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3-D Shape Recovery from Image Brightness for non-Lambertian Surface
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This report presents a method for recovery of shape from shading in the case of a non-Lambertian surface illuminated by only a single
light source. In the method, we derive simultaneous equations that should be satisfied by parameters determining reflectance map.
After identifying the parameters by solving these equations, the surface normal is estimated by the iterative method using the surface
normal information on the occluding boundary, and 3-D shape is recovered. The experimental results show the effectiveness of our

method for shape from shading.
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Introduction

The brightness of an object within an image contains the
information concerning the direction of incident ray, the
surface normal of the object, and the viewing direction as
suggested by Horn.' When the object surface is made of a
material that acts as a Lambertian reflector, the bright-
ness varies as the cosine of the angle between the inci-
dent ray and the surface normal. A Lambertian surface is
a diffuse reflector with the property that a particular sur-
face patch looks equally bright from all viewing directions
and its brightness is proportional to the illumination fall-
ing on it. For the Lambertian case, classical shape-from-
shading methods have been developed for the single image
by Ikeuchi and Horn® and for two images by Onn and
Bruckstein.?

In the real world, object surfaces are almost non-
Lambertian. In non-Lambertian surface cases, it is diffi-
cult to recover 3-D shape from image brightness because
the reflectance map varies depending on the type of sur-
face material of the object. For shape recovery in non-
Lambertian case, photometric stereo methods have been
developed by many researchers.*® The previous photomet-
ric stereo procedures use multiple images of an object taken
under different illumination conditions to estimate param-
eters determining the reflectance map and the surface nor-
mal. Because the previous methods are based on multiple
images of an object sequentially illuminated by multiple
light sources, they are considered impossible to be applied
to natural scene understanding. Furthermore, when the
observed object is moving, the previous methods give rise
to a correspondence problem of points among multiple im-
ages because of sequential illumination.

For the purpose of natural scene understanding such as
by the human retina, in this report, we propose a method
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for shape recovery from image brightness of an object with
anon-Lambertian surface illuminated by only a single light
source. In the method, from the single image, we derive
simultaneous equations that should be satisfied by the
parameters determining the reflectance map. After obtain-
ing the parameters by solving these equations, the nor-
mal of the object surfaces are estimated by an iterative
algorithm, and 3-D shape is recovered. We theoretically
consider the convergence of the proposed iterative algo-
rithm. Furthermore, to evaluate the algorithm, experimen-
tal results are shown.

Algorithm for 3-D Shape Inference

We assume orthographic image projection and let the
viewing direction r be parallel to the z axis. Then, the 3-D
shape of an object can be described by its height, z, at co-
ordinate (x,y) in the image plane. We denote by n a unit
vector normal to the surface of the object and by i a unit
vector in the direction of the light source. We assume par-
allel incident light. The vectors n and i are described by
points on the unit sphere called the Gaussian sphere. In
the stereographic projection, a point on the Gaussian
sphere is projected by a ray through the point from the
south pole onto the tangent plane at the north pole, which
is called the stereographic plane. The coordinates (f,g) in
the stereographic plane are given as follows:

f=2pd1+p* +¢’ -la(p“qz), (1)

g=2q/1+p* +q* - 15/ (p* +¢°), 2)

where p and q are defined as

= o
o q_dy’ (3)

T
1]

and are related to f and g as follows:

p=4f(4—f"-g», q=4g/4—-f"-g". 4)
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The unit vector r and the surface normal n are given by

r=(0,0,1), n=(-p,~q,D/y1+p%+4¢?, ()

The vectors n and i are described in terms of fand g as
follows:

n = [-4f, —4g, 4 — f?

i=[-4f;,-4g,4-f? - g1/ (4+f? +g}), 7

-84 +f*+ g%, (6)

where (f,,g;) denote the stereographic coordinates corre-
sponding to the direction of the light.

