electron distribution in the de-
leted amino acid residues that may be reconstructed from
data of such resolution is then given by

      
ui = 1

N
Ag − Rg{ }exp −ig ⋅ r i( )

g
∑ , (9)

where N is the number of Bragg reflections g in the sum
above, and we make use of the fact that in our model prob-
lem the complete amplitudes (moduli and phases) of both
Ag and Rg are known.

The structure factors used in all the work reported in
this article corresponded to maximum Miller indices of
hmax = 18, kmax = 12, and lmax = 8 in the positive octant of
reciprocal space. These were extended to all eight octants
by applying the appropriate symmetry relations. Because
all Fourier transforms in the present work were performed
with the fast Fourier transform algorithm FOURN of Press
et al.,9 that requires array dimensions of powers of 2, we
expanded our reciprocal space arrays to dimensions of 64
× 32 × 32 covering all eight octants by assigning zero struc-
ture factors to all of the reciprocal lattice points with un-
assigned values. Consequently, the number of real-space
grid points in the unit cell of dimensions a = 55.20, b =
38.20, and c = 24.05 Å was also 64 × 32 × 32, correspond-
ing to grid spacings of 0.86, 1.19, and 0.75 Å in the direc-
tions of the respective unit vectors.

The result of using Eq. 9 to calculate the electron dis-
tribution in the deleted amino acid residues 7 through
22 is shown in Fig. 1. The stereo pair of diagrams, pro-
duced by the SETOR program10 shows an isosurface cor-
responding to an electron density of 1.5 times the rms
deviation above the mean. This surface is indicated by a
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Figure 1. A stereo pair showing the surface of the known 3-D electron density of residues 7 through 22 of bovine pancreatic trypsin
inhibitor (BPTI) corresponding to a density of 1.5 times the rms variation of the map above the mean density. The fit to the stick figure
representing the bonds of the residues 7 through 22 is excellent. Note that the 3-D nature of the reconstructed electron density and the
stick figure are best revealed with the use of a stereo viewer.
wire mesh representation. A comparison with the stick
figure of the bonds of the deleted amino acids shows a
very close fit as is to be expected. This will represent the
ideal electron density of the unknown part of the struc-
ture that we will reconstruct by the two practical meth-
ods described next.

Difference Fourier Method. An approximate method
for determining the unknown electron distribution {ui}
from data actually available in a typical problem in x-ray
crystallography and that works well if the missing part is
a relatively small part of the entire electron distribution
in the unit cell is called the difference Fourier method.11

Of course, such a method cannot assume any knowledge
of the phases of the Bragg reflections g, and it approxi-
mates ui at the point ri by

      
ui = 1

N
Ag exp iφg

(R)( ) − Rg{ }exp −ig ⋅ r i( )
g
∑ , (10)

where

      
φg

(R) = arg(Rg ) (11)

is the phase of Rg, which is known because it is de-
rived from a calculation of Rg from the known part of
the structure.

For the same test case as that noted previously, Eq. 10
was used to recover the three-dimensional electron distri-
bution of the deleted amino acid residues 1 through 28.
The reconstructed electron density of residues 7 through
22 is shown in Fig. 2, also as a stereo pair. In this case the
wire mesh surface depicted has been contoured at a value
of 0.5 times the rms deviation above the mean electron
density. Comparison with the stick figure of the bonds of
the same deleted amino acids shows some incorrect con-
nectivity and other regions of false electron density.

As a measure of the effectiveness of the difference Fou-
rier method in recovering the distribution of electrons in
the missing amino acids, we computed the linear correla-
tion coefficient9 between the recovered distribution and
the exact one calculated from Eq. 9. The value of this cor-
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relation coefficient for the difference Fourier distribution
above was 0.53, signifying only moderate correlation.

