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Recent state-of-art applications of diffraction gratings and stratified materials with one or several modulated interfaces impose spe-
cific requirements on electromagnetic grating theory. A review of such applications is presented here with an emphasis on the aspects of the
theoretical methods required for their efficiency prediction and optimization. A brief review of the basic ideas of the various electromagnetic
theories used is given. The specific domain of validity for each theory is discussed together with advantages and shortcomings. The
aim is to serve as a guide in selecting the most appropriate theoretical method for handling specific grating problems.
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Introduction
Two centuries after the discovery of gratings by Ritten-
house,1 gratings and more complicated periodic structures
have become common not only in spectroscopy but also in
numerous domains of physics such as acoustics, solid state
physics, nonlinear optics, x-ray instrumentation, optical
communications, and information processing. Moreover,
gratings began to appear in common use in CD players, as
safety features on credit cards and bank notes, as well as
in variety of display and advertising applications.

The term grating is no longer restricted to periodically
modulated surfaces and is also used for modulated devices
with varying periods, curved grooves, or varying groove
shapes, such as Fresnel planar lenses and diffractive op-
tic elements. Such structures are used in integrated op-
tics to achieve beam focusing and beam shaping. Their
diffraction properties can still be related to the correspond-
ing gratings, as far as an adiabatic variation of the groove
geometry can be assumed, i.e., the groove change is car-
ried out over a large number of grating periods.

The following section reviews the various types of grat-
ings, quasi-gratings, and periodically modulated stratified
media in use in various domains of science. The next sec-
tion presents a brief description of the most commonly used
theoretical diffraction methods. The final section before
the conclusion provides a user guide to grating theories
devoted to helping scientists select the method most suit-
able for a given particular problem.

Review of the Grating Problems
The classical grating problem consists of a bare metal-

lic grating used in reflection for spectroscopic purposes.
Figure 1 represents a triangular groove grating usually
called an echelette grating and defines some notations to
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be used further. Such gratings are usually produced by
diamond ruling. Holographic recording, beam-etching and
lithographic methods produce, in general, symmetrical pro-
files with sinusoidal, lamellar (rectangular), or trapezoi-
dal grooves. Electron microscopy reveals that for very high
groove frequencies (e.g., 6000 groove/mm), as well as very
low ones (e.g., echelles, widely used in astronomy), the real
profiles have much more complicated form, different from
the classical four types mentioned below.

In far-infrared and millimeter range of wavelengths, the
metal can be assumed to have infinite conductivity. In the
visible region and for shorter wavelengths, the finite con-
ductivity complicates the grating response and requires
different theoretical methods.

Transmission gratings are frequently used as beam split-
ters and as grisms (Fig. 2) to transform a telescope or a
camera into a spectroscope. Under special conditions the
diffraction compensates the refraction and a dispersive
diffraction order can propagate in the initial direction, Fig.
2. Transmission gratings require a transparent (lossless)
grating material, in contrast to reflection gratings.

Grating couplers combine a dielectric grating and an
optical waveguide (Fig. 3). They are used in integrated
optics to couple an incident beam into the slab or vice versa.

Dielectric coated gratings are mainly used in vacuum
UV with a dielectric layer (typically MgF2) to prevent

Figure 1. Schematic representation of a bare metallic grating. k
is the incident wave vector.
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aluminum from oxidation (Fig. 4). A similar technique
is used in the visible region to protect silver gratings
from tarnishing.

Multilayer dielectric gratings consist of a dielectric grat-
ing replicated on the top or at the bottom of a stack of
plane dielectric layers with alternating high and low re-
fractive indices and a quarter of wavelength thickness (Fig.
5). They are used in high-power laser optics to achieve
peak absolute efficiency, typically more than 96%, at a
single wavelength.

Another kind of multilayer grating, consisting of a stack
of modulated interfaces, is used in the XUV and x-ray do-
mains. Their theoretical treatment requires us to distin-
guish between the two main cases: profiles without and
with an interpenetration. No interpenetration occurs when
the bottom of the upper profile lies higher than the top of
the lower profile. A grating coupler with double corruga-

Figure 2. Schematic representation of a grism.