We assume that the viewing direction coincides with the
north pole of the Gaussian sphere and that points on the
northern hemisphere of the Gaussian sphere are consid-
ered. Therefore, the considered points (f,g) and (f,g,) in
the stereographic plane are constrained to the following
regions:

[P+gi<4, fP+glca

When the object surface material exhibits non-Lambertian
reflection, the reflectance map is given by>®

R@,n,r) =
0 9 1 2 . cp e
Bolexp@%‘ [cos (n, m)] @+p2(1lfh), if (ith)>0,

Eb, otherwise,

8

where the symbol ® denotes a scalar product,
n=@G+r)|i+r|

is the specular direction, and c is a constant that depends
on the surface roughness. The value of ¢* has information
about non-Lambertian scatter near the specular direction.
For the surface in this report the value of ¢ is set’ as 2.578,
p, is the specular reflectivity, p, is the Lambertian compo-
nent, and p; and p, are called the parameter determining
reflectance property.

Estimating p, and p,. In this section, we use the ze-
nith and azimuth angle 8 and @ to represent unit vectors,
and the convention we adopt with respect to these is as
follows: The zenith angle of any unit vector is measured
positively down from the z axis while the azimuth angle is
measured positively counterclockwise from the x axis. The
0 and @ usually are subscripted indicating to which vec-
tors they belong. Thus, 6, and @, are zenith and azimuth
angles, respectively, of the vector n while 6, and ¢ are the
angles of i. Then we have the following relations:

= (sinB, cos@,, sinB, sin@,, cosb,), 9
i = (sinb; cos@, sinb, sin@, cosb,), (10)

(en)=in +in +in =
cosB; cos 6, + sinb, sinb, cos(@ —@,). (11)
Because viewing direction r is along the z axis and n,
lies in the principal plane spanned by i and r, the zenith

and azimuth angle of n, are 6, = 6,/2, @, = @. Then (n, ®* n)
is given by

(n, ) = cos%cos e, + sin%sin 8, cos(@, — @,). (12)
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When we denote by E the brightness normalized such
that its maximum value is equal to 1, we obtain the image
irradiance equation:

E=R@,n,r). (13)

Because the mapping from unit vectors to zenith and
azimuth angles is one to one, Eq. 13 can be written as
follows:

E:R(enaq)n):
nsgs

H » 6,
Py exprc? g;os E:os —L cos B, +sin —Lsin B, cos(@, - @, 0 O
E ? gk

+p2[cose cos, +sin B, sin 6, cos((p (pn)] (14)

It is considered that the right side of Eq. 14 takes maxi-
mum value R, at a vector in the principal plane, i.e., @, =
@. Hence, R, is obtained by finding the maximum value

of R(6,, @, = @), i.e., by finding the solution @, of
7]
—— R(6 =p.)=0
20, 6,90, = %)
Then p, and p, should satisfy
Ry = R(6,,9,) =1, (15)

where we assume that (6;, @) are known and 6; < 2. For
®. =@, R(em (Pn) is giVen by

R(6,,0)=p, expgrc2 #, -%g E pycos(8, ~6). (16)

The equation

LR(eru(pn

=p.)=0
a6, #)

leads to

2y _ 6
2

p12¢ Egn -

+pysin(6) - 6;) =

T
o]
=]
[ qm:u
o
o
-}
=
|

a7

Hence, p,, p, and 6;; should satisfy the following simulta-

neous equations:
6, H .0+ 6,18
-—Ltrhexprc“[P, -=0 0O
2 B 2ty

p12¢® EGZ

A (18)
+pysin(6) - 6) =0
01 expgx—c2 EH; - ?g + 0y cos( 9,») =1L (19

Here, we assume that the surface material is homogeneous
and p; and p, are constant over the surface.

