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Introduction
The term “volume” applied to holograms is associated with
the ratio of hologram thickness to the period of the inter-
ference pattern recorded inside photosensitive material.
If this factor is in excess of ten, the hologram exhibits vol-
ume properties that are well known.1 The term “very
thick”, we apply in cases when the thickness exceeds the
period by a factor of about 3 orders. There are holograms
with photosensitive material of millimeter thickness and
high resolution; the regular interferometric pattern of