Maximum Entropy Method. A more accurate holo-
graphic reconstruction algorithm for recovering {ui} has
been developed by Szöke and co-workers.2–4 That algorithm
performs a minimization of a cost function with the aid of
a conjugate gradient algorithm. As such, it depends on
the result of the first iteration lying within the basin of
the global minimum of the cost function. We have devel-
oped an alternative holographic reconstruction algorithm
based on the maximum entropy method.5

The basic idea of the maximum entropy method is to
make the least unbiased guess of a distribution, subject to
constraints imposed by any firm knowledge about the dis-
tribution. In our problem what is sought is the electron
distribution in an unknown part of a structure and con-
straints are imposed by the known intensities of measured
Bragg reflections. In mathematical terms, we seek an elec-
tron distribution

    
ui

(n){ }
at the nth iteration of our algorithm from the estimate

    
ui

(n−1){ }
from the previous iteration by finding that which maxi-
mizes the functional

      

Q ui
(n){ }[ ] =

− ui
(n)

i
∑ ln

ui
(n)

eui
(n−1)













− λ '
2

Og
(n) − Tg

(n) 2

σg
2

g
∑ ,

(12)

where the first term on the right side is an expression for
the entropy of the distribution

    
ui

(n){ }
with respect to a prior one

    
ui

(n−1){ }
from a previous iteration. The second term on the right
side constrains the calculated Bragg amplitudes
Saldin et al.



Figure 2. Same as Fig. 1 except that the electron density shown is that recovered by the standard unweighted difference Fourier
method from the model Bragg reflection intensities of the entire molecule and a knowledge of the electron density of the molecule with
residues 1 through 28 (i.e., 50% of molecule) deleted. The surface indicated by the wire mesh is that corresponding to an electron
density of 0.5 times the rms deviation of the density above the mean. Some false connectivity and other incorrect electron density
reconstructions are apparent.
      
Og

(n) = ui
(n)

i
∑ exp(ig ⋅ ri ) (13)

from the unknown part of the structure to be consistent
with the experimental data, represented by a set of target
amplitudes

      
Tg

(n) = Ag exp iφg
(n)( ) − Rg{ }, (14)

where σg represents the standard deviation in the mea-
surement of |Ag|,

      
φg

(n) = arg Rg + Og
(n)( )   if n ≥ 2, (15)

and λ′ is a Lagrange multiplier.
The value Q may be maximized by requiring that

    

∂Q
∂ui

(n) = 0  for all i. (16)

If we consider all the standard deviations σg constant,
as we may do in the case of the synthetic data we consider
here, we obtain the “single voxel” equations

    
ln

ui
(n)

ui
(n−1)













= −λ ui
(n) − τ i

(n){ }, (17)

where       λ = λ ' N / σg
2  and

      
τ i

(n) = 1
N

Tg
(n)

g
∑ exp(−ig ⋅ ri ) (18)

is a target function consisting of the inverse Fourier trans-
form of       

Tg
(n) . Approximating terms on the right side of Eq.

17 by their values at the previous iteration suggests the
following algorithm for successively improving the esti-
mate of ui:
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ui

(n) = ui
(n−1) exp −λ ui

(n−1) − τ i
(n−1){ }[ ]. (19)

We began our test calculation at the first iteration (n =
1) by assuming a form for     ui

(0)  based on a partial solvent
mask calculated from a low-pass filtered electron distri-
bution obtained by multiplying the structure factors (Ag –
Rg) by a Gaussian envelope corresponding to 10-Å resolu-
tion. In addition, at the first iteration,     τ i

(0)  was evaluated from
Eq. 18 by taking

      
φg

(0) = φg
(R) , (20)

as the phase of Rg.
The iterations may be halted when convergence is

reached [i.e., when     ui
(n) −̃ ui

(n−1)  for all i]. As this limit is
approached, Eq. 19 may be approximated by

    
ui

(n) − ui
(n−1) = λui

(n−1) τ i
(n−1) − ui

(n−1){ }. (21)

This equation shows that ui converges toward (a simul-
taneously updated) target value τi provided

    λui
(n−1) ≤ 1. (22)

Because λ has the same value for all voxels, Collins13 sug-
gested taking

λ = 1/umax (23)

where umax is the maximum value of the distribution

    
ui

(n−1){ }.