Figure 3. A grating coupler.
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tion (Fig. 6) is an example of a thin stack of identical pro-
files without interpenetration. It can be optimized to couple
as high as 80% of the incident beam into the waveguide.
In a more complicated case (Fig. 7), the high diffraction
efficiency (45%) in the XUV region (wavelength λ ~ 15 nm)
is obtained by combining profiles with interpenetration
(e.g., 2 and 3) and without (e.g., 1 and 2). The case of iden-
tical profiles is called a multilayer coated grating, and the
layers are usually thinner than the profile depth, i.e., in-
terpenetration occurs (Fig. 8). Such gratings are used in
the two extremities of the spectrum. Another alternative
high efficient grating for x-ray is the Bragg–Fresnel mul-
tilayer grating, as shown in Fig. 9.

Echelles are echelette gratings used in high orders, typi-
cally 10 to 500. They can be bare (Fig. 1) or multilayer
coated (Fig. 8) depending on the spectral domain. The low
wavelength-to-period λ/d ratio requires special theoreti-
cal methods.

The multilevel gratings used in diffractive optics to pro-
duce multiple beams from a single incident ray are illus-
trated in Fig. 10. Usually they also work with extremely
low λ/d ratios.

In comparison, Dammann gratings, as illustrated in Fig.
11, consist of several bumps of different width within a
single period. Not only do they also work in a  low λ/d
region, but in addition their profile is more complicated to
introduce in grating theories. Dammann gratings have also
become a common element in diffractive optics.

Gratings with varying period or groove shape are used in
integrated optics and in the x-ray domain for focusing and
beam shaping. If only the groove period is varied, we ob-
tain a linear zone plate. When etched inside a planar mul-
tilayer structure, it is called a Bragg–Fresnel linear zone
plate (Fig. 12), used in x-ray microscopy and spectroscopy.

Some gratings have discontinuous profiles, e.g., grid or
rod gratings made of dielectric or metallic rods. The latter
are used as frequency filters in infrared, selective absorb-
ers of solar energy, or radar furtivity. In photolithography,
chromium masks are made of rectangular rods (strips,
sometimes called Ronchi gratings) and are used to cast
their shadow onto a photoresist layer, which represents a
combination of a rod grating and several plane layers.

Phase or volume gratings do not contain corrugated in-
terfaces, but rather a plane layer with a periodic modula-
tion of the refractive index. The result is that lamellar
and rectangular rod gratings belong to both relief and
phase grating types.

The next complications appears when going to two-di-
mensional geometry with a modulation of the index or cor-
rugation of the surface made in two directions. The result
is called a crossed grating, as illustrated in Fig. 13. Such
devices can be useful in solar absorption, beam splitting,
and memory storage. Their other name, bi-grating is often
confused with a one-dimensional grating having two differ-
ent periods of modulation.

Figure 4. Dielectric coated grating for VUV region.
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Figure 5. Two examples of multi-
layer dielectric diffraction gratings.
Figure 6. Grating coupler with double surface corrugation.

Figure 7. Stack of gratings for the XUV region.
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Figure 8. Multilayer coated grating.
Another problem that can be treated numerically using
grating theories comes from the necessity to interpret the
images of the photon scanning tunelling microscope. When
a grating surface is studied, it is necessary to analyze the
near-field picture as diffracted by a periodic surface in
presence of a single object, namely the tip of the scanning
device (optical fiber). This structure can be modelled by
substituting the single tip with a collection of periodic tips
with a distance much larger than the grating period to
avoid parasitic coupling. The geometry is then reduced to
two gratings with different periods, one being a multiple
of the other.

In addition to geometrical complexity, the gratings can
be made of anistropic, biaxial, or chiral material. Also they
can be used in nonlinear optics for second harmonic gen-
eration, Kerr effect, and optical bistability, etc. This points
out how complex grating problems may become. The next
section will explain how to tackle them.

