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Introduction
An ideal display system produces sampled and interpo-
lated images that are visually indistinguishable from con-
tinuous images. However, most display systems are not
ideal but produce impaired versions of continuous images.
It is therefore important to develop error measures that
define the quality of the sampled and interpolated image
in comparison with the continuous image. Such measures
facilitate the design of display systems that meet a cer-
tain quality criterion, and in general are important for
the optimization of display parameters.

In this paper, we derive a new perceptual error mea-
sure for sampled and interpolated images.1 We propose
that the difference between the continuous version and
the sampled and interpolated version of an image be de-
fined by the total perceptual impairment caused by the
sampling and interpolation process. The nature as well as
the magnitude of the distance measure is, in this case,
determined by visual perception. Reference 2 shows that
perceptual quality is linearly related to perceptual impair-
ment. Therefore, the perceptual distance measure is also
proportional to the loss of perceptual quality due to the
sampling and interpolation process.

The perceptual error measure is based on global knowl-
edge about the structure of the perceptual process that

Error measures quantify the difference between a reproduced
image and the corresponding unprocessed "original" image. Un-
fortunately, most of the existing error measures such as the
mean-square-error (MSE) correlate poorly with the perceived
quality of the reproduced images. The reason is that these mea-
sures either do not or insufficiently take the properties of the
human visual system into account. The distance in a perceptual
space spanned by artifacts relevant to the image reproduction
techniques is used as a measure of the impairment of the repro-
duced image relative to the original image. For sampling and
interpolation, we show how a two-dimensional perceptual space
with the sensorial strengths of periodic structure and blur along
the axes can be constructed from the physical parameters. The
quantitative perceptual error measure can be used to determine
a perceptually optimal combination of sampling and interpola-
tion. The optimization problem is shown to be equivalent to mini-
mizing a cost function known from standard regularization theory.
The optimal solution is a compromise between conflicting de-
mands in the perceptual space.
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leads to quality judgments about images. This new mea-
sure models the perceptual processes relevant to quality
judgments rather than modeling the functions of (groups
of) cells in the visual system, as in Ref. 3. Although the
latter approach may work well for low-level vision, it is
difficult to model high-level vision (grouping, cognition)
in such a way. The global knowledge of the perceptual
structure in our metric is mainly based on the accepted
notion that the contribution of different impairments to
image quality is usually independent and can therefore
be described in a multidimensional attribute space.2,4 Fur-
thermore, we use the conception that the perceptual and
cognitive processing of artifacts can be described by a se-
quence of mappings: from physical parameters to low-level
attributes, from low-level attributes to cognitive attributes
(impairments), and from impairments to quality. In a com-
panion paper, these steps will be worked out in detail.

In this paper, we derive a perceptual error measure for
the impairment of sampled and interpolated images. In
related studies, this error measure is validated for
single-edged black-and-white images,1,5 complex black-
and-white images, and complex color images.1,6

Perceptual Error Measure
In this section, we formulate a quantitative expression

for the total perceptual impairment of sampled and inter-
polated images relative to the originals, i.e., images pro-
duced by a hypothetical ideal display. Figure 1 shows the
effects of sampling and interpolation for a portrait of a
woman, “Wanda.” The original image is shown in Fig. 1(a).
Figures 1(b), 1(c), and 1(d) are impaired versions of the
original in which sampling and interpolation artifacts are
visible. Typical artifacts are periodic structure, blur, stair-
case, and moire. The term “staircase” describes milled
edges and lines. By moiré we mean a perceived low-fre-
quency periodic brightness variation caused by the inter-
action of a periodic sampling structure of relatively high
frequency with a periodic brightness variation in the im-
age of approximately the same frequency. Each of the ar-
tifacts has its own specific effect on the total perceptual
impairment. Periodic structure and blur are the most domi-
nant artifacts in the “Wanda” image. Staircase is only vis-
ible in a few local areas of the image. Although artifacts
such as moiré are not visible in Fig. 1, they can be per-
ceived in local areas of other images. Figures 1(b), 1(c),
and 1(d) also show that the perceptual strength of peri-
odic structure can be reduced by stronger interpolation at
the expense of the sharpness of the image.

