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Holographic Microscopy with a Complicated Reference
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In recent years three-dimensional images at atomic resolution have been obtained by holography as well as by x-ray crystallography.
In this report we explore the connections between these two methods from a unified point of view. To recover the unknown structure
we use mathematical methods developed for the solution of inverse problems. We review relevant experiments and discuss some ideas
that may lead to more powerful imaging methods in the future.
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Introduction
When Gábor invented holography,1,2 his goal was to ob-
tain three-dimensional images at atomic resolution. His
basic insight was that, if a known wavefront is made to
interfere with an unknown wavefront, the phase of the
unknown wavefront becomes measurable (with twofold
uncertainty). He proposed a two-step method to recover
three-dimensional objects using this phase information.
In the first step, the recording of the hologram, the un-
known object and a reference object are illuminated by a
coherent source of waves. In its simplest version, the ref-
erence object is a small (pointlike) scatterer. The waves
scattered from the reference object and those scattered
from the unknown object form an interference pattern
recorded on a screen at some distance away. Gábor called
this recording a hologram, expressing that three-dimen-
sional information is contained in the recorded interfer-
ence pattern. The second step is the reconstruction of the
scattering object from this recording. For this step he
proposed to illuminate the hologram with a replica of the
reference wave and showed that part of the wave trans-
mitted by the hologram reproduces the wave originally
scattered by the unknown object. Clearly a large and di-
verse range of applications has been built on Gábor’s
original ideas. Nevertheless, the central purpose of ho-
lography has stayed the same: to recover the object, the
source of the object wave, from the intensities of the re-
corded interference pattern, the hologram.

Holograms at near-atomic resolution with a point refer-
ence were first produced by conventional, multikilovolt
electron microscopes using beamsplitters (Mollenstedt
biprisms) to produce a reference wave.3,4 In-line Gábor ho-
lograms using soft x-rays have also been produced suc-
cessfully.5 A similar method that uses low-energy electrons
was demonstrated recently by Morin et al.6: electrons,
emitted by a single atom on a fine metal tip, produce holo-
grams at potentially atomic resolution.

The most widely used and oldest known method for ob-
taining three-dimensional images at atomic resolution is
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x-ray crystallography. For years structures of very com-
plex molecules have been unraveled by this method. The
connection between x-ray (or electron, or neutron) diffrac-
tion methods and holography is intriguing. This paper
attempts to illuminate that connection. We would like to
stress that the connection has been well known for many
years. In fact Gábor credits x-ray crystallographers with
the fundamental ideas for holography. Specifically, the
principles of holography will be extended to encompass
x-ray diffraction. By doing so we hope that other scientific
areas will also open for exploration.

To set the stage for the rest of the report, we discuss the
fundamental and practical limitations of holographic mi-
croscopy: (1) The most fundamental limitations are deter-
mined by the wavelength, λ, of the incident wave and by
the numerical aperture, NA, of the holographic system. As
in all optical systems, the best transverse resolution ob-
tainable is ≈ λ/(NA) and the longitudinal resolution is lim-
ited to ≈ λ/(NA)2. (2) The incident wave has to have enough
coherence length in the appropriate directions that scat-
tered waves from the reference and the object produce
interference fringes. (3) If the reference point is at a
macroscopic distance from the object, the recording medium
itself has to have as good a resolution as the microscope to
record the interference fringes. (4) The interference pat-
tern between the reference wave and the object wave de-
pends on the cosine of the phase difference between them;
therefore, the intensity of the interference pattern can only
give the absolute value of the phase and not its sign. This
twofold ambiguity gives rise to the holographic dual image.
When the coherence length of the source is very long, the
reference can be sufficiently displaced from the unknown
object so that the dual image is eliminated.7 (5) In practice,
electrical and mechanical stability requirements pose se-
vere limitations on the resolution of holographic micro-
scopy. (6) Biological specimens, whose imaging is of great
interest, are damaged by the incident radiation, be it x-rays
or electrons. To obtain an image, about 100 scattered par-
ticles have to be detected per voxel (three-dimensional reso-
lution element).† For one-of-a-kind biological specimens, the
damage limits the attainable resolution rather severely.8,9

Fortunately, many interesting biological objects, for example
proteins and RNA, come in large numbers of copies. If these
molecules can be oriented in the same way (as they are in



crystals), the damage is reduced because the scattered and
detected probe particles can come from any one of the iden-
tical copies of the specimen.

To circumvent some of the limitations mentioned above,
the author has proposed to do holography with a local ref-
erence.10 By local reference, we mean bringing the refer-
ence point close to the object and taking the detector screen
far away. This procedure magnifies the interference pat-
tern by the ratio of the two distances. The closeness of the
reference point to the object eases coherence requirements
of the source and the magnification relaxes demands on
the resolution of the detector screen. If the specimen con-
sists of many identical objects similarly oriented (e.g., mac-
romolecular crystals), the holograms produced by each one
of the copies are identical and can be reconstructed to give
a single copy of the objects. This reduces the damage to
the specimen, as discussed above. The arrangement can
also alleviate stability problems and be made insensitive
to lens aberrations. However, the arrangement also in-
troduces some limitations. Both the reference and the
unknown objects have to be microscopic and not too com-
plicated. The dual image overlaps the desired image and
is therefore difficult to eliminate.

As an example of holography with a local reference, the
author of Ref. 10 points out that atoms that emit x-ray pho-
tons or electrons can serve as reference points. The waves
emitted by those atoms are scattered by the surrounding
medium. The interference between the unscattered wave
and the scattered waves produces a hologram on a detector
screen. Recently, Tegze and Faigel11 and Gog et al.12 have
obtained x-ray holograms of crystals by variants of this
method. Another practical method based on this principle
uses photoelectrons emitted by atoms near a solid surface.
This method is called photoelectron holography.13,14

The paper starts with a mathematical description of a
hologram with a complicated local reference. Then we dis-
cuss the recovery of the unknown object from the hologram.
We show that the recovery is analogous to well-known in-
verse problems. In the section Holographic Interpreta-
tion of Some Experiments we survey various
experimental methods that can be perceived as holography
with a complicated reference. Some are called holography,
some are not but all are similar. In the short section Pro-
posed New Methods, we explore some new experimental
possibilities. These proposals are intended to show that a
unified point of view can lead to new ideas. We close with a
summary of what has been accomplished.

Holographic Equations for a Complicated Reference
Recovery of an unknown object from a hologram when

the reference wave is a uniform plane or spherical wave
consists of the following steps.2,10 First, a hologram is re-
corded. Illumination of the hologram by a replica of the ref-
erence wave produces a replica of the object wave (among
other waves). To recover the object, the wave is back propa-
gated toward its source. Regions in space where the inten-
sity of the back propagated wave is high are interpreted as
the location of the unknown object. This procedure is analo-
gous to the way luminous objects are seen by our eyes; three-
dimensional resolution has the same limitations. We will
now show how to do the analogous procedure to find the
object from a hologram with a complicated reference.