Basic Principles of Rigorous Electromagnetic
Theories

Until recently grating properties were taught in uni-
versities in the frame of scalar optics. Grating were as-
sumed to be a periodic collection of slits or small mirrors,
and their diffraction phenomenon was analyzed with the
Kirchhoff diffraction theory2 in the Fraunhofer approxi-
mation. The Fraunhofer equation, which determines the
direction of diffracted orders, was established and the dis-
persive properties of gratings were taught. But little was
said about the distribution of energy among the various
propagating orders. The normalized intensity was found
to be a product of the normalized interference function
and the normalized intensity function I0 of a single slit.
The intensity function falls off its maximum slowly in com-
parison with the interference function. Thus the intensity
diffracted by the grating was found to consist of sharp
peaks (due to the interference function), modulated by I0,
Vol. 41, No. 4, July/August  1997     317



Figure 9. Bragg–Fresnel grating; νl and νh are the refractive indices of the low and high index layers, which have thicknesses e2 and
e3, respectively, and D is the period of the multilayer (D = e2 + e3).
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Figure 10. Multilevel grating.
Figure 11. Dammanan grating.
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Figure 12. Bragg–Fresnel linear zone plate. The abscissae xn are equal to     xn = na,  where     a = Fλ / cos θ0  (F is the focal length
and λ the wavelength).
Figure 13. Crossed grating.

which depends on the groove shape (slit, mirror, etc.).
While such an approach can predict that 100% of the inci-
dent energy can be concentrated inside one order,3 it is
not capable of fully taking into account the polarization
effects, neither can it account for the existence of Wood
anomalies. Although improved by several authors4,5, such
an approach fails in the resonance domain where λ/d ra-
tio is close to unity, typically lying between 0.2 and 5. The
approach can be used only in the short wavelength regime,
and even there can be erroneous under high incident
angles. However, the scalar approach is capable of bring-
ing some physical insight and making good predictions
for near normal incidence. Because the approach is not
reliable in general, we concentrate here on electromag-
netic theories, starting with the simplest.

 The Rayleigh Theory6. Let us consider the grating
illustrated in Fig. 1 with an incident plane wave  having
an electric field vector parallel to Oz axis (TE, P, or s po-
larization). The z-component of the electric field can be
written as:

    E
i (x, y) = A exp ik(x sin θ − y cos θ )[ ],

assuming exp(–iωt) time dependence. Such function obvi-
ously satisfies a pseudo-periodicity property:
Grating Electromagnetic Theory User Guide
    E
i (x + d, y) = Ei (x, y) exp(iγd),

with γ = k sinθ. The Floquet theorem requires that the
total field E(x,y) is quasi-periodical, thus E(x,y) exp (–iγd)
can be expanded into Fourier series, i.e.,

    
E(x, y) = En (y) exp

n= −∞

∞

∑ (iγ nx) (1)

with

    

γ n = γ + nK

K = 2π
d

.

In each homogeneous region defined by     y ∉ 0, a[ ],  Max-
well equations lead to a Helmholtz equation:

    ∆E(x, y) + k0
2ν2E(x, y) = 0 (2)

where ν is the refractive index of the medium, k0 = ω/c,
and c is the light velocity. Substitution of Eq. 1 into Eq. 2
leads to an analytical expression for En(y):

    
E(x, y) = A exp i(γ 0x − β0 y)[ ] + Bn exp

n= −∞

∞

∑ i(γ nx + βn y)[ ] (3)

with

    βn
2 = k0

2ν2 − γ n
2 .

In metals, the corresponding expression includes the
metal complex refractive index, unless the metal is perfectly
conducting. Expression (3) is called Rayleigh expansion. The
Rayleigh method6 assumes that Eq. 3 is valid not only out-
side the modulated region but also inside the grooves. This
Vol. 41, No. 4, July/August  1997     319



enables one to explicitely write the boundary conditions,
but this hypothesis has been shown to be not valid in gen-
eral. A detailed discussion can be found in Ref. 7. In par-
ticular, the Rayleigh method is valid for sinusoidal perfectly
conducting gratings when the groove depth-to-period ratio
does not exceed 0.142. Outside this domain, however, some-
times the method gives acceptable results for the far field,
while the errors in the near field are greater.