Figure 2 shows the different computational steps of the
perceptual error measure, which determines the percep-
tual quality Q from the physical parameters Φi, specify-
ing both the image and the sampling and interpolation
process. The perceptual quality is determined from the
total perceptual impairment I. The total perceptual im-
pairment is a distance in a perceptual space. We assume
    249



Figure 1. Effects of sampling and interpolation: (a) original complex black-and-white image “Wanda,” (b) columnar sampling and
optical Gaussian interpolation with small spread parameter, (c) ditto with medium spread parameter, and (d) ditto with large spread
parameter.
that the artifacts relevant to the sampling and interpola-
tion process are the orthogonal dimensions of the percep-
tual space. The most dominant artifacts, periodic structure
and blur, are denoted by the subscripts p and b, respec-
tively. It is this perceptual space that distinguishes the
perceptual error measure front the conventional error
measures. The impairments Ii, i.e., the weighted percep-
tual strengths Si, of the individual sampling and interpo-
lation artifacts are along the axes of the perceptual space.
The sensorial strengths are determined from the physical
parameters.

Perceptual Impairment and Perceptual Image
Quality. Measurements plotted in Fig. 3 show that the
relationship between perceptual impairment and percep-
tual image quality is linear to a good approximation. This
relationship holds for different images, different artifacts,
a large quality range, and images with one as well as
multiple artifacts.7 We assume it to hold for all combina-
tions of sampling and interpolation artifacts. The data in
Fig. 3 and most of the other figures were obtained from
category scaling experiments. In these experiments sub-
jects rated the perceptual attribute of interest by giving a
number on a 10-point numerical scale. These data were
plotted directly in the graphs. In most cases the data were
averaged over subjects and/or images. A detailed descrip-
tion of a scaling experiment can be found in the Appendix.
Unless otherwise stated, the length of an error bar in this
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and other figures is twice the standard error of the mean
averaged across the data points. The average standard
error was plotted to make the plots as simple as possible.
The loss of information due to using the average standard
error is only minor, since the standard error does not vary
systematically across the data points, and deviations from
the averaged value are small.

The perceptual impairment I can thus be converted from
or into perceptual quality Q by

Figure 2. Schematic diagram of the computational steps of the
perceptual error measure that relates perceptual image quality
(Q) or the total perceptual impairment (I) to the physical param-
eters (Φi), using an intermediate perceptual space with sensorial
strengths (Si) or impairments (Ii) or the individual sampling and
interpolation artifacts along the orthogonal axes.
Nijenhuis and Blommaert



I = 1 – Q. (1)

In this paper, inverse linearly related perceptual at-
tributes such as perceptual impairment and perceptual
quality are called complementary attributes.

Note that there is a difference between the perceptual
attributes in the model and their measured counterparts.
Throughout this paper, we assume that when category
scaling experiments are used, the relations between the
measured perceptual attributes are identical to the rela-
tions between the perceptual attributes except for a lin-
ear transformation. For computational convenience, the
perceptual attributes used in the perceptual error mea-
sure are in the interval [0,1]. The measured perceptual
attributes may be in a different interval. Usually, the dif-
ference between a perceptual attribute and the correspond-
ing measured perceptual attribute is clear from the
context. If this is not the case, we use subscripts to distin-
guish between the two.

Combination Rule for Perceptual Impairments.
Besides judging total perceptual impairment, people can
also distinguish between different artifacts that impair
the displayed image and judge their perceptual impair-
ments separately. Minkowski metrics2,8 can be used to com-
bine the M underlying perceptual impairments Ii into the
total impairment I:

Iα = Ii
α = Ip

α + Ib
α + Ii

α ,
i=3

M

∑
i=1

M

∑ (2)

where the Minkowski exponent α is a parameter to be
determined experimentally. Because the artifacts are the
dimensions of the perceptual space, the impairment I can
alternatively be interpreted as some distance in this space.
For α = 2, the distance is Euclidian.

Figure 3. Experimentally determined category scaling data for
perceptual impairment versus experimentally determined cat-
egory scaling data for perceptual image quality for complex black-
and-white images impaired by additive white Gaussian noise.
The data have been averaged across subjects. Unless otherwise
states, the length of an error bar in this and other figures is twice
the standard error of the mean averaged over the data points.
(¨) Image “Wanda”; (¦) image “Fruit”; and (∆) image “Terrasgeel.”
Similar to the “Wanda” image, the images “Fruit” and “Terrasgeel”
are complex images depicting a market stall displaying fruit and
a terrace with a yellow parasol, respectively.
Perceptual Error Measure for Sampled and Interpolated Images
Perceptual Strength and Impairment of an Arti-
fact. The perceptual impairment caused by a specific ar-
tifact increases as the artifact gets stronger. Measurements
described next show that for the artifact’s periodic struc-
ture (subscript p) and blur (subscript b), the impairments
can be related linearly to the perceptual strengths S of
the artifacts:

Ip = apSp + bp,  (3)

Ib = abSb + bb. (4)

Obviously, the constants bp and bb are zero since there
is no impairment if the sensorial strength of an artifact is
zero. We assume that this linear relation holds for other
artifacts as well:

Ii = aiSi. (5)

The constants ai carry the relative weights of the arti-
facts in the total perceptual impairment.