Let the vector R denote points on the (spherical) holo-
graphic screen where the interference pattern is recorded.
Similarly, x will denote the coordinates in the three-di-
mensional space where the reference and the object are
located. Let R(R) denote the complex amplitude of an (ar-
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bitrarily complicated) reference wave on the hologram
screen. Assume that a simple object of unit strength is
located at a single point, xn, and is illuminated by an inci-
dent wave. It could be, e.g., a point scatterer or a Gaussian
blob of extent ∆x. Its density will be denoted by Ω(x – xn).
The object wave on the screen, On(R), which is elastically
scattered by the simple object, can be calculated from scat-
tering theory.15 In the first Born approximation it is

      On (R) = ψO (R) + G(R − x)τ (R̂, k̂ in , x − xn )ψO (x)dx,∫  (1)

where ψO(R) and ψO(x) are the incident (scalar) wave am-
plitudes at the recording screen and at the scatterer re-
spectively. The unit vectors       k̂ in and R̂  denote the
directions of the incident and scattered fields, respec-
tively, and       τ (R̂, k̂ in , x − xn )  denotes the angle- and space-
dependent elastic scattering amplitude of the simple
scatterer of unit strength Ω(x – xn) centered on xn (also
known as the t matrix.) The propagator, G(R – x), which
describes the amplitude of the field at R that originates
at x,

      
G(R − x) = −

exp ik R − x( )
4π R − x

, (2)

where k is the wave vector of the propagating wave field.
In the applications envisaged, the distance to the screen
is much larger than the size of the object. Therefore the
far-field approximation suffices:

      
G(R − x) ≈ −

exp ik R( )
4π R

exp(ikout . x),  (3)

where       kout = kR̂ = kR / R  is the wave vector of the scat-
tered wave in the direction of the observation. The terms
neglected are of relative magnitude |x|/|R|. A fast algo-
rithm for the calculation of On(R) to all orders has recently
been derived.16

When the incident wave is a plane wave, it is described
by

ψO(x) = ΨOexp(ikin • x). (4)

If the incident wave ψO(R) is filtered out before it gets to
the screen, the wave amplitude on the screen can be writ-
ten as

      

On (R) = −
exp ik R( )

4π R∫

τ (R̂, k̂ in , x − xn )ΨO exp −i kout − k in( ) ⋅ x[ ]dx.
 (5)

If the screen is spherical, making |R| constant, the ob-
ject wave depends only on the momentum transfer vector h
= (kout – kin)/2π. Thus Eq. 5 can be written symbolically as

On(h) = ∫ρn(x)exp(-2πih • x),  (6)

where scale factors have been absorbed into the definition
of ρn(x). Note that apart from scale factors and complex con-
jugation this is the notation used in x-ray crystallography.
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Assuming that the reference and object waves are co-
herent, the intensity of the recorded hologram can, of
course, be calculated:

In(h) = |R(h) + On(h)|2. (7)

Turning now to the general case of an arbitrary object,
let ρ(x) denote the density of the unknown object and

      τ (R̂, k̂ in , x) its scattering power. We will denote by ρapp(x)
an approximation to ρ(x), obtained by decomposing it into
a suitable set of basis functions Ω(x –xn) of scattering
power,       τ (R̂, k̂ in , x − xn ) , (see Appendix). The expansion
is given in terms of the unknown quantities Nn that mea-
sure the unknown strength of the scatterer at the vicinity
of xn. It is

      
ρapp (x) = NnΩ(x − xn ),

n
∑ (8)

giving the diffracted amplitude

      
O(h) = NnOn (h),

n
∑ (9)

where On(h) is defined in Eq. 6. The hologram intensity is,
therefore, given by

      

I(h) = R(h) + O(h) 2 =

= R(h) 2 + Nn On
* (h)R(h) + On (h)R * (h)[ ] +

n
∑

+ NnOn (h)
n
∑

2

.
(10)

To repeat, we derived Eq. 10 under the assumption of
an incident plane wave and we used the far-field approxi-
mation. Both these conditions are satisfied if the sizes of
the reference object and the unknown object as well as
their mutual distance are much smaller than their dis-
tances to the source of incident radiation and to the re-
cording screen.

The recovery of the unknown object has thus been trans-
lated in Eq. 10 into the solution of a set of inhomogeneous
quadratic equations in the unknown quantities Nn. The sig-
nificance of this simple derivation17 is that it shows the com-
plete analogy of holography with other inverse problems.18–21

Like the analogous equations in other inverse problems,
Eq. 10 is expected to be ill-conditioned. A (nonlinear) holo-
graphic operator can be defined as one that produces the
hologram I(h) from the set of scatterers Nn and from the
reference wave. The technical definition of ill conditioning
is that the ratio of the largest to the smallest singular value
of this holographic operator is much larger than unity. This
means the solution of Eq. 10 is very poorly defined and is
also extremely sensitive to noise in the data. Note that this
property of inverse problems is inherent and does not de-
pend on our particular formulation. The advantage of rec-
ognizing the analogy of holography and inverse problems
is that the vast knowledge gathered in the solutions of in-
verse problems can be applied directly to holography.

Holographic Dual Image
Further light can be shed on our method by returning

to the (idealized) analysis of the traditional recovery
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method of holography and its limitations.2 The intensity
of the recorded hologram is given by Eq. 10. For the present
discussion a strong reference beam will be assumed and
the self-interference of the object wave will therefore be
neglected. This results in a net hologram intensity,

 H(h) = I(h) – |R(h)|2 ≈ R*(h) O(h) + R(h) O*(h) ≡ L(Np).  (11)

The last equality means that, in this approximation,
H(h) = L(Np) is a linear operator operating on the finite
dimensional vector of discrete amplitudes. In the second
step of Gábor’s reconstruction, the hologram is illuminated
with a replica of the reference wave. The (idealized) wave
transmitted through the hologram is the reference wave
modulated by the hologram. It is obtained by multiplying
Eq. 11 by R(h),

R(h)H(h) = |R(h)|2O(h) + R(h)2O*(h). (12)

Suppose now that the reference wave is produced by a
single point scatterer located at position xO. According to
Eq. 5 this produces a reference wave proportional to exp
(–2πih • xO). It can be written as

R(h) = RO exp(–2πih • xO). (13)

Dividing Eq. 12 by 2 |R(h)|2 from Eq. 13 results in

      

R(h)H (h)

2RO
2 = 1

2
O(h) + O * (h) exp(−4πih ⋅ xO )[ ]. (14)

Substituting from Eqs. 6, 8, and 9 for the unknown scat-
terer density and assuming that it is real, we have

      

R H
R

i d i d

O

app app O

( ) ( )

( ) exp ( ) exp ( ) .

h h

x h x x x h x x x

2

1
2

2 2 2

2 =

− ⋅{ } + − ⋅ −{ }[ ]∫∫ ρ π ρ π

The second integral can be transformed by the substi-
tution 2xO – x → x giving

      

R(h)H (h)

2RO
2 =

1
2

ρapp (x) exp −2πih ⋅ x{ }∫ dx +[
ρapp (2xO − x) exp −2πih ⋅ x{ }∫ dx].

(16)

This equation can be solved by discrete inverse Fourier
transformation if and only if the conditions of the sampling
theorem (Nyquist conditions) are satisfied. The result is
the sum of two densities symmetrically located around the
reference point xO. The reference point, in fact, introduces
a center of symmetry. In holography this image doubling
has been known ever since Gábor’s original papers.

The image obtained by Gábor’s reconstruction is not the
most general holographic image, i.e., it is not the most
general solution of Eq. 11. In fact, any linear superposi-
tion of the two images ρ(x) = (1 – µ) ρapp(x) + µ ρapp(2xO – x)
with arbitrary real µ satisfies Eq. 10. In holography using

(15)
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laser light, the reference point is usually shifted so far
away that the dual image does not overlap the real one.7 If
known, the spatial extent of the original image can be used
as a constraint in the solution of Eq. 11. This results in
setting µ → 0, thereby getting the correct image, uncon-
taminated by its dual.