The surface normal at a point on the occluding boundary
is given by the unit vector perpendicular to the tangent
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line of the silhouette of the occluding boundary in the im-
age plane. Let (9n , (pn) be a direction of surface normal at
a point on the occluding boundary and E = E,,p,) be
its brightness. Then we have

Py €exp
H ,0 _
¢ [gos
g U
+ pz[cos 6, cos B, +sin 6, sin 8, cos(@, — @, )] =E. (20

! Q)os 3 cos B, +sin o sin 8, cos(; - @,) %
2 2 =

Because we assume the property of reflection on the
surface material is homogeneous, we can obtain p,, p,, and
8, by solving the simultaneous Eqgs. 18 through 20. In
this report we use the Newton iterative algorithm to solve
the simultaneous equations.

After obtaining p,, p,, and 6, by the method mentioned
above, we estimate surface normal using Eq. 13 and the
property of occluding boundary.

Surface Normal Inference. In the sequel, at each con-
sidered point in the image plane, Eq.13 is rewritten as

ELJ =R(f;j7 gu), (21)

where (f;;,g;) denote the stereographlc coordinates corre-
spondlng to the surface normal at image plane coordinate
(i,j). We define the constraint A,(f,g) as

hu)=E - R(u) =0, (22)
= (f;jy gij)ty (23)

which is imposed on the image brightness, where ¢ denotes
the transpose operator. We use the following Marquardt
method' to estimate surface normal. The Marquardt
method is a combination of the Newton method and the
method of steepest descent.
At each considered point in the image, the estimate u"

at the v-th iteration is improved with Au in the followmg
steps.

u=(u,uy)

1. Solve the following equation with unknown vector Au =

(Buy, Du,)' = (&fy, Agij)t7

(v)
Gy (V) + I Au=—%, (24)

where I denotes a 2 x 2 dimensional identity matrix and
W(u), G,, and J,, are defined as

1
W) = Ehf, G, =JiJ,, (25)

oW (u)
Ju

ch
=hyy, Jp= Il: Jacobian. (26)

2. Improve the estimate u" as follows:
u(v+1) - u(v) + Au. 27
Solving Eq. 24, Au is given by
(v) Af(v) — (28)
;~R(1Y.e)
Rf(ﬁ<:>,g:“,>) +R, (1. 85) +v

(ﬁ(}’)>g53))
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Au(zv) Ag(v) — 29)
_R(f(;)’g’(‘;)) W) L)
W LW W LW (f” ,g”)
(f,,gl,) +R(fj,g”) +y
where
OR JR
R =2 R, =2
f df g dg (30)

In the above algorithm, the value of u at a point on the
occluding boundary is known.” The initial value of u at a
point on the region except the occluding boundary, is set
asu = 0. For convenience, the region where u = 0 and u is
not yet 1mpr0ved is called the unknown region. The esti-
mate u" at a point on the unknown region can be obtained
from the following two steps:

1. When there is at least one point called the known point,
which does not belong to an unknown region, in the eight
neighboring points, we have

0 <oy

gy =agy’ +bgy),

where
fij =l thijatfion *1ij-1

8ij = 8i+1,j T 8i,j+1 7 8i-1,; * 8i,j-1

fii =ficijo1 ¥ Fivnjo1+ ficrje1 ¥ fivnjets

8ij = 8i-1,j-1 % 8iv1,j-1 T &8i-1,j+1 T 8i+1,j+1-

If in the four immediate neighbors ( + 1,j), (i,j = 1),
there exists a known point, (a,b) = (1/c;, 0), and ¢, is the
number of known points in the four immediate neighbors,
else (a,b) = (0,1/c,) and c, is the number of known points
in the eight neighboring points.

2.1In the case other than Step 1,
£ =g =0

Because the unknown region will vanish as the itera-
tion goes ahead, the above two steps are used only as tran-
sient process.

After obtaining (f,g) by the above algorithm, we can have
(p,q) by Eq. 4 and from Eq. 3 we can obtain the height z by
integrating p and q. Thus, we can reconstruct the 3-D shape.