Although never valid theoretically for profiles with
edges, the method can be used succesfully at low blaze
angles for triangular grooves and for low groove depths
for lamellar gratings. In addition, the variational formu-
lation of the Rayleigh hypothesis known as the Yasuura
method8 is rigorous whatever the groove shape may be.

Differential Theory.9a,b Instead of using two analytical
expressions of E(x,y) and matching them on the grating
profile, the differential theory distinguishes between the
homogeneous regions (y ∉ [0,a]) where Rayleigh expansion
such as Eq. 3, are valid and a modulated region (0 < y < a)
where a numerical integration is carried out. In the modu-
lated region, the Helmholtz equation is changed into:

    ∆E(x, y) + k0
2ε (x, y)E(x, y) = 0. (4)

Introducing Eq. 1 into Eq. 4 leads to a system of ordi-
nary differential equations with nonconstant coefficients
of the form:

E"(y) = V(y)E(y), (5)

where E(y) is a column vector with components En(y) and
V(y) is a square matrix whose elements depend on the
Fourier components εm(y) of the permittivity:

     Vmn (y) = εm−n (y) − γ n
2δmn .

A numerical integration of Eq. 5 is performed using a
standard algorithm. Matching the numerical solution with
the Rayleigh expansions at the boundaries of the modu-
lated region (y = 0 and y = a) enables us to find the Rayleigh
coefficients (Bn in Eq. 3) and thus the field everywhere.

Numerical instabilities from growing exponential func-
tions during the integration may appear when dealing with
deep gratings or stacks of interpenetrating gratings. Re-
cent developments10 gathered under the names of R-ma-
trix and S-matrix propagation algorithms eliminate this
difficulty. The S-matrix algorithm is easier for use.10,11

Similar difficulties can arise when a low-modulation grat-
ing is combined with a thick stack of plane layers. The
problems are solved using similar methods: the S-matrix
algorithm or the impedance method.12 The only numerical
problem that remains is linked with the truncation of the
set in Eq. 5 required for numerical implementation of the
theory. It assumes that the field is correctly described by
a limited (2N + 1) number of Fourier components in Eq. 3.
Obviously, the number N will be different if the field and
its normal derivative are continous across the grating sur-
face, as it is in the TE case of polarization, or strongly
discontinuous, as happens for the normal derivative for
metallic gratings in TM polarization. Numerical experi-
ence shows that the truncation parameter N can vary be-
tween 4 and 100, depending on the polarization, groove
depth, and grating material. Because computation time is
roughly proportional to N3, it can vary by a factor of 15,000
depending on the problem. Small N leads to very short
computation times, less than a second on most of the small
workstations.
320     Journal of Imaging Science and Technology
Note that for perfectly conducting metals, the modulus
of the permittivity increases infinitely and Eq. 2 cannot
be used. Conformal mapping13 is used then to transform
the grating surface into a plane, making the corrugated
surface equivalent to a phase grating on a plane surface,
which latter problem can be easily resolved by the differ-
ential theory.

Method of Moharam and Gaylord.14a,b For lamellar
(rectangular, laminar) profiles, the function ε(x,y) does not
depend on the vertical coordinate y and a solution of Eq.
5, or its equivalent for TM polarization, can be found with-
out numerical integration using the eigenvalue/eigenvec-
tor technique. The field in the modulated region is
represented as a superposition of modes in the form

    
cm exp i ξm y( ),

where ξm are the eigenvalues of matrix V. The unknown
coefficients cm are determined from the boundary condi-
tions at the limits of the modulated region (y = 0 and y =
a). This method was originally called the modal method
and nowadays is known as rigorous coupled wave theory.
The theory uses the same differential equations and basic
functions as the differential theory. The difference is in
the numerical method, specific to the lamellar profile.
Because each profile can be more or less precisely repre-
sented in a staircase approximation, the method of
Moharam and Gaylord has been generalized to arbitrary
profiles. It then appears to be quite similar to the classi-
cal differential theory. While in differential theory the
discretization of ε(x,y) is made during the numerical inte-
gration, the Moharam and Gaylord method makes the
discretization by substituting the real profile with a
staircase function. Thus problems due to numerical in-
stabilities are quite similar in both methods, as are the
approaches for their resolution.