However, in holograms with a complicated reference, the
reference wave R(h) = |R(h)| exp [iϕ(h)] is itself compli-
cated. Also, the two images may overlap to a large extent.
To analyze this situation, Gábor’s procedure, valid for a
single point scatterer, will now be generalized. Equation
12 is formally divided by 2|R(h)|2, giving

      

R(h)H (h)

2 R(h) 2 = 1
2

O(h) + O * (h)
R(h)2

R(h) 2












. (17)

The term R(h)2/|R(h)|2 = exp[i2ϕ(h)] is a pure phase term
that is never singular. The term on the left side becomes
indeterminate for a given h if |R(h)|2 → 0. In the math-
ematical sense, H(h) vanishes at least linearly for the same
h, but numerically the value of the left hand side of Eq. 17
is very sensitive to inaccuracies in the measured value of
I(h). This is a manifestation, in h space, of the ill condi-
tioning of Eq. 9 or, equivalently, the poor phasing power
or quality of the particular Fourier component R(h) of the
reference.

The two terms on the right side will now be viewed as
the diffraction pattern of the real image and of the (holo-
graphic) dual image. From Eqs. 6 and 9

O(h) = ∫ρapp(x)exp{-2πih • x}dx. (18)

If O(–h) = O*(h), it follows that ρapp(x) is real. The dual
density is defined implicitly by

  O*(h)exp[i2ϕ(h)] = ∫ρdual(x)exp{–2πih • x}dx, (19)

and again, if O(–h) = O*(h), ρdual(x) is real.
The dual image has several interesting properties: it

is a linear function of ρapp(x), but a nonlinear function of
R(h). For a complicated reference the positivity of ρapp(x)
does not imply positivity of ρdual(x) and if ρapp(x) has a
known, limited support‡ ρdual(x) does not necessarily have
the same support. The hologram of the dual image is the
same as that of the correct image; in particular, it fol-
lows (from the h = 0 component) that the two images
have the same total scattering strength.  Verification that
our definition of the dual image tends to its correct lim-
its is easy: When the reference is a single point, it is the
image centrally inverted with respect to that point (Eq.
16) and when the reference disappears, it is the enantio-
morph§ of the object. Note that all the preceding proper-
ties of the dual image are unchanged when the |O|2 term
is included.

In analogy to holography with a simple reference, Gábor’s
reconstruction method does not produce the most general
solution of Eq. 11. The back transform of Eq. 17 always
gives the superposition (1/2) [ρapp(xp) + ρdual(xp)]. To establish
the connection between the formulation using linear alge-
bra and the holographic analogy, we observe that

Re {R*(h)O(h) – R(h)O*(h)} = 0. (20)

Therefore the addition of ρapp(xp) – ρdual(xp), to the recon-
structed image cannot change the discrepancy between
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the two sides of Eq. 11. In addition, the linear operator
L(Np) operating on ρapp(xp) – ρdual(xp) gives zero as well. This
proves L(Np) has at least one null vector.

The most general solution of Eq. 11 is well known from
linear algebra to contain nonzero singular vectors of the
linear operator of Eq. 11, L(Np), augmented with an arbi-
trary vector from its null space. For the general treatment
we refer to Golub and Van Loan.22 The number of indepen-
dent null vectors of Eq. 11 will be denoted by Nnull. We have
shown above that Nnull ≥ 1.

Denoting the orthogonal basis of right singular vectors
of the null space by vnull,j the most general real solution of
Eq. 11 is given by

  
      
ρ(x p ) = 1

2
ρapp (x p ) + ρdual (x p )[ ] + µ jvnull, j ,

j=1

Nnull

∑ (21)

where µj are a set of arbitrary real numbers. The particu-
lar (Gábor) solution, [ρapp(xp) + ρdual(xp)]/2, has a conjugate
null image [ρapp(xp) – ρdual(xp)]/2. Singling out this null vec-
tor and orthogonalizing the rest of the null space to it, we
see, after a small amount of algebra, that the most gen-
eral solution of Eq. 11 may be written equivalently as

      
ρ(x p ) = (1 − µ)ρapp (x p ) + µρdual (x p ) + µ jvnull, j ,

j=1

Nnull −1

∑ (22)

where µ, µj are a set of arbitrary real numbers. In this
notation the desired solution is µ = µj = 0, while the mini-
mum norm least squares solution is µ = 1/2, µj = 0. Note
that, from the point of view of information theory, Nnull

pieces of information are still missing. The formulation
presented here allows the easy incorporation of additional
information that restricts the solution space. A similar
derivation can be carried out for the full quadratic equa-
tion, Eq. 12.

Methods of Solution
We stated in Holographic Equations for a Compli-

cated Reference above, that holographic recovery is in
essence an inverse problem, and as such, is almost always
ill conditioned.18–21 In this section we elaborate on the
uniqueness of the solution and discuss some of the prop-
erties of the algorithms used for recovery of the scatterer.
The most fundamental requirement for a unique solution
of the recovery problem is that enough information be
available from experiments. Many years ago the eminent
mathematician Lánczos23 pointed out that no mathemati-
cal trickery can remedy lack of information.

The maximum amount of available information is sig-
nificantly limited in diffraction experiments on periodic
structures. When waves diffract from crystals, the diffrac-
tion spots satisfy Bragg’s conditions. In more technical lan-
guage, if the crystal consists of well-ordered N unit cells
and if the kinematic (first-order Born) approximation
holds,24 the reflection intensity is concentrated into a vol-
ume of reciprocal space of ≈1/N and has a peak intensity
≈N2 that corresponds to an integrated intensity ≈N. Both
these properties are important for experiments on com-
plicated molecules that otherwise would be destroyed by
incident x-rays.8,9 The diffraction pattern is characterized
by the momentum transfer vector h = (kout – kin)/2π, which
corresponds to a resolution of 1/|h|. If data are available
up to a given resolution, the details of the scatterer can be
reconstructed only to that resolution.**
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Counting the number of diffraction spots to a given reso-
lution is easy. If the phases of the Bragg reflections are
known, the electron density can be reconstructed uniquely
from the diffraction pattern, and the number of reflections
within a resolution shell correspond exactly to the critical
Nyquist sampling frequency.25 In diffraction experiments
only the amplitudes are measurable. Let us assume that
the number of bits of information supplied by the ampli-
tudes of the structure factors is equal to that supplied by
their phases. Then absence of phases corresponds to the
loss of exactly one half of the information. In crystal dif-
fraction, if we write the Bragg conditions in the usual way
as d = λ/(2 sinθ), we can see that changing the x-ray wave-
length changes only the diffraction angle that corresponds
to a given d in the crystal. Therefore, if the fundamental
scattering amplitude 

      
τ R̂, k̂ in , x − xn( )  in Eq. 1 is indepen-

dent of the x-ray energy and the scattering angle, we get
no new information from experiments at different wave-
lengths. In x-ray crystallography additional information
is obtained by anomalous scattering, i.e., the dependence
of the scattering amplitude on wavelength, by adding
heavy atoms to the crystal, or by having prior knowledge
of the electron density of certain parts of the crystal. For
example, usually about half the volume of the unit cell of
proteins contains disordered water with nearly uniform
density.

The situation is radically different in photoelectron ho-
lography in its many variations and in x-ray (emission)
holography. First, the full diffraction pattern is observ-
able, so it can be sampled at the Nyquist frequency or even
more finely. Second, by doing the experiment at several
different energies we obtain additional information. Third,
in electron holography the scattering amplitudes of low-
energy electrons usually depend strongly on energy and
angle.