Convergence of Iterative Algorithm

In this section, we theoretically consider convergence of
the iterative algorithm. We define X, h(X), W(X) and G(X)
as

X s[(fij,gg),(i,ﬁ DQ]t = X1, X2, 0, ) DQ]t, 31)
h(X) = [(EJ ~R(fy,8;). G J) m]t =[hy. G, 00| , 32)

W(X) = %h(xv h(X), (33)
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cx) =4, J=BX

:Jacobian, (34)

where Q is defined as the set of orthographic image pro-
jections of points on the observed surface of the object.
Then, we have

W (X)

— t
X =h(X)"dJ. (35)

The Marquardt algorithm in section “Estimating p, and
p,” is rewritten as

XD =yxv, (36)
YX =X + BX) ' F(X), (37
BX)™ =[GX) + ], (38)

__WX)
FXy=-—o—> (39)

where X" is the value at the v-th iteration. At the true
solution X*, we have F-derivative of Y:

Y'(X*) = I + B(X*)1F'(X%), (40)
where I denotes the identity matrix.
Next, let us consider the spectral radius p [Y(X*)] of

Y'(X*). Expanding W(X) around X* by the Taylor expan-
sion, we have

t
W(X) = %{h(x*) +J(X-X#+0[(X-X *)2]}
(x—x*)Q]}.

Because X — X* is quite small, we neglect second-order
terms. Then W(X) is approximated as

(41)
X{h(X*) +J(X-X*)+0

W(X) = %(x - X#)f J LT (X - XH). (42)
From Eq. 42, we can obtain

2
F'(X)=- ZXV;] =-J'J = -G(X), (43)

Y'(X) =
I+[GX*) + ] [-G(X*) -l + ] =
y[GX + )™

(44)

From Eq. 32, we can obtain

_J[hX)];

Wil T T =0, ;B (fi, &), (45)

i'j'l

where
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5. O GFi'=ij'=)),
VRV Ep (otherwise), o

o X (1=,
R (Fro )= i i1
l(ij gl_]) HdR(fij,giJ'):ﬁR(fij,gij) (1=2). 47
H % X jo
From Eqgs. 34 and 45, the following can be obtained
Gyijr =
>Jagdin =
£ LG 48)
i v = 050 RiBy,
[G+ yI]ijl,i'j‘l' = 49)
Oijitj Oy + 0, i By (fi, 8 )Ry (fij, 8ij)s
[G + ] = block - diag[ﬁij,(i, ) DQ], (50)

[G+y]™ = block - diag[ﬁi;l,(i, 7 IZIQ], 51)

where

-~ _0O V+R1(fij,gij)2

= Rl(fij,gij)Rg(fij,gij)D
0= Ry (2 Ry (fy0 )

y+Ry (.8 g

nN-1 — -1 0 _y_RZ(fijygij)z Rl(fy5glj)R2(flj?gU)D
TS B BRe o) RyFypgy) V- Rilfyg)? g
Dij 2 L’glj 1 lj’glj 1M g 8ij E

(53)

and

DNij =V2+1R1(fij:gij)2+VR2(fij,gij)2- (54)

From Eq. 44, we have

Y'(X*) = block - diag[ D;;, (i, /) 0Q), (55)

i—yéq’y*'Rf(fif’gif) . Rl(fif’gif”??(f%{’flf)g (56)
‘DJ‘ o (F 85 Ri(fy.85) —v-Ri(fy.8)° &

To determine the eigenvalue of Y'(X*) = \{G + yIT™, we first
calculate the eigenvalue of [G + yI]. Expanding the determi-
nant |G + yI — W | by the Laplace expansion, we get

Jiang et al.