Classical Modal Method.15a,b For a steplike (lamellar,
rectangular) profile, use of the Fourier series expansion 1
is not even necessary with respect to the x axis. A solution
of the Maxwell’s equations can be found in closed form in
each of the grooves and lamellae in Cartesian coordinates:

    Fm (x, y) = um (x)eiµm y , (6)

so that the function u(x) has a different form inside the
grooves and inside the lamellae, determined by the opti-
cal index of the media. The boundary conditions are then
applied on the vertical groove walls. Owing to periodicity,
a discrete set of values exist for µ, called modal constants.
The total field is then represented as a sum over all the
modes of the corrugated system, and the coefficients in
the modal expansion are determined from the boundary
conditions on the interfaces between the corrugated and
the homogeneous media. Unfortunately, for highly conduct-
ing materials (again!), the modal constants are spread over
the complex plane and cannot be easily located. Several
different techniques have been proposed.16a,b

The main disadvantage of the modal method is that it is
too narrowly specialized and can be applied to profiles other
than the lamellar one only if represented as a few rectan-
gular steps. Recently an interesting generalization to arbi-
trary profiles has been proposed.17 The main advantage is
that each of the modes represents a solution of Maxwell’s
equation and the boundary conditions inside the different
media of the corrugated region, so evaluation of the elec-
tromagnetic field characteristics inside the grooves becomes
Nevière and Popov



possible with great precision. The main difference in com-
parison to the classical differential method and the method
of Moharam and Gaylord is that the classical model method
does not require a Fourier representation of permittivity and
the field components at both sides of the corrugated inter-
face and so can easily deal with highly reflecting surfaces.

Integral Theory.18a,b The integral method was the first
rigorous grating theory. The method was developed by sev-
eral authors in circa 1966 for perfectly conducting gratings
and generalized in 1972 for finite conductivity.18a,b The ba-
sic principle of the integral method can be understood more
easily for perfectly conducting substrates. When an inci-
dent plane wave falls on the grating surface, the wave in-
duces a surface current jS(M ') at each point M ' of the
surface. When propagating along the grating, the surface
current radiates a diffracted field E(P) at a given point P
above the surface. Provided jS is known, E(P) can be found
through the Kirchhoff-Huygens formula using the Green
function technique, so that:

    

E(P) =
one grating

period

∫ G(P, M ' )ϕ (M ' )ds' ,
(7)

where ϕ(M ') is proportional to jS(M '), G(P, M ') is the Green
function, which is known, and the integration is carried
over the curvilinear coordinate s' along the grating profile.

However, the problem is more complex than just a single
integration, because the surface current is not produced
only by the incident wave, but results also from the dif-
fracted field radiated from the other points of the grating.
Thus jS(M ') depends both on E 

i and on the values of the
current jS(M ") at each other point M " of the profile, differ-
ent from M '. This is why Eq. 7 is transformed into an inte-
gral equation for ϕ(M '). The situation becomes even more
complicated for finitely conducting gratings.18a,b The key
point of the theory is the numerical resolution of an inte-
gral equation with a singular kernel. Fortunately, the
singularities can be eliminated analytically, and then the
integral equation is transformed into a linear set of alge-
braic equations by discretization along the grating profile.

The greatest advantage of the integral formalism, when
compared to the differential method, is that it “follows”
the profile, without crossing it. As a result, it is not neces-
sary to develop into Fourier series some quantities that
exhibit a jump over the surface. Sometimes, however, this
can be a disadvantage, as in the case of nonlinear dielec-
trics, characterized by volume distributed sources, which
are difficult to include in the integral equation. In addi-
tion, working in real space, instead of the transformed one,
requires numerical derivatives, if all the field components
are searched near the surface.