Barton’s first method for recovering the scatterers in
photoelectron holography used Gábor’s algorithm.27

Barton’s method was essentially the solution of Eq. 15 by
an inverse Fourier transformation. The interpretation of
the result is that the scatterers are located where the value
of ρ(x) is large. The recovered density suffered from vari-
ous shifts in positions and splitting as a consequence of
the angular structure of the complex t matrix, 

    
τ R̂, k̂ in , x( )

of the scatterers. Several ways exist to correct for this dif-
ficulty; if data are collected at several different photoelec-
tron energies, a phased addition of the holograms
reinforces the real image and tends to destroy the dual
image.28,29 The basis function expansion of this paper was
also generalized for the recovery of scatterers with known
complex angle-dependent and energy-dependent scatter-
ing amplitudes.30,31

Holographic Interpretation of Some Experiments
X-Ray Crystallography. To show the connection be-

tween x-ray crystallography and holography,15 we divide
the electron density of the crystal, perhaps artificially, into
a known and an unknown part: ρ(r) = ρkno(r) + ρunk(r). In a
perfect crystal, the electron density is a periodic function.
The scattering amplitude in the x-ray regime is propor-
tional to the electron density and the incident x-rays are
very nearly plane waves. The Fourier transform of the elec-
tron density F(h) is called the structure factor in crystal-
lography. Structure factors can be defined similarly for
the known and the unknown part as follows:

R(h) = ρkno (r) exp(2πih ⋅ Fr)dr,
unit cell

∫ (23)
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O(h) = ρunk (r) exp(2πih ⋅ Fr)dr,

unit cell
∫ (24)

where F denotes the transformation of r into fractional
coordinates of the unit cell of a crystal17 and h denotes a
triplet of integers pointing to the lattice points in recipro-
cal space. The measured x-ray diffraction intensities can
be reduced to the square magnitude of the structure fac-
tor of the crystal F(h) producing the formula

|F(h)|2 = |R(h) + O(h)|2 =
 = |R(h)|2 + R(h)O*(h) + R*(h)O(h) + |O(h)|2. (25)

Comparison of Eq. 25 with Eq. 10 shows clearly the anal-
ogy with holography. Also clear is that Eq. 10 can be used
to find the unknown part of the molecule and that comple-
tion of a crystal structure, when a part of the unit cell has
already been found, is similar to many other inverse prob-
lems. Equation 25 highlights that when a large part of
the electron density is known, the interference terms be-
tween the reference wave and the object wave give most
of the information on the missing part of the structure.

The approach outlined above has been developed exten-
sively by the author and collaborators into a software pack-
age EDEN (for Electron DENsity) for macromolecular
x-ray crystallography. In the following, we discuss some
of the detailed derivations of the algorithm used in EDEN.
The unknown part of the electron density is described as
a sum of Gaussian basis functions of equal widths, cen-
tered on a grid that divides the unit cell into Pa, Pb, and Pc

equal parts along the crystallographic axes a, b, and c,
respectively. The grid points are denoted by rp, p = 1, ... , P
where P = Pa • Pb • Pc. Each Gaussian blob (voxel) is as-
sumed to contain an unknown number of electrons, n(p):

      

ρunk (r) ≈ 1
(πη∆r2 )3/ 2 n( p) exp

− r − r p
2

η∆r2















p=1

P

∑ , (26)

where ∆r is the mean grid spacing and η determines the
width of the Gaussians relative to the grid spacing. When
Eq. 26 is extended periodically over the repetitions of the
unit cell, a simple derivation results in the following for-
mula for the structure factors of the unknown part O(h):

        
O(h) = exp −η π∆r F T h( )2





n( p) exp
p=1

P

∑ (2πih ⋅ Fr p ).   (27)

When the representation of the unknown density is sub-
stituted from Eq. 27, Eq. 25 becomes a set of quadratic
equations in the unknowns n(p). The number of equations
Nh is usually not equal to the number of unknowns P. The
equations may contain inconsistent information for many
reasons. Examples include experimental errors, changes
in the molecular structure when heavy atoms are added
to the molecule, imperfect knowledge of molecular frag-
ments, and incomplete noncrystallographic symmetry. The
equations are ill-conditioned, and therefore their solutions
are extremely sensitive to noise in the data. For these con-
ditions, the equations may have many solutions or no so-
lution at all. Our way of circumventing these problems is
to obtain a quasi-solution of Eq. 25 by minimizing the dis-
crepancy, or cost function (see e.g., Dainty and Fienup32):

f eden = 1
2

w' (h)2 R' (h) + O(h) − F ' (h)[ ]2
,∑ (28)
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where R'(h) and F'(h) are apodized or smeared versions of
R(h) and F(h) and where w'(h)2 is a set of positive weights,
usually set to unity or to 1/σ2(h), the inverses of the vari-
ances of the measured Bragg reflection intensities.

The effective or intrinsic resolution of the observed struc-
ture factor amplitudes is determined by atomic structure
factors, atomic motion, and crystalline disorder. The in-
trinsic resolution of the Gaussian basis set (Eq. 26) is η∆r2.
If the effective resolution of the measured structure fac-
tor amplitudes is higher than that of the Gaussian basis
functions, they have to be modified to

        
F ' (h) = F (h) exp −δη π∆r F T h( )2




, (29)

using a nonnegative parameter δ. This procedure, usu-
ally called apodization, adjusts the resolution of the mea-
sured diffraction pattern to that of the Gaussian basis
set used in the solution. Apodization is equivalent to an
appropriate smearing of the electron density of the mol-
ecule by a Gaussian smearing function. The smearing is
essential for a mathematically stable fitting of the high-
resolution reflections. An analogous procedure is used to
adjust the intrinsic resolution of the known part. The
summation in Eq. 28 includes only available experimen-
tal data; values of R(h) for which the corresponding F(h)
is missing are left indeterminate by setting w'(h)2 to zero.
Therefore truncation errors of Fourier inversions are
absent and the consistent use of nonnegative basis func-
tions is fully justified.

A second type of information on the crystal structure is
a partial knowledge of the electron density in parts of the
unit cell. For example, part of the molecule may be very
similar to another molecule whose structure is known. As
another example, the solvent volume has a featureless elec-
tron density of a well-known value. Such knowledge can
be incorporated into EDEN as a target density, expressed
in terms of the amplitudes of the basis functions used in
the main program. They will be denoted by n(p)target. There
is a corresponding cost function

    
f space = 1

2
λspaceP

p=1

P

∑ w̃p
2 n( p) − n( p)target{ }2

. (30)

The overall relative weight λspace and the individual
weights at each point     w̃p

2 ≤ 1 express the strength of our
belief in the correctness of the target density: the weights

    w̃p
2  may be used to emphasize or deemphasize different

regions of the target density (although usually they are
set to 1 or 0), while λspace determines the relative impor-
tance of fspace with respect to feden. In the presence of a tar-
get density, the actual cost function used in the computer
program is the sum of feden (Eq. 28) and fspace (Eq. 30):

ftotal = feden + fspace. (31)

Additional information leads to additional terms in the
cost function (Eq. 31).

As seen from Eq. 27 the structure factors of the unknown
part can be calculated by fast Fourier transforms followed
by a scalar multiplication. The gradients of the cost func-
tion can be calculated similarly. This leads to a fast (P-log
P) algorithm and to the ability to minimize Eq. 31 with-
out ever calculating or saving P × P matrices. In EDEN
the cost function is minimized using a conjugate gradient
algorithm that is very efficient in the presence of nonlin-
Holographic Microscopy with a Complicated Reference
ear constraints. A basic constraint of nonnegativity of the
electron density is incorporated directly into the conju-
gate gradient optimizer by stipulating that all elements
of the solution vector n(p), be nonnegative.