G+ -ul|= [ [D; - &7
(l])EQ
iniofRs(fy, 8 Ri(f.85) Ro(fy, 85" +y —H

=1 [u -2y + R} +R)u+y(y + Ry +Rz>]

@,

where I, is 2 x 2 unit matrix. The zero root of Eq. 57 is
given by
_y+R} +R})* (R} +R})

9 (58)

From Egs. 44 and 58, we obtain the eigenvalue of Y'(X*)
as follows:
4

- _Y_
=— Y o =Y=1

If the maximum eigenvalue is smaller than 1, the algo-
rithm converges." Because the eigenvalue i, = 1, it seems
that the algorithm does not converge. However, we can
verify the convergence of the algorithm by considering the
improvement vector represented with the eigenvectors of
eigenvalues |, and |, as follows:

For simplicity, we assume R; # 0 or R2 Z0.IfR,=R,=0
is satisfied, then the value of R i is maximum and the (f,g)
can be obtained from solution 6 of simultaneous Eqs. 18
through 20 and (p = @,. Soon 1nferr1ng surface normal,
we can assume R; # 0 or R, # 0 in the region other than
the R,,,, point. In the following, we solve the eigenvalue
equation:

(Wl - Dzj)x =0, (60)

where x = (x,, x,)'. When [ = y;, we have

Ry, —Rx, =0. (61)

Because R, #0 or R, # 0, vector £ =(§,, &)’ = (R,,R,) is a
solution of Eq. 61 and vector § is an eigenvector correspond-
ing to eigenvalue ;. When [ = l,, Eq. 60 is described as

Ryx, + Ryx, = 0. (62)

Vector n =(n,, Ny’ = (R, — R,) is a solution of Eq. 62 and
vector n is an eigenvector corresponding to eigenvalue [,.
Because

_|Ry Ry
Ry -R,

&1 m

=—(R2+R%) %0,
&y o 1 2 (63)

vectors &, n are independent of each other. Then the im-
provement vector

(v) (v) (Wt = w(v+D) _ x(v)
AX(Y = (XY, AX ) =X - X

can be represented as a linear combination of &, n:

AXE]V) = a(V)é' +[))(V)r7’ (64)

AX;V) = DijAXEj"‘l) = Dij(a(v_l)f*'ﬁ("_l)r])

65
- a(m)u\ll—mg +‘B(m)u¥—mn (65)

From Egs. 28 and 29, for a sufficiently large m, we have
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(66)

( ) o (m)|:|
(m) (m) D [J
(m)[l flj >g (m) fU’gl] a(mf
R, ffjm),g(m) @R fij,gijg !
where
L= R[Fm) glm)
a(m) E R(f ’g )

(ff,'”),g(’")) Ry (£, f,””) by 6D

From Egs. 65 and 66, we obtain B = 0. Therefore,
AXiJV can be approximately represented as

Ax(v) _DV mAx(m) ._DV m (m)g a(m) E (68)

where m is a sufficiently large number such that Eq. 66
holds. Equation 68 implies that the improvement of the
estimate depends only on the eigenvalue of | 1| < 1. There-
fore, the algorithm converges.

Dependence of Eigenvalue on p,. From Egs. 4 and 5
and the unit vector r, we have the following relations:

i+r=[-4f,-4g,8]/(4+f2+&?),  (69)
n, =(i+r)/|i+r|=[-f;,-g,2]/Va+ 7 +g?, (T0)

16(ff; +gg,)+(4 -2 - g*)4 -2 - g?)

) s Teghy
(n, () = 207 880+ 241" ~ )
T g arfieg? 7
2 . _
ﬁ—f(lﬂl)-

8fi_(4_f2_g2)f_(4+fi2+gi2)f(i|]l) (73)

2 (4+f2+g2)(4+fi2+gi2) ’

0
— @G =
@ 1

8g, —(4-f2-gPg-(4+f*+ghHgli) (74)
A+f2+g")4+f2 +g}) ’

2 (n, )= 202D 2 4+f7 +gf (n, ()

ot 2, 42\ 2, 2 (75)
(4+f +g )\r4+fl + 8

) _A(g;-g)-28\4+fE+ g2 (n,h)