Since perceptual quality on the vertical axis of Fig. 4
can be converted linearly into impairment (Eq. 1), the data
from the periodic structure experiment (for details see
Appendix), plotted in Fig. 4, indicate a linear relation be-
tween impairment and perceptual strength of periodic
structure. Similarly, the experimental data from
Westerink9 in Fig. 5 showing a linear relation between
quality and sharpness, can be used to illustrate the linear
relation between perceptual impairment and the percep-
tual strength of blur. To this end we have to show that the
relation between impairment and quality and that between
sharpness and perceived blur are both linear. According
to Fig. 3, quality can be converted linearly into impair-
ment. Sharpness on the horizontal axis is the complemen-
tary perceptual attribute of perceived blur. Figure 6
indicates that these complementary attributes are linearly
related as would be expected from similar data for light-
ness and darkness and loudness and softness.10,11

 Physical Parameters and Perceptual Strengths. The
strategy introduced by Fechner12 and recently advocated by

Figure 4. Experimentally determined category scaling data for
perceptual image quality versus experimentally determined cat-
egory scaling data forperceptual strength of periodic structure
as measured in the periodic structure experiment described in
the Appendix. The data have been averaged across subjects.
Vol. 41, No. 3, May/June 1997     251



Watt13 and by Wilson14 has been used to derive quantita-
tive expressions for the sensorial strengths Sb and Sp of
the artifact’s blur and periodic structure as a function of
the physical parameters. The interpolation function is as-
sumed to have a Gaussian impulse response h(x) with
spread parameter σ:

h(x) = 1

2πσ
exp

−x2

2σ 2






.  (6)

The reason for choosing the Gaussian interpolation func-
tion is twofold. First, it is frequently used. Second, as can
be shown by using the central limit theorem, a combina-
tion of various resolution degrading filters produces an
overall response that is approximately Gaussian.15

We assume that the perceptual strength of blur is a dif-
ferentiable function of the physical spread parameter σ:

Sb = Sb(σ). (7)

Variations in the perceptual variable Sb are then related
to variations in the physical variable σ by

∆Sb =
dSb

dσ
∆σ . (8)

According to Fechner, a key property of perceptual at-
tributes is that just noticeable differences (JND) of the
perceptual variable are independent of the strength of
the attribute: ∆Sb = k. Consequently, the sensorial
strength function for blur can be constructed by measur-
ing JND ∆σ as a function of σ and deriving Sb from the
equation

dSb

dσ
= k

∆σ (σ )
. (9)

Experimental results from Watt and Morgan16 are
adapted in Fig. 7. These experimental data show that, for
larger σ values (2.5 ≤ σ ≤ 10 arc min), ∆σ is proportional to

Figure 5. Experimentally determined category scaling data for
perceptual image quality versus experimentally determined cat-
egory scaling data for perceptual sharpness. Each data point is
the average of 80 values obtained from 20 subjects each judging
four complex images. Adapted from Westerink.9
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σ1.5. Therefore, the sensorial strength function for blur can
be described by

Sb = a
1

σ
+ b.  ( 10)

Since this function is not suitable for describing the
minimum in the Watt and Morgan16 data plotted in Fig. 7
for small values of a (0 ≤ σ ≤ 2.5 arc min), we use a slightly
modified version of Eq. 10 in which σ is replaced by

σ 2 + σ0
2( )

1

2 :

Figure 6. Experimentally determined category ratings for both
sharpness and perceived blur for a black-and-white portrait of a
woman, “Wanda.” The data have been averaged across subjects.
The perceived blur data have been published by de Ridder and
Majoor.26 Unpublished sharpness data have been measured by
de Ridder under the same experimental conditions. Courtesy de
Ridder.

Figure 7. Measured JND for edge blur as a function of the physi-
cal Gaussian blur parameter σ for two subjects ̈  and ¦. Adapted
from Watt and Morgan.16 The solid curve represents calculated
JND using a formula obtained from the substitution of Eq. 11
into Eq. 9 with σ0 = 1.2 arc min and k = 0.03.
Nijenhuis and Blommaert



Sb = 1− 1

σ
σ0







2

+1










0.25 ,

 (11)

For conveniences the constants are chosen such that 0
≤ Sb ≤ 1. The parameter σ0 represents the intrinsic blur of
the early-visual pathway, which may contain both optical
and physiological factors.