The representation of the unknown density Eq. 26 uses
an overcomplete set of Gaussian basis functions not or-
thogonal to each other. The usefulness and accuracy of
the method are determined by the answers to the follow-
ing mathematical questions: How well can the electron
density of an arbitrary molecule be approximated by the
superposition of such basis functions (with appropriate co-
efficients)? Is there a well-defined algorithm to find such
a set of coefficients, given the electron density? Is the set
of coefficients unique? Finally, if two sets of coefficients
are similar (close to each other), are the resulting electron
densities close to each other? Fortunately, mathematicians
have done extensive research on such nonorthogonal, re-
dundant basis sets called frames. Excellent discussions
can be found in a book by Daubechies33 and in a review by
Heil and Walnut.34 Some of their important results are
described in the Appendix and are summarized below.

The mathematicians’ answer to the first question is that
electron densities can indeed be approximated well by such
representations, if the electron density does not vary too
wildly. Restated in technical language, the requirements
are that the diffraction pattern and the basis set have simi-
lar intrinsic resolutions  and that the grid spacing be about
twice as fine as required by the corresponding Nyquist
criterion. In our algorithm, this is achieved by the appro-
priate choices of η and ∆r in Eq. 26. Also true is that two
representations with similar coefficients do yield similar
electron densities. Conversely, two similar electron densi-
ties produce similar sets of coefficients in our algorithm,
which is therefore mathematically stable. But a given elec-
tron density can be represented by several different sets
of coefficients. In fact, there are many possible algorithms
to find a set of coefficients that approximate the electron
density of the crystal equally well, of which the algorithm
used by EDEN is only one example.

The holographic method has several advantages over
other techniques in use today. Holography can incorpo-
rate external information clearly and consistently. For
example, the positivity of the electron density, the near
uniformity of the solvent region, or the similarity of parts
of one molecule to parts of another are very important con-
straints on the electron density and, therefore, lead to a
successful solution of macromolecular structures. In crys-
tallographic jargon, EDEN is capable of changing the
phases of calculated structure factors. Furthermore, EDEN
lends itself to accurate mathematical analysis and it can
be implemented on the computer using fast Fourier trans-
forms. This enabled us to produce a computer program
that solves large crystallographic problems of current in-
terest in reasonable computer time. Incorporating the posi-
tivity constraint bridges the gap to some extent, that
existed between direct and other methods in crystallogra-
phy. The holographic method also is optimal in that,
computationally its solution degrades gracefully with
added noise. Our experience with the method has been
published in a series of papers in Acta Crystallo-
graphica.17,35–38 Those papers also present examples of pro-
tein crystals recovered by EDEN.

 Electron Microscopy of Two-Dimensional Crystals.
Some large molecules, especially membrane proteins, have
been crystallized in two-dimensional form. These crystals
have been examined by electron microscopes both in a fo-
cused and in a diffractive mode.39–41 The image obtained by
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the focused electron beam has been used to determine the
phases of the low-resolution diffraction spots obtained by
the diffraction of the unfocused electron beam. The subse-
quent processing of the image has been done in analogy to
x-ray diffraction. The result has been the recovery of the
three-dimensional structure of the protein. It is clear from
the preceding that if part of the structure is either known
or can be guessed, recovery of the rest of the molecule can
again be viewed as a holographic inverse problem. We pro-
pose that the application of holographic methods may im-
prove the quality of the recovery in the future. In particular,
the difference in transverse and longitudinal resolution of
the recovery may be reduced.

Low Energy Electron Diffraction. The diffraction of
low-energy electrons from a crystal surface is closely re-
lated to the diffraction of x-rays by crystals, and therefore
we expect that similar ideas should be applicable.30 Low-
energy electron diffraction (LEED) is also capable of atomic
resolution. The scattering of such (100 to 1000 eV) elec-
trons is much stronger than that of x-rays. This makes
LEED surface-sensitive, but makes the analysis of the dif-
fraction pattern more difficult, because multiple scattering
of the diffracted electrons can be very important. A rela-
tively simple case to analyze is a crystal surface with a
submonolayer of adsorbed atoms in equivalent positions.
The resulting diffraction pattern is similar to a conventional
hologram.42 If the adsorbate is a molecule, the observed elec-
tron diffraction pattern can still be interpreted as a holo-
gram with a complicated reference. The equations to be
solved are analogous to Eq. 10 above, except for the diffi-
culty with multiple scattering. Nevertheless, we expect the
method of Eq. 10 will extend the reach of low-electron en-
ergy diffraction to more complex overlayers. For a detailed
review of this topic we refer to Refs. 13 and 14.

Other Related Methods. In a recent experiment, Tegze
and Faigel11 invoked holography with a local reference
explicitly. They irradiated a SrTiO3 crystal by x-rays of
17.4 keV with photon energy above the K-edge of Sr and
carefully measured the angular distribution of the char-
acteristic K radiation emitted by the Sr atoms. The fluo-
rescence that arrived at the detector without scattering
was the reference wave and the radiation scattered by the
neighboring atoms was the object wave. This was there-
fore a holographic experiment with a simple reference.10

The authors reconstructed the neighboring Sr atoms suc-
cessfully, using a holographic recovery algorithm. In an-
other new development, Gog et al.12 extended holography
with a local point reference to a “time-reversed” experi-
ment. They irradiated an Fe2O3 crystal above the K-edge
of iron and monitored the Fe fluorescence intensity as they
changed the direction of the incident beam. The interfer-
ence of the incident unscattered wave with the wave scat-
tered by the neighboring atoms results in an angular
dependence of the Fe fluorescence. The angular pattern of
the fluorescence was successfully solved to yield the posi-
tions of the neighboring iron atoms in three dimensions.
One advantage of the method is that variation of the inci-
dent x-ray wavelength gives additional information, as
discussed in Methods of Solution. In both these experi-
ments the contrast of the fringes is very weak and there-
fore restricted to damage-resistant materials.8,9

Electron holography using low-energy electrons was
carried out by Morin, Pitaval, and Vicario.6 The electrons
were generated by field emission from a single atom of a
fine tungsten tip. The beam was split using a biprism. One
part of the beam produced the reference and the other part
went through the object. The result was a standard off-
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axis hologram, that was successfully solved to yield the
object, a set of carbon fibers at 7-nm resolution. Although
the method does not automatically solve the stability prob-
lems of electron holography, the technique is a very prom-
ising development because low-energy electrons
apparently cause relatively little damage in biological
materials.43

The method of Rodenburg et al.44–46 in electron micro-
scopy can be perceived as holography without a reference
wave or holography where a complicated reference is re-
constructed simultaneously with the unknown object. The
essence of the method is to focus the electron microscope
on a (planar) sample and to look at the interference of two
diffraction orders, made to overlap at the detector. The
interference contains holographic information. The focal
point of the incident beam is scanned over the sample,
and the unknown object is reconstructed using Wigner
functions. The information obtained is similar to the
autocorrelation function of the object (the so-called
Patterson function in crystallography). Clearly the posi-
tion of the incident beam has to be very stable. Moreover,
the method does not alleviate the damage problem in bio-
logical specimens.

We would like to point out that x-ray microscopy is also
a related subject. Some excellent reviews of its applica-
tion to biological specimens have appeared recently.8,47

Proposed New Methods
We now propose two new methods for holographic mi-

croscopy with a complicated reference. These sample ideas
are presented as illustrations to the many possibilities that
arise from our considerations.