E( s )= (76)

(4+72 + &2 a+r2+e?
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—expﬁ» [cos Dm)r@: (77)
ﬁ(ns m)ﬁexp@ [cos n, &)]2@
—exp@— [cos
—(ns m)wexpﬁ [cos n, Eh] @

% 1- (ns D1)

R,(f,@)=R/(f,g) = %R(f,g),

i ) c2 cos_l(ns )
7 \1(n, )’ (79)

exp@cz[cos"l(ns Eh)]2 @+ s d—ip(l [h),

R,(f,8) = R,(f,8)= 2 R(f,g),
Jg

:pl (ns Ch

¢ cos ™ (n, [h)
[ 2
V1~ (n, th) (80)

exp@c2[cos_1(n Bl)]Z @+ o é(l Dl)

Next, we consider the dependence of eigenvalue of Y'(X*)
on p;. Because of the results of the preceding section, it
suffices to only discuss

_ y

iy+R12+R22i

which is smaller than 1. The derivatives of @ with respect
to p; are given by

=p 2
- pl ag (ns Dl)

R, OR,
op _ Bio B2 gy

0. 2 81
P1 (y+R12+R22) (81

For simplicity, we consider the near-Lambertian case (0 <
P; << Py). In this case,

6, <0 <6

is approximately represented as

6, =6, 6,-L=g-L=2L
When Eq. 16 is approximated by
api+py =1, as eXpD-c2 RAS
255 (83)
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n, ] H: (9

Then, we have

n, [h

ﬁﬁzd(
op; of

)cz cos H(n, )

T
) (84)

@~(¢2[cos'1(nS Eh)]2 @— aﬁ(i th),

OR, _ 0 n. ) c¢? cos'(n, h) exp
dor & [1-(n, )

Erc[cos‘l(ns Eh)]2 @— a%(i ). (85)

Because eigenvalue

“: y =
y+R{ +R;

4
y+ R} + Ry

takes the maximum value when (f,g) satisfies the condi-
tion that R = R, i.e., B, = R, = 0, | takes great value
when R(f,g) nears R,,,.. Therefore, we consider eigenvalue
p at (f,g) such that R(f,g) nears R,,,. For the near-
Lambertian case, when n =1i,i.e., f=f, and g = g,, we can
obtain R = R,... Then, we only consider these (f,g) which
near (f; , g,). In this case, we have

-2f(n;h) (86)
4+f2+g%°

4(fi =) -2f\4+ [} + gl (m, () _
(A+f2+ g2 4+ [P +g?

9 (it =
o
I e e it A
(4477 +g* )+ + g7 ) 87)
f[l (ith)]
4+f2+g

Becausen =1, f=f, and g = g;,, we obtain i ®* n) = 1.
Then, Eq. 87 becomes

a .
d—f(l Dl) =0. (88)

From Eqgs. 79, 84, and 88, we have

R, OB < (89)
' dp,
(n 2 d
o1 Eﬁ(n h) ¢ 5C0S s exp@ [cos Dl)] >0
37 (e m)
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where R(f,g) nears R,,,,. Similarly,
R2 —— Z 0.

Then we have

ap,

From Eq. 90, when R(f,g) nears R_,,, the eigenvalue p
decreases and the convergence speed of the iterative algo-
rithm is faster as parameter p, increases. But in the case
far from Lambertian (non-Lambertian case), it seems that
the precision of the inference of (f,g) deteriorates, because
the brightness at the region near the occluding boundary
becomes dark (only brightness at the region near
specular point is bright).

Numerical Experiment

To evaluate the proposed algorithm quantitatively, we
show results of the numerical experiment. We assume that
the direction of the light source is 6, = 10°, @. = 0°. We use
an ellipsoid:

x2 y2 22

- 4+ =
302 252 252

Figure 1.Image brightness (p; = 0.400, p, = 0.602).
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Figure 1 shows the image brightness of this ellipsoid.