The sensorial strength function for blur is consistent
with both JND and scaling data for blur. Substitution of
the sensorial strength function for blur (Sb) of Eq. 11 into
Eq. 9 yields an expression for ∆σ as a function of σ. The
dipper-shaped curve in Fig. 7 is a plot of ∆σ as a function
of σ for σ0 = 1.2 arc min and k = 0.03 and fits the JND data
of Watt and Morgan16 well. Figure 8 indicates that the sen-
sorial strength function for blur can be used successfully
to predict the scaled perceptual quality of complex images
blurred by a filter with a Gaussian impulse response with
spread parameter σ.

The sensorial strength function for periodic structure
(Sp) is derived similarly. If we assume that the sensorial
strength of periodic structure is a differentiable function
of the modulation depth m, then Sp can be derived from

dSp

dm
= k

∆m(m)
, (12)

provided that we know JND ∆m as a function of m. Ex-
perimental results from Legge17 plotted in Fig. 9 and
Carlson and Cohen18 show that, for larger m values, ∆m is
proportional to mβ. Hence, Sp must be of the form

Sp = am1 – β + b. (13)

According to the data from Legge17 in Fig. 9 and Carlson
and Cohen,18 the value of the exponent β in ∆m ∝ mβ in-
creases slightly with the frequency f of the sine grating.

Figure 8. Experimentally determined category scaling data for
perceptual quality of Gaussian blurrred complex images versus
the calculatd sensorial strength of blur. The experimental data
were adapted from Westerink and Roufs.27 Sensorial strength of
blur was calculated from the σ values in the plot of Westerink
and Rouf using Eq. 11 with σ0 = 0.70 arc min.
Perceptual Error Measure for Sampled and Interpolated Images
As a first-order approximation, we assume that the expo-
nent β increases linearly with frequency:

β = β0 1+
f − f β0

f 0






, (14)

where f0 is a constant and fβ0 is the frequency for which β
= β0. According to Legge, Carlson and Cohen17,18 and analy-
sis of the experimental data of the periodic structure ex-
periment described in the Appendix, typical values are β0

= 0.7, f0 = 98.4 cpd and fβ0 = 12.7 cpd.
For small values of m at threshold, JND ∆m are no longer

proportional to mβ. Wilson14 derived a sensorial strength
function valid for both threshold and suprathreshold val-
ues. In this paper, we use a simplified version:

Sp = c

1+ m

m0







3











1/3

−1

m

m0







β ,
 (15)

where m0 is a threshold constant that still has to be
determined. The constant c = (1/m0)

β0/{[1 + (1/m0)
3]1/3

 – 1}
is chosen such that 0 ≤ Sp ≤ 1 for f > fβ0. Note that for
higher values of m, the perceptual strength is propor-
tional to m1 – β.

The modulation depth is specified by:

m = exp −2
π
d







2

σ 2 + σ0
2( )










, (16)

where 1/d is the sample frequency, σ0 is again the intrin-
sic blur of the early visual pathway, and σ is the spread
parameter of an optical Gaussian interpolation filter. The

Figure 9. JND of a single subject for modulation depth of sine
grating patterns as a function of the modulation depth m with
the frequency as a parameter. The ¨ and ¦ symbols indicate
JND data for sine grating frequencies of 2 and 8 cpd, respec-
tively. Each point is the geometric mean of four measurements
and the lines are regression lines. The dashed line has a slope of
0.59 and the continuous line has a slope of 0.68. Adapted from
Legge.19
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xpression is consistent with the high-frequency envelope
f experimentally determined contrast sensitivity func-
ions, as in Ref. 19.