For an example of an experiment possible with a low-
energy electron beam, let us assume a large molecule is
laid down on a substrate. An example of such a substrate
is a Si crystal patterned on an appropriate scale. An ex-
ample of a molecule is a short strand of DNA. Such a mol-
ecule has been found quite stable in a low-energy electron
beam.6,15,43 The angular distribution of the scattered elec-
tron beam could easily be detected by standard LEED tech-
niques. The distribution consists of a discrete diffraction
pattern due to the substrate and a diffuse pattern due to
the adsorbed molecule. If the crystal is good enough and
cold enough, it will not contribute appreciably to the dif-
fuse pattern. The diffuse pattern could be analyzed using
the theoretical techniques developed in this report. In par-
ticular, if part of the molecule is known, the rest could be
found. The atoms of the substrate crystal may also be used
as part of the reference. This proposal is similar to that of
Ref. 48. An important point to keep in mind is that the
method is sensitive only to the local order. One of the dif-
ficulties of such an experiment is that the penetration
depth of low-energy electrons is very short and the sample
has to be kept in vacuum.

A different kind of holography with a complicated refer-
ence could be done in protein crystals. The amino acid
methionine, which contains sulfur in its native state, can
be produced with selenium substitution. If this amino acid
(or its appropriate precursor) is fed to the organisms that
produce the protein, pure seleno-methionine-containing
proteins can be produced. In usual practice, such proteins
are used to solve the crystal structure either as part of
multiple isomorphous replacement or, even more directly,
by multiple anomalous dispersion experiments on the Se-
containing crystals. As the S- and the Se-containing crys-
tals are usually very similar (isomorphous), it is reasonable
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to assume that mixed crystals can be produced at any pro-
portion and that the Se-containing proteins will occupy
purely random sites. (This is a pure lattice gas; the prob-
ability of any one of the perfectly ordered sites in the crys-
tal being occupied by a S-containing or a Se containing
protein is the same and no correlation exists between the
occupancies of different sites.) Suppose the fraction of
Se-methionine is p and that of S-methionine is 1 – p. Such
a crystal produces a Bragg diffraction pattern character-
istic of the weighted average of the two protein species. In
addition, it produces a diffuse diffraction pattern that
would be produced by a single molecule that consists of
the difference between the two protein species. The inte-
grated intensity of the diffuse pattern is proportional to
p(1 – p)N, where N is the number of molecules in the crys-
tal. As the only difference between the two species of pro-
teins is in the substitution of Se for the S atoms, we would
get the diffraction pattern of those difference atoms. The
calculation is similar to that described by Jagodzinski and
Frey.49 (In the measurement of the diffuse diffraction pat-
tern, the Bragg peaks must be avoided.)

This would be an unusual hologram. Deciding what is
the reference and what is the object is difficult. It could be
sampled as finely as needed to satisfy the Nyquist crite-
rion, and the methods outlined in this report could prob-
ably be used for the recovery of the atoms. In the language
of crystallography, the entire volume of the Ewald sphere
is accessible within the 1/λ limit, not only the reciprocal
lattice points. Because it is not concentrated into Bragg
peaks, the diffuse intensity is fairly low. But, the contrast
of the diffraction pattern is of the order of unity, as opposed
to the x-ray holograms described above11,12 that have a very
low contrast. It is also different from holographic LEED42

based on multiple scattering where the reference wave is
the one scattered from a disordered adatom and the object
wave is the wave scattered from the ordered part of the
crystal after already being scattered at least once by the
adatoms. In the experiment outlined above, only singly scat-
tered photons participate. When several molecules are in the
unit cell, related by crystallographic (or noncrystallographic)
symmetry, the measured diffuse diffraction pattern is the
sum of those of the individual molecules. This may make
the solution of the molecular structure difficult.

Discussion and Conclusions
Let us remind ourselves that both electromagnetic and

matter waves have amplitude and phase information as-
sociated with them. When these waves are detected, the
phase information is lost in most circumstances. There
are two fundamental reasons for this loss. When the num-
ber of photons (particles) per mode is less than unity, im-
possibility of detection of the absolute phase follows from
Heisenberg’s uncertainty relations. (Note that this is al-
ways true for Fermion waves like electrons.) If the wave
consists of a very large number of coherent photons per
mode, as in a radio frequency (microwave) field or in a
good laser, the phase is measurable in principle. Even so,
we still need a detector with a short response time com-
pared to the period of the incident wave for the measure-
ment of the absolute phase.

A way around this limitation has been known ever since
Young’s two-slit experiment. When two-coherent waves
interfere, their relative phases influence the detected in-
tensity. The generic name of interferometry is associated
with this method. The requirements of a large number of
coherent photons per mode and of fast detectors are re-
laxed, leaving only the requirement of coherence within
Holographic Microscopy with a Complicated Reference
the phase volume of the interferometer. As an extreme ex-
ample, a photoelectron can be coherent only with itself.
Photoelectron coherence length is determined by its en-
ergy spread and by the size of its source; thus the length
can be very different in different directions. The volume
enclosed by coherence length in all directions is called its
coherence volume. In particular, if a photoelectron is emit-
ted from a very narrow inner shell level of an impurity
atom by a monochromatic photon, its coherence volume
can be fairly large on an atomic scale. If such a photoelec-
tron is scattered from two objects whose vectorial distance
is within the electron’s coherence volume, the scattered
intensity shows an interference pattern.

Gábor realized that if one of these scatterers is a point
object, a simple two-stage procedure reconstructs the sec-
ond scatterer. This was the start of holography. Gábor’s
original goal was to improve electron microscopy, which
was severely limited in its resolution by lens aberrations.
In the approximately 50 intervening years, his goal has
(almost) been met, mostly by gradual developments in ho-
lographic methods of electron microscopy. Our starting
point in this report was an observation, made by this au-
thor some time ago, that by bringing the reference and
the unknown objects close together (to within a few wave-
lengths), some of the well-known limitations of hologra-
phy can be ameliorated. Specifically, the coherence length
of the waves can be quite small, the recording medium
can be of low resolution, and some of the extreme stability
requirements are eliminated.

Most of the methods described in this report utilize many
identical objects that are oriented the same way. When
the recording screen is far compared to the distance of the
reference to the object, the resulting diffraction pattern is
the same as that of a single object, except that in crystals
(for which the Bragg conditions have to be satisfied) it
becomes sampled. If successful, the reconstruction pro-
duces the image of the single (repeated) object. The obvi-
ous advantage of these methods is that they ameliorate
the radiation damage to a sample. For many biologically
important systems, this is the only way to avoid total de-
struction of the sample before an image is obtained.

In summary, this report discussed the generalization of
Gábor’s holographic method to a complicated reference
wave. This forced us to reconsider his reconstruction
method, to discuss its mathematical properties, to deal
with the dual image and to invent new reconstruction tech-
niques. We found a close connection between ordinary in-
terferometry and holography. We also established a similar
connection to the general field of inverse problems. We
hope the ideas presented in this report will find exciting
applications in the future.

Appendix
We summarize some of the relevant discussion on

frames, following Daubechies33 and Heil and Walnut34

(referred to below as D and H&W, respectively.) To repre-
sent the general scatterer density in Eq. 8, ρ(x) and its
scattering power,     τ (R̂, k̂ in , x), in terms of basis functions,
Ω(x – xn), or their scattering power,       τ (R̂, k̂ in , x - xn ), the
latter have to be frames. This is simplier in the x-ray re-
gion. The scattering power of materials is proportional to
the electron densities of molecules, ρ(r), which are posi-
tive functions of limited resolution or bandwidth. Accord-
ing to Eq. 26 they are to be represented by a set of Gaussian
basis functions.