Inference Precision of p, and p,. Table I shows the
results of the inference precision of parameters p; and p,
for the case of Gaussian noise presence. In the table, “free”
means the noise-free case and dB is defined as:

dB = 10 log SNR

SNR =62/ 0%, & :%zg(Ej—Ef

where o” denotes the variance of Gaussian noise, N the
number of image points corresponding to the object, and
E the mean value of E,,.

3-D Shape Inference. Figure 2 illustrates the 3-D
shape reconstructed by the proposed algorithm from
the image brightness given by Fig. 1. The true 3-D
shape is shown in Fig. 3. Figures 4 and 5 illustrate

true estimated (free) estimated (dB:40) estimated (dB:30) estimated (dB:20)

rl r2 rl r2 rl r2 rl r2 rl r2
0.0000 1.0000 0.0000 1.0000 0.0067 0.9933 0.0220 0.9789 0.0685 0.9332
0.1000 0.9020 0.1000 0.9020 0.1068 0.8952 0.1216 0.8806 0.1682 0.8342
0.2000 0.8023 0.2000 0.8023 0.2070 0.7954 0.2220 0.7803 0.2696 0.7327
0.3000 0.7023 0.3000 0.7023 0.3072 0.6951 0.3227 0.6795 0.3719 0.6303
0.4000 0.6021 0.4000 0.6021 0.4075 0.5946 0.4236 0.5784 0.4748 0.5271
0.5000 0.5018 0.5000 0.5018 0.5078 0.4939 0.5247 0.4770 0.5782 0.4233
0.6000 0.4015 0.6000 0.4015 0.6082 0.3932 0.6260 0.3754 0.6822 0.3190
0.7000 0.3011 0.7000 0.3011 0.7087 0.2924 0.7274 0.2736 0.7865 0.2143
0.8000 0.2008 0.8000 0.2008 0.8091 0.1916 0.8289 0.1718 0.8912 0.1092
0.9000 0.1004 0.9000 0.1004 0.9096 0.0907 0.9304 0.0698 0.9962 0.0038
1.0000 0.0000 1.0000 0.0000 1.0003 0.0008 1.0015 0.0020 1.0030 0.0040
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Figure 4. Rms error in f for case with noise presence.
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Figure 6. Rms error in f with y as a parameter for case of fixed p;.

rms errors in f and g, respectively, with noise level dB
as a parameter.

Relation between y and Convergence Speed. Fig-
ures 6 and 7 show that the convergence speed is depen-
dent on y. From Eq. 59 we can see that the convergence
speed gets slow when yincreases.

Relation between p, and Convergence Speed. Fig-
ures 8 and 9 illustrate that convergence speed is depen-
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Figure 5. Rms error in g for case with noise presence.
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Figure 7. Rms error in g with y as a parameter for case of fixed p;.

dent on p;. As shown in section “Dependence of Eigen-
value on p,,” in the near-Lambertian case (p, is small),
the convergence of the iterative algorithm becomes fast
as p; increases. But in the non-Lambertian case (p, is
large), the brightness except for the specular point becomes
dark. Then it is considered that the inference precision
deteriorates because the brightness in the region neigh-
boring the occluding boundary becomes dark.

Jiang et al.
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Figure 8. Rms error in f with p, as a parameter for case of fixed y.

Conclusion

We have proposed a method for shape recovery from shad-
ing for non-Lambertian surfaces illuminated by only a single
light source. In the method, parameters determining the
reflectance map are identified by using occluding bound-
ary information. Subsequently, the normal of the object
surface is estimated, and 3-D shape is recovered. By theo-
retically considering the convergence of the proposed it-
erative algorithm, we have verified that the proposed
algorithm converges, and that for the near-Lambertian case,
the convergence speed becomes faster as p, increases. &
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