Figure 10 shows that the calculated sensorial strength
f periodic structure is consistent with experimental scal-
ng data for the perceptual strength of periodic structure.

nterpretation of the Perceptual Error Measure
By substitution of Eq. 5, which relates the perceptual

trength to the impairment of an artifact, Eq. 2 for the
otal impairment can be written as

Iα = ap
α Sp

α + ab
α Sb

α + ai
α Si

α ,
i=3

M

∑ (17)

hich is equivalent to

Iα = ap
α Sp

α + λ bSb
α + λ iSi

α

i=3

M

∑








, (18)

ith λi = (ai/ap)
α. The λi parameters tell us something about

n observer’s weight of the periodic structure artifact rela-
ive to the weights of the other sampling and interpola-
ion artifacts. Equation 18 shows that optimization of the
ampling and interpolation problem is equivalent to mini-
izing the function

Sp
α + λ bSb

α + λ iSi
α ,

i=3

M

∑ (19)

hich may be regarded as a cost function.

igure 10. Experimentally determined category scaling data
or the sensorial strength of periodic structure versus the cal-
ulated sensorial strength of periodic structure with sampling
istance as a parameter: (¨) d = 1.47 arc min, (¦) d = 1.96 arc
in, (∆) d = 2.94 arc min, and (+) d = 3.92 arc min. The

xperimetnal data were obtained from the periodic structure
xperiment described in the Appendix. Experimental data were
veraged across subjects. The sensorial strength of periodic
tructure was calculated using Eq. 15. The parameters σ0 and

0 were fitted such that all data points are on a straight line: σ0

 0.62 arc min, m0 = 0.018. The remaining parameters were
ixed: β0 = 0.7, f0 = 98.4 cpd, fβ0 = 12.7 cpd.
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Minimization of the cost function permits the specifica-
tion of optimal physical parameter values that minimize
the perceptual impairment. If, for example, the interpola-
tion is assumed to be Gaussian with spread parameter σ,
then the sensorial strengths of periodic structure, blur,
and other sampling and interpolation artifacts depend on
σ. In this case, the optimal σ value can be solved from

    

∂
∂σ

Sp
α (σ ) + λbSb

α (σ ) + λ iSi
α (σ )

i=3

M

∑








 = 0.  (20)

Minimization of cost functions is a well-known varia-
tional regularization solution method for ill-posed prob-
lems.20 The “ill-posedness” often manifests itself as the
absence of a unique solution to the problem. Variational
principles are used widely in physics, econnomics, and
engineering. In physics, for instance, most of the basic laws
have a compact formulation in terms of variational prin-
ciples that require minimization of a suitable functional
such as energy or Lagrangian.20 Variational regulariza-
tion imposes constraints on the possible solutions of an
ill-posed problem to reduce the number of solutions and
thus restore its “well-posedness.” These constraints often
conflict. The solution is then a compromise between sev-
eral conflicting demands. The regularization parameters
λi control the relative importance of the constraints.

The sampling and interpolation problem for a uniform
image is ill-posed since there exists no unique solution
for the interpolation function. Any interpolation function
that makes the periodic structure invisible is a solution.
The sampling and interpolation problem can be made
well-posed by imposing the additional constraint that
nonhomogeneous images should also be free from other
sampling and interpolation artifacts. The regularization
parameters λi say something about an observer’s weight
of periodic structure compared to the observer’s weight
of other sampling and interpolation artifacts such as blur
and staircase. Solutions obtained in this way give the
best compromise between the various impairments in the
image.

What the best compromise is depends on the regular-
ization parameters or, more precisely, on the relative
weights of artifacts compared to the artifact periodic
structure. The relative weights are thought to depend on
observer properties as well as on image content. Subjec-
tive factors such as individual preference influence the
relative weights. Image content determines the promi-
nence of an artifact since it influences whether or not
the artifact occurs and how often it occurs. For example,
only a few images will contain moiré, and a few more
will contain the staircase effect. Almost all images will
contain blur, but the periodic structure artifact caused
by sampling will occur in all images. This is the compel-
ling reason why the cost function should be written as
Eq. 19.

The usefulness of the approach depends to some extent
on the generalizability of the regularization parameters
λi over different observers and different images or, more
generally, on the generalizability of the optimal sampling
and interpolation solution over different observers and dif-
ferent images. In related studies,1,5,6 we will therefore in-
vestigate the behavior of the regularization parameters
for: (1) different observers; (2) relevant physical param-
eters of edges such as average luminance and contrast;
(3) complex black-and-white images consisting of a multi-
tude of edges with different orientations, average lumi-
nances, and contrasts; and (4) complex color images.
Nijenhuis and Blommaert



Discussion
Because most of the current error measures are defined

at the physical level, they are bound to neglect one or more
of the perceptual aspects of the problem. Consequently,
solutions are only optimal with respect to a perceptually
suboptimal criterion and thus the solution will be subop-
timal from a perceptual point of view. This leads to trial
and error methods for defining useful physical error
rneasures. Although this process may lead to a criterion
that produces a perceptually satisfactory solution, it does
not enable generalization.