A set of functions {xn} is called a frame (with respect to
the functions x) if for any one of the functions x, the sum
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of the squares of its scalar products with all of the func-
tions xn is bounded both from above and from below (D
3.2.1, H&W 2.1.1):

    
A x, x ≤ x, xn

2



 ≤ B x, x ; 0 < A,

n
∑ B < ∞, (A1)

where the scalar product <x,y> (also called a convolution
or projection) is defined as the integral,

      x, y = x(r) y(r)dr.∫ (A2)

The existence of a frame ensures that the operator S that
produces <x,xn> from x is a bounded linear operator with a
bounded inverse operator S–1. The functions x can then be
expanded with the help of the operators S and S–1. Indeed,
let us define the operator S by

    
Sx = x, xn( )

n
∑ xn . (A3)

It follows that the function x can be expanded (represented)
in terms of the set of functions xn by the formula (D 3.2.8,
H&W 2.1.5):

    
x = anxn , where an = x, S−1xn .∑ (A4)

The set of functions {S–1xn} is also a frame, called the dual
frame. It satisfies the bounds (D 3.2.6, H&W 2.1.4)

    
B−1 x, x ≤ x, S−1xn

2





≤ A−1 x, x .
n
∑ (A5)

The significance of Eqs. A1 through A5 for us is that if
we can show that our basis set of Gaussians Eq. 26 is in-
deed a frame, we can be assured that any electron density
can be represented by them. Moreover, we are assured that
the representation is mathematically stable in both direc-
tions in the following sense. Given two sets of coefficients,
an and bn that are close, the set of coefficients cn = an – bn,
when used in Eq. A4, defines a function that is small be-
cause in Eq. A1, B < ∞. The converse is that if the function
x is small, the set of coefficients is also small because of
the right side inequality in Eq. A5. In fact, Eq. A4 sup-
plies an algorithm for the representation of a known elec-
tron density.

The most familiar basis function sets are orthonormal.
Those are the generalizations of orthonormal (Cartesian).
coordinate systems to (infinite dimensional) function
spaces. Such basis sets always constitute frames, with
A = B = 1 in Eq. A1, so frames can be thought of as gener-
alizations of orthonormal basis sets. Frames are usually
not orthogonal and are usually redundant in that the rep-
resentation presented in  algorithm A4 is not unique. How-
ever, a connection exists among all possible representations
of x in terms of xn (H&W 2.1.5). If, in addition to the repre-
sentation A4 we can find another set of coefficients that
represents x (e.g., by using the EDEN algorithm)

x = ∑cnxn, (A6)

the following connection exists between the two repre-
sentations:
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∑|cn|2 = ∑|an|2 + ∑|an – cn|2. (A7)

Equation A7 shows that algorithm A4 always yields a rep-
resentation with minimal norm.

Two main classes of frames are discussed in Refs. 33
and 34. The frames in the first class are called Weyl–
Heisenberg–Gábor frames; they can also be viewed as win-
dowed Fourier transforms. The second class are wavelet
frames. The basis function representation in this report
(Eq. 26) belongs to the former class. The relevant formu-
las will be shown in one dimension, but they apply to three-
dimensional lattices as well.

Given a standard Gaussian

g(x) = π–1/4exp(–x2/2), (A8)

we can define a set of functions,

    gm,n(x) = exp (imωOx) g(x – ntO), m,n = integer. (A9)

They are the basis functions of the windowed Fourier
transform. They measure the frequency content, around
mωO in frequency, of a small section of a function centered
around ntO in space. It is shown in D 3.4.4 that if ωOtO < 2π,
the set of functions A9 constitute a frame. The frame
bounds A, B of A1 are estimated in D Table 3.3. The sig-
nificance of the frame bounds is that if they are close, the
representation of most functions converges rapidly. In our
application we are interested in a representation where
only m = 0 is kept (Eq. A9).

Let us identify the variables in Eqs. A8 and A9 with
those of Eq. 26 as

x = 21/2 πr/dres; to = 21/2 π∆r/dres. (A10)

The experimental data set and the structure factors of
the known part are anodized according to Eq. 29 to have
the same inherent resolution as the basis set Eq. 26. It
follows that all possible (positive) electron densities have
a maximum resolution dres and their Fourier transform falls
off in reciprocal space as exp(–dres

2 |FTh|2). A prototypical
function with these properties is one of the Gaussians in
Eq. A9 corresponding to one of the Gaussian basis func-
tions of Eq. 26. The Fourier amplitudes of such a function
can be calculated by the formula

    

exp − x − ntO( )2
/ 2[ ]exp imωOx( )dx =

−∞

∞

∫

(2π )1/ 2 exp −m2ωO
2 / 2( )exp imnωOtO( ).

(A11)

We will choose

∆r = dres/π,  ωOtO = π. (A12)

The frame bounds from D Table 3.3 are close to A = 1.5
and B = 2.5 with their ratio being about 1.7. Thus the
frame is fairly tight, and we should expect fairly good con-
vergence of the representation for any electron density.
Moreover, from Eq. A10 we can calculate the value of the
first nonzero Fourier component, exp(–ωO

2/2) = 0.085.
Therefore if we neglect all higher Fourier components of
the frame, i.e., if we restrict our representation to Eq. 26,
the maximum relative error we make is 8.5%. Similarly,
the restriction that all the amplitudes of the Gaussians
be nonnegative to satisfy the constraint that the electron
density be nonnegative everywhere is expected to cause a
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similarly small error. This is the mathematical basis of
our representation of electron densities.

The above discussion can be generalized to a multireso-
lution representation either in terms of Gábor frames or
in terms of wavelets. In either case satisfying positivity
everywhere can be quite difficult.
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† If the reference beam does not pass through the specimen, the number
of particles per voxel that have to be detected is reduced by the square
root of the ratio of the reference intensity to the scattered intensity. This
reduction can be called an interferometric advantage; it is analogous to
the well known heterodyne advantage of radio frequency detection.

‡ A function vanishes everywhere outside the domain of its support.
§ The enantiomorph of an object is its three dimensional reflection around

a center of symmetry.
** There is a lively debate on super-resolution in the astronomy litera-

ture.26 By super-resolution one usually means resolution finer than λ/NA
in the transverse direction and λ/NA2 in the longitudinal direction, as
mentioned in the Introduction . The author’s position is that super-reso-
lution is possible only if additional information is available on the shapes
of the objects to be recovered. Most simply: if we know the internal
structure of an object, e.g., that it is point-like, we can find its position to
a very high accuracy even from relatively low resolution data—given
the data have very good signal-to-noise ratio and the possible system-
atic errors are also well known. If such knowledge is not available, su-
per-resolution is not possible.

References
1. D. Gábor, A new microscopic principle, Nature 161, 777 (1948).
2. D. Gábor, Microscopy by reconstructed wave-fronts, Proc. R. Soc.

(London) A197, 454 (1949).
3. A. Tonomura, Recent developments in electron holography for phase

microscopy, J. Electron Microsc. 44, 425 (1995), and references therein.
4. A. Orchowski, W. D. Rau, and H. Lichte, Electron holography surmounts

resolution limit of electron microscopy, Phys. Rev. Lett. 74, 399 (1995),
and references therein.