 As a result of its generality, the integral theory is able
to deal with practically any kind of grating, including some
limiting cases where it is the only available method. Ex-
amples here are echelle gratings (used in 50, 100, or even
higher orders and at high angles of incidence) and highly
conducting very deep gratings with arbitrary profiles, etc.
This advantage is obtained at the cost of more complex
mathematics, larger codes, and longer computation times,
as well as larger memory storage requirements. The com-
plexity of the theory also makes more difficult its adapta-
tion to phase gratings, anisotropic media, profiles with
interpenetration, etc.

Method of Coordinate Transformation.19a,b An effort
to combine the relative simplicity of the differential theory
with the advantage of the integral theory of not crossing
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the profile results in another approach,19a based on a coor-
dinate transformation

Y = y – g(x) (8)

that transforms the grating surface [y = g(x)] into a plane
Y = constant. Maxwell equations can be integrated at each
side of this plane separately and the solutions then
matched along the surface. Although the transformation
is curvilinear and nonorthogonal, fortunately it is possible
to reduce Maxwell equations to a set of ordinary differen-
tial equations with constant coefficients, which can be
written in a matrix form:

      

d
d

F
TF( )

Y
Y= (9)

Because matrix T is independent of Y the solution of Eq. 9
can be expressed in terms of eigenvalues ρm and eigenvec-
tors Cmn of T:

    
Fm = CmneiρnY bn .

n
∑ (10)

After that, the expansions Eq. 10 above and below the
corrugation are matched on the flat boundary Y = const,
taking into account the appropriate outgoing wave condi-
tions. The diffraction order amplitudes can be obtained
by backward transformation of the basis Eq. 10 after the
amplitudes of the field expansion are determined. Because
this method does not require crossing the profile during a
search for the solution, but only when matching the dif-
ferent expansions, it is able to deal with deep gratings
independent of polarization and refractive index, and in-
cluding multilayer gratings. The method has relatively
simple computer codes and short computation times com-
parable to those of the differential method. The ease of
incorporating several overcoating layers that follow the
initial profile may be stressed. The main limitation con-
cerns the types of profile with which the method can deal.
This limitation comes from the nature of the coordinate
transformation 8, that does not allow noncontinuous func-
tions g(x). Strictly speaking, the method requires the de-
rivative of g(x) be a continuous function, so edges are
excluded, but this is true of all the electromagnetic meth-
ods and, fortunately, nature does not allow edges. In prac-
tice, the slope of the steepest part of the profile is much
more important: when g'(x) becomes large, not only does
its Fourier representation slowly converge, but the trans-
formation of the coordinate system degenerates. The de-
rivative with respect to the first and second coordinates
tend to each other

    

∂
∂x

→ ∂
∂Y






.

However, numerically this limitation is not so severe as
appears: sinusoidal gratings with h/d > 10 have a very
steep slope, but only along a limited part of the profile
and can be successfully treated, while lamellar gratings
are excluded by definition and triangular gratings with
limited asymmetry of the profile can be treated without
difficulties.

Other theoretical methods for grating diffraction do ex-
ist, like the conformal mapping technique for finite con-
ductivity, the finite-element method, the fictitious sources
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TABLE I. Ability (shown by Asterisks) of Grating Theories to Deal with Simple Gratings Problems

Methods Perfectly Dielectric Real metals Deep Deep Binary Dielectric Multilayer Low
conducting gratings dielectric metallic gratings coated dielectric modulated

gratings gratings gratings gratings gratings gratings

Rayleigh * * * * * ****

Differential ***** *** ***** ** *** *** ***** *****

Moharam & Gaylord **** ** **** *** **** **** ****

Modal ***(*) **** ***(*) **** ***(*) ***** **** ****

Integral ***** **** ***** ***** ***** ** **** **** ****

Coordinate transform. **** **** **** ***** ***** ***** ***(*) *****

Conformal mapping **** ***
TABLE II. Ability (shown by Asterisks) of Grating Theories to Deal with Exotic Gratings Problems