Error measures defined at the physical level, such as
the MSE, often neglect the fact that perceived image qual-
ity is a compromise between perceptual attributes instead
of between physical parameters. In the specific case of
sampling and interpolation, the physical error measures
trade off distortion of edges and the distortion caused by
periodic structure. Instead, the perceptual error measure
compromises between the artifact’s blur and periodic struc-
ture. If, for example, the number of edges in an image
increases, the relative amount of the distortion at the edges
increases likewise, whereas the overall impression of blur
remains the same. Consequently, the perceptual error
measure performs better in this case.

In Refs. 1, 5, and 6, we studied the performance of the
perceptual error measure for sampled and interpolated
images. A direct comparison of the experimentally mea-
sured impairments and the impairments predicted by the
error measure can be found in Fig. 11. The figure summa-
rizes the results for the data averaged over subjects for
three experiments: the complex color (150 points), the com-
plex black-and-white (108 points), and the contrast and
luminance experiment (216 points). In these experiments,
we used complex color images, complex black-and-white
images, and the single-edged image, respectively (see Ap-
pendix). The experimental procedure was similar to the
one described in the Appendix. All parameters of the model
(σ0, m0, and λb) were unique for each subject and the pa-
rameter λb was also unique for each image (scene). The

Figure 11. Squared experimentally measured category scaling
data for perceptual impairments (Im) versus the squared calcu-
lated perceptual impairments (Ic) of the complex color, the com-
plex black-and-white, and the contrast and luminance experiment
for the data averaged across subjects. For computational conve-
nience, category scaling data were transformed linearly to fit the
interval [0,1]. The dashed line indicates points wtih Ic = Im.
Perceptual Error Measure for Sampled and Interpolated Images
Minkowski exponent was α = 2. In Fig. 12, we present
some of the experimental and predicted data of the com-
plex black-and-white experiment, but now as a function
of the spread parameter σ of the Gaussian interpolation
filter.

From Figs. 11 and 12, we conclude that the perceptual
error measure can adequately predict the perceptual im-
pairment and thus image quality of sampled and interpo-
lated images.

The Minkowski exponent α = 2 adequately describes the
data of individual subjects as well as the data averaged
over subjects.5 Other experiments indicate that the regu-
larization parameter for blur λb is relatively independent
of image content.1,6 Since we included different types of
images in these experiments, such as natural images, text,
and abstract images in both black-and-white and color,
we conclude that the model can also be applied success-
fully to other images. The λb parameter depends on the
subject.1,6 Typically, λb varies between 1 and 4 with an
average value of 2 obtained for the data averaged across
subjects. We stress the fact that such variations in the
regularization parameter are not a shortcoming of the
model but rather an explicit modeling of variations that
exist among observers. Apart from variations in the
low-level parameters σ0 and m0, the current model uses
only one regularization parameter to account for the indi-
vidual differences. The variations put a certain constraint
on the optimization of image reproduction techniques,
namely that optimal solutions should also possess a cer-
tain robustness against variations in λb. Graphs similar
to the one in Fig. 12, but now for the data of individual
subjects with extreme λb values, are shown in Ref. 1. These
figures indicate that the model is also able to predict the

Figure 12. Comparison of experimentally measured category
scaling data (¨) and calculated data (×) for perceptual quality.
The experimental perceptual quality data were averaged across
subjects and plottted versus the spread parameter (σ) of the op-
tical Gaussian interpolation filter for the complex “Terrasgeel”
image of the complex black-and-white experiment. For clarity,
category scaling data were transformed linearly to fit the inter-
val [0,1]. The length of an error bar is twice the standard error of
the mean. Often this length is smaller than the ¨ symbol. From
top to bottom, the four pairs of curves are the nonsampled image
and the sampled images with d = 1.18 arc min, d = 2.72 arc min,
and d = 3.63 arc min.
Vol. 41, No. 3, May/June 1997     255



data of individual subjects. Similar to Fig. 12, the varia-
tion in scaled perceptual quality across the data points is
small. However, the absolute value is roughly enlarged by
a factor that equals the square root of the number of sub-
jects. Typical values for the intrinsic blur of the early vi-
sual pathway parameter and the threshold parameter for
periodic structure are σ0 = 0.6 arc min and m0 = 0.02, re-
spectively. While estimating these parameters from experi-
mental data, we found a variation across subjects, which
is not unusual for psychophysical experiments. Calcula-
tions1 indicate that the influence of variations in the peri-
odic structure threshold and intrinsic blur parameters on
the regularization parameter for blur is only minor.