In our present case, this would correspond to a value of λ
of the order of unity. For his problem of improving the
resolution of a pre-existing map of an entire protein,
Collins13 reported results from just four iterations. How-
ever, note that condition 22 does not put a lower bound on
λ. It may be seen from Eq. 12 that the lower the value of λ,
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Figure 3. Same as Fig. 2 except that the electron density of residues 1 through 28 was reconstructed by the holographic maximum
entropy algorithm. The wire mesh surface corresponds to an electron density of 1.0 times the rms deviation of the density above the
mean. This electron density distribution gives a clear indication of the 3-D configuration of the missing residues 7 through 22 and is,
in general, much closer to the true electron density of Fig. 1 than the difference Fourier density of Fig. 2.
the greater the role the entropy plays in the approach to
convergence. In our calculations on the structure comple-
tion problem, where our starting point may be further from
the true solution, we found it necessary to use a substan-
tially lower value of λ than that in Eq. 23 suggested by
Collins. In the computations reported here, we chose λ ~ 3
× 10–3. This resulted in a significantly slower rate of con-
vergence. Fortunately, the dramatic increases in accessible
computer power in the 15 years since Collins’ work en-
abled us to perform our calculations in a reasonable time
on a modern computer workstation.

Comparing Eqs. 18 and 14 with 10 highlights the differ-
ence between this maximum entropy algorithm and that of
the difference Fourier method. Although, like the difference
Fourier method, maximum entropy approximates the
phases     

φg
(0)  of the full structure factors Ag, by those,       

φg
(R) ,

of the known part of the structure at its first iteration, the
maximum entropy method allows the subsequent refine-
ment of these phases via Eq. 15 using an updated best esti-
mate of the unknown part of the electron distribution.

The electron distribution in the same deleted side chains
1 through 28 of BPTI was calculated by algorithm 19, tak-
ing a Lagrange multiplier λ, whose value was adjusted at
each iteration to keep the magnitude of the argument of
the exponential in Eq. 19 constant. The result after 13,000
iterations (which took a few hours on a Silicon Graphics
Indigo2 workstation) is shown in Fig. 3, in which the elec-
tron density isosurface is plotted corresponding to 1.0 times
the rms deviation of the density above the mean. The 3-D
configuration of the missing amino acid residues 7 through
22 are here seen recovered with much greater fidelity in
comparison with that from the difference Fourier algo-
rithm shown in Fig. 2, as may be judged by comparison
with the stick figure of the amino acid chains.

When used to compare the electron distribution in the
missing chains recovered by this maximum entropy algo-
rithm to the corresponding ideal distribution from Eq. 9,
the value of the linear correlation coefficient9 was 0.74, rep-
resenting a 40% improvement in fidelity from the differ-
ence Fourier result of the previous section, and, hence, good
correlation with the ideal electron density. We found im-
provements for deletions of other parts of the molecule, and
conclude, as did Somoza et al.,4 that a holographic recon-
struction algorithm is a distinct improvement over the dif-
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ference Fourier method for the recovery of unknown parts
of a structure given knowledge of as little as 50% of the
molecule. The new feature reported here is that the recon-
struction may be performed by a maximum entropy algo-
rithm similar to that used by Collins13 for improving the
quality of an electron density map of an entire molecule.

A similar algorithm was also used recently by Moritz
and colleagues14 and by us15 for the direct recovery of sur-
face electron density from crystal truncation rods in sur-
face x-ray diffraction. In future work we may also
experiment with alternative maximum entropy algorithms
suggested by Bricogne and co-workers,16–19 as recently re-
viewed by Gilmore.20

Conclusions
For didactic purposes, we have drawn attention to the

close parallels between the recently proposed holographic
method2–4 for macromolecular x-ray crystallography, and
the work of Bragg7,8  which according to Gabor6 provided
the original inspiration for holography.

In this article we proposed and demonstrated the ef-
fectiveness of a method of solving the problem of struc-
ture completion in macromolecular x-ray crystallography
based on the maximum entropy principle. We compared
the electron distribution of the unknown part of the struc-
ture as reconstructed by our proposed algorithm with that
from the standard difference Fourier method and the
ideal result. We find the electron density map recon-
structed by our algorithm to be significantly closer to the
correct density than that from the difference Fourier
method.
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