                  Nonlinear optics

Methods Bare Bare Multilayer Phase Multilevel Dammann Multilayer Anisotropic, Bragg– Crossed SHG(1) in SHG in Kerr X-ray
metallic dielectric x-ray gratings, gratings gratings coated chiral, etc. Fresnel gratings dielectrics metals effect domain
echelle echelle echelle holograms gratings media gratings

Rayleigh **** * * ****(*)

Differential ** ***** ***** ***** *** **** ***** ***** ***** *** **** *** ***** *****

Moharam ***** ***** ***** **** ** *** ** **** ****
& Gaylord

Modal **** ***** * **** ** *** ** ***
Integral ***** ***** ***** **** ** * *** ***** ***** **** *

Coordinate ***** ** *****(2) ***** **** **** ****
transform.

(1) SHG = second harmonic generation
(2) the coordinate transformation suitable for these problems is consideredin Ref. 20.
method, etc., but we limit ourselves here to the methods
that have proved themselves in tackling many grating
problems and that have the corresponding computer codes
in regular use.

Grating Theory User Guide
The diversity of grating problems and existing theories

today is so great that it is not obvious for an engineer or a
scientist which method is best suited to resolve the prob-
lem he encounters in his work. To try to help him in this
aim, we first distinguish between two kinds of grating
problems: The first kind are simple grating problems and
concern relief gratings made with homogeneous isotropic
materials that are used in linear optics in the resonance
domain. The modulated region will be limited to one or a
few (less than 3) nonseparable interfaces, plus a stack of
plane interfaces and other separable modulated interfaces
if any. The second kind are exotic situations and include
bare echelles, multilevel  and Dammann gratings (λ/d <<
1), phase gratings, multilayer coated gratings and echelles,
gratings ruled on anisotropic materials, gratings used in
nonlinear optics, crossed gratings, Bragg–Fresnel gratings,
and any kind of  x-ray gratings.

Table I lists the relative merit of the theories used to
confront the various types of simple grating problems. The
criteria of simplicity, short computation time, and univer-
sality (groove shape, TE and TM polarization, etc.) are
added to the performance of computation in view of at-
tributing the number of asterisks for each method. The
general impression is that if we except the low modulated
case, a grating with high (but not infinite) conductivity
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will be analyzed through the integral theory or through
the coordinate transformation method. For dielectric grat-
ings, the differential theory is preferred. The same crite-
ria are used to construct Table II, which gives an idea of
the versatility and universality of the theories when con-
fronted with new problems.

To illustrate how these tables can be used, let us go back
to the grating problems described in the above section,
Review of Grating Problems, and give our preferred
theory for each problem. Keep in mind that in most cases
several theories could work. The metallic grating in Fig. 1
would be studied with the integral method; the transmis-
sion gratings in Figs. 2 and 3 with the differential theory
as well as the dielectric coated grating for VUV region,
except if the groove depth is high, in which case we would
go back to the integral method. The multilayer dielectric
grating in Fig. 5 would be studied with the differential
method, the lamellar grating coupler in Fig. 6 with the
Moharam and Gaylord method. The stack of gratings in
Figs. 7 and 8 as well as the Bragg–Fresnel gratings and
zone plate in Figs. 9 and 12 would be studied with the
differential method; the multilevel grating in Fig. 10, with
the integral method; the Dammann grating in Fig. 11 with
the differential theory, the crossed grating in Fig. 12 with
coordinate transformation.20 In addition, phase gratings
and holograms would be studied with the differential tech-
nique and grid gratings with the differential or integral
theory depending on whether the rods are dielectric or
metallic. These examples give an idea of the choice that
should be made for various problems encountered in lin-
ear optics.
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Conclusion
The limitations, advantages, and potential of the most

important grating theories have been discussed. No theory
is actually universal in the sense that no computer code
that should be able to analyze any grating problem still
exist. But for most classical gratings problems, several
methods are available. The aim of this paper is to guide
scientists and engineers in their choice.
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