The perceptual error measure makes it possible to for-
mulate a perceptually optimal combination of sampling
and interpolation in perceptual terms. Since the relations
between the sensorial strengths of the artifact blur and
periodic structure and the physical parameters are known
for a Gaussian interpolation function, the optimal physi-
cal parameters can be determined. In future work, simi-
lar relations for other interpolation functions may also be
specified. Once these relations are deterrnined, we can
immediately specify the optimal physical values. Note that
the optimal solution of the sampling and interpolation
problem in perceptual terms remains the same, irrespec-
tive of the physical implementation.

The same formalism can also be used to derive mea-
sures for more complex sampling and interpolation
schemes as well as for other image processing techniques.
In practical display systems, for instance, the electrical
image signal can be processed before it is displayed. Al-
though such a prefilter is unable to influence the percep-
tual strength of periodic structure, it can be used to reduce
the strengths of the other artifacts. A prefilter can, for
example, perform some deblurring. Unfortunately, such a
filter itself introduces new artifacts, which must be in-
cluded in the perceptual error measure.

Based on the results with sampling and interpolation,
we think that the structure of the general image quality
model is an adequate reflection of the perceptual process
that leads to image quality. Hence, we expect it to work
also for other image processing problems.
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Appendix: Periodic Structure Experiment
Image. Only one type of image, namely a single-edged

image, was used in this experiments This single-edged
black-and-white image consists of two uniform regions
with luminances L1 and L2 separated by a horizontal edge.
The average luminance was L = (L1 + L2)/2 = 9.6 cd/m2.
The luminance contrast, defined as the Michelson contrast
C = (L1 – L2)/(L1 + L2), was C = 0.21.

Equipment. Single-edged black-and-white images were
generated and displayed using a Gould DeAnza IP 8400
image processing system. An image consisted of 512 × 512
8-bit pixels. [The word pixel is restricted to indicate the
elements of the combinations of the image processing sys-
tem and the monitor used to display the stimuli. The area
of a pixel is approximately equiluminant. Pixels lie next
to each other and the distance between them (pixel pitch)
is equal to the pixel size. Pixels are sufficiently small to
ensure that artifacts such as periodic structure and
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“blockiness” are not visible. In addition, no moiré effects
are introduced during simulation since sampling distances
of the simulated sampling structures are multiples  of the
pixel pitch.] During the experiment, only the center 496 ×
496 pixels (size 0.28 × 0.28 m or 4 × 4 deg) were shown on
a Conrac model 2400 high-resolution 50 Hz interlace mono-
chrome monitor. The viewing distance was 4 m and the
pixel pitch was 0.49 arc min. The system was calibrated
in such a way that there was a power-law relation L ∝ gγ,
with an exponent γ = 2.5, between the 8-bit pixel value (g)
and the luminance (L) of a pixel.

Stimuli. The stimulus set consists of different versions
of the single-edged image, which was defined before. Be-
sides this “original” image, the set contained single-edged
images with a periodic structure varying in sampling dis-
tance and modulation depth of the structure. A vertical
periodic structure was introduced by imposing a colum-
nar sampling structure with a sampling distance of 3, 4,
6, and 8 pixel pitch units (1.47, 1.96, 2.94, and 3.92 arc
min). The widths of the columns were 1, 2, 3, and 4 pixel
pitch units (0.49, 0.98, 1.47, and 1.96 arc min), respec-
tively. The modulation depth was varied by optical
Gaussian filtering (see Eq. 6) in the horizontal direction.
Gaussian filtering was simulated on the Gould DeAnza
using a filter with a binomial impulse response h(n) of
length l21:

h n − l −1

2












= 1

2l−1
(l −1)!

l −1( ) − n[ ]!n!
. (21)

The relation between the spread parameter (σ) of the
Gaussian filter and the filter length (l) of the binomial

filter was σ = 1

2
l −1.For each sampling distance, modu-

lation depth ranged front zero to maximal. Filter lengths
were chosen such that the difference in perceived strength
between successive filter lengths was approximately equal.
The filter lengths are listed in Table I.