5. S. Lindaas, M. Howells, C. Jacobsen, and A. Kalinovsky, X-ray holo-
graphic microscopy via photoresist recording and atomic-force micro-
scope readout, J. Opt. Soc. Am. A 13, 1788 (1996).

6. P. Morin, M. Pitaval, and E. Vicario, Low energy off-axis holography in
electron microscopy, Phys. Rev. Lett. 76, 3979 (1996), and references
therein.

7. E. N. Leith and J. Upatnieks, Reconstructed wavefronts and communi-
cation Theory, J. Opt. Soc. Am. 52, 1123 (1962).

8. D. Sayre and H. N. Chapman, X-ray microscopy, Acta Cryst. A 51, 237
(1995).

9. R. Henderson, The potential and limitations of neutrons, electrons and
X-rays for atomic resolution microscopy of unstained biological speci-
mens, Quarterly Rev. Biophy. 28, 171 (1995).

10. A. Szöke, X-ray and electron holography using a local reference beam,
in Short Wavelength Coherent Radiation: Generation and Applications,
D. T. Attwood and J. Bokor, Ed., American Institute of Physics Confer-
ence Proceedings No. 147, New York, 1986.

11. M. Tegze, and Gy. Faigel, X-ray holography with atomic resolution,
Nature 380, 49 (1996).

12. T. Gog, M. Len, G. Materlik, D. Bahr, C. S. Fadley, and C. Sanchez-
Hanke, Multiple-energy x-ray holography: atomic images of hematite
(Fe2O3), Phys. Rev. Lett. 76, 3132 (1996).

13. D. K. Saldin, Holographic crystallography for surface studies: a review
of the basic principles, Surface Rev. Lett. Proc. WWEDIS (1996).

14. C. S. Fadley, Diffraction and holography with photoelectrons and Auger
electrons: some new directions, Surf. Sci. Repts. 19, 231 (1993).

15. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H. W. Fink and H. Schmid,
Theory of the point source electron microscope, Ultramicrosc. 45, 381
(1992).

16. L. Greengard, Fast algorithms for classical physics, Science 265, 909
Holographic Microscopy with a Complicated Reference

(1994).
17. A. Szöke, Holographic methods in x-ray crystallography, II. Detailed
theory and connection to other methods of crystallography, Acta Cryst.
A49, 853 (1993).

18. M. Bertero, Linear inverse and ill posed problems, Advances in Elec-
tronics and Electron Physics, 75, Academic Press, 1989.

19. D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison
Wesley, Reading, MA, 1984.

20. P. C. Sabatier, in Basic Methods of Tomography and Inverse Problems,
P. C. Sabatier, Ed., Adam Hilger, 1987.

21. F. Natterer, The Mathematics of Computerized Tomography John Wiley
& Sons, Chichester, 1986.

22. G. H. Golub, and C. F. Van Loan, Matrix Computations, 2nd Ed., Johns
Hopkins University Press, Baltimore, 1989, p. 71.

23. C. Lánczos, Linear Differential Operators, Van Nostrand, London 1961.
24. R. W. James, The Optical Principles of the Diffraction of X-Rays, Re-

printed by Ox Bow Press, Woodbridge, 1982.
25. G. Bricogne, in Int. Tables for Crystallography, B, U. Shmueli, Ed., Kluwer

Academic Publishers, Dordrecht, 1992.
26. J. Nunez, Ed., Special issue: image reconstruction and restoration in

astronomy, Intern. J. of Imaging Syst. and Technology, 6, 195 (1995).
27. J. J. Barton, Photoelectron holography, Phys. Rev. Lett., 61, 1356 (1988).
28. S. Y. Tong, Hua Li, and H. Huang, Energy extension in three-dimensional

imaging by electron emission holography, Phys. Rev. Lett. 67, 3102
(1991).

29. J. J. Barton, Removing multiple scattering and twin images from holo-
graphic images, Phys. Rev. Lett. 67, 3106 (1991).

30. A. Szöke, Electron-diffraction spectroscopy and the holographic inverse
problem, Phys. Rev. B47, 14044 (1993).

31. D. K. Saldin, X. Chen, N. C. Kothari, and M. H. Patel, Atomic position
recovery by iterative optimization of reconstructed intensities: overcom-
ing limitations of holographic crystallography, Phys. Rev. Lett. 70, 1112
(1993).

32. J. C. Dainty, and J. R. Fienup, Image Recovery: Theory and Applica-
tions, H. Stark, Ed., Academic Press, orlando, 1987, Chap. 7.

33. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
34. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet trans

forms, SIAM Review 31, 628 (1989).
35. G. J. Maalouf, J. C. Hoch, A. S. Stern, H. Szöke, and A. Szöke, Holo-

graphic methods in x-ray crystallography, III: First numerical results,
Acta Cryst. A49, 866 (1993).

36. P. Béran, and A. Szöke, Simulated annealing for phasing using spatial
constraints, Acta Cryst. A51, 20 (1995).

37. J. R. Somoza, H. Szöke, D. M. Goodman, P. Beran, D. Truckses, S.-H.
Kim, and A. Szöke, Holographic methods in x-ray crystallography, IV:
A fast algorithm and its application to macromolecular crystallography,
Acta Cryst. A51, 691 (1995).

38. A. Szöke, H. Szöke, and J. R. Somoza, Holographic methods in x-ray
crystallography, V: Multiple isomorphous replacement, multiple anoma-
lous dispersion and non-crystallographic symmetry, Acta Cryst. A53,
291 (1997).

39. L. A. Amos, R. Henderson, and P. N. T. Unwin, Three-dimensional struc-
ture determination by electron microscopy of two-dimensional crystals,
Prog. Biophys. Mol. Biol. 39, 183 (1982).

40. W. Kühlbrandt, D. N. Wang, and Y. Fujiyoshi, Atomic model of plant
light-harvesting complex by electron crystallography, Nature 367, 614
(1994).

41. C. J. Gilmore, K. Shankland, and G. Bricogne, Applications of the maxi-
mum entropy method to powder diffraction and electron crystallogra-
phy, Proc. Roy. Soc. London, A 442, 97 (1993)

42. D. K. Saldin and P. L. de Andres, Holographic LEED, Phys. Rev. Lett.
64, 1270 (1990).

43. J. Spence, W. Qian, and X. Zhang, Contrast and radiation damage in
pointprojection electron imaging of purple membrane at 100 V,
Ultramicros. 55, 19 (1994).

44. J. M. Rodenburg and R. H. T. Bates, The theory of super-resolution
electron microscopy via Wigner-distribution convolution, Phil. Trans. R.
Soc. Lond. A 339, 521 (1992).

45. P. D. Nellist, B. C. McCallum, and J. M. Rodenburg, Resolution beyond
the information limit in transmission electron microscopy, Nature 374,
630 (1995).

46. H. N. Chapman, Phase-retrieval x-ray microscopy by Wigner-distribution
deconvolution, Ultramicrosc. in press (1997).

47. J. Kirz, C. Jacobsen, and M. Howells, Soft x-ray microscopes and their
biological applications, Quart. Rev. Biophys. 28, 33 (1995).

48. G. Xu, Atomic resolution hologram, Appl. Phys. Lett. 68, 1901 (1996).
49. H. Jagodzinski and F. Frey, Disorder diffuse scattering of x-rays and

neutrons, in Int. Tables for Crystallography. Vol. B, U. Shmueli. Ed.,
Kluwer Academic Publishers, Dordrecht, 1992.
Vol. 41, No. 4, July/August  1997     341