Thus far we have used the modulation depth of a peri-
odic sine grating (Eq. 16). For the columnar periodic struc-
ture, we use the modulation depth of the first harmonic of
the structure because the first harmonic is a good predic-
tor for the visibility of any periodic structure of not too
low a frequency22:

m = 2mp exp −2
π
d
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. (22)

If this expression is used for the modulation depth, then
the constant c in Eq. 15 must be changed in c = (2/m0)

β0/{[1
+ (2/m0)

3]1/3 – 1}. The factor mp accounts for the additional
interpolation of the columns of the structure. It can be shown
that for columns with an ideal rectangular luminance pro-
file, mp = sinc(w/d) = sin(πw/d)/(πw/d), where d is the
sampling distance and w the width of the columns. Since in
practice the profile will not be exactly rectangular, practi-
cal values will be lower than the theoretical values [sinc(1/
3) ≈ 0.827 for the one-pixel-wide column and sinc(1/2) ≈ 0.637
for the other three widths]. Moreover, this additional at-
tenuation may depend on the frequency and the luminance
of the structure. We therefore measured the luminance pro-
file of the columnar structure for different luminances and
sampling distances with a Pritchard Photometer model
1380A combined with a spatial line scanner. The modula-
tion depth of the first harmonic that fitted the profile best
Nijenhuis and Blommaert



was used to calculate the value for mp. Results are shown
in Figs. 13 and 14. From the plots, we conclude that: (1) in
practice, mp values are lower than the theoretical values
but the ratio of practical and theoretical values is to a good
approximation independent of the width of the columns;
(2) the value of mp is to a good approximation independent
of the sampling distance; and (3) the value of mp is to a
good approximation independent of the peak luminance
of the profile for the luminances relevant to the experi-
ment. For computational purposes, we use the mp values
of Fig. 14.

Procedure. Seven male subjects between 27 and 43
years of age participated in two sessions. Subjects had
normal or corrected-to-normal vision and a visual acuity,
measured on a Landolt chart between 1.25 and 2. Although
two of the subjects had a slight red-green deficiency, their
results did not differ significantly from those of the other
subjects. Subjects rated both perceptual strength of the
periodic structure and perceptual quality of the displayed
images on a 10-point numerical category scale ranging
from 1 to 10. Three subjects started with the quality ses-
sion and four subjects rated perceptual strength of peri-
odic structure first. Subjects received an instruction form
in which the quality of the single-edged image was de-
fined as depending only on the periodic structure in the
uniform regions. Before the start of the actual experiment,
subjects judged a test series of nine stimuli containing the

TABLE I.  Filter Lengths of the Binomial Impulse Response
Filters of the Periodic Structure Experiment.*

Sampling distance (pixel pitch units) Filter length (pixel pitch units)

3 1, 2, 3, 5, 6, 9

4 1, 3, 4, 6, 9, 12, 16

6 1, 2, 5, 8, 12, 17, 22, 29, 39

8 1, 6, 11, 17, 23, 31, 41, 53, 71

Figure 13. Additional attenuation of the modulation depth due to
the width of the columns of the columnar structure wit hsampling
distance d = 2.94 arc min versus the peak luminance of the lumi-
nance  profile on the Conrac monitor. The column width was half
the sampling distance. Hence the theoretical mp value is mp ≈ 0.637.
The theoretical value is indicated by the dashed line.

* If the filter. length is unity, then the filtered and unfiltered image are identi-
cal. Sampling distances are given for. a 4 m viewing distance, in which case
the pixel pitch is 0.49 arc min.
Perceptual Error Measure for Sampled and Interpolated Images
extreme stimuli to adjust the sensitivity of their scale. All
32 stimuli were presented four times in each session ex-
cept for the original image with zero modulation depth
which was presented 20 times. The sequence of the im-
ages was random except that stimuli with the same sam-
pling distance did not appear in consecutive trials. Images
were presented for 5 s and followed by a homogeneous
adaptation field with a luminance of 15 cd/m2 that lasted
until subjects pressed a key but had a minimum duration
of 2 s. The viewing conditions satisfied CCIR Recommen-
dation 500 (Ref. 25) except for the viewing distance, which
was 4 m. All category data were transformed into an in-
terval scale on the psychological continuum using
Thurstone’s law of categorical judgement. We applied a
class I model involving replications over trials within a
single sub jest with condition D constraints.24 These con-
straints limit the number of model parameters by assur-
ing that the correlation between the momentary position
of stimuli and category boundaries as well as the disper-
sion of both category boundaries and stimuli are constant.
Previous to the Thurstone correction, data were processed
in accordance with Edwards’ method25 to correct scale val-
ues of the extreme categories. The Thurstone-corrected
data were averaged across subjects. Averaging across sub-
jects is allowed because, as shown in Fig. 15, the trends in
the data are similar for all subjects. The group of subjects
contained both subjects who were accustomed to doing
scaling experiments as well as subjects who were not. In
addition, two subjects knew the purpose of the experiment
whereas the others did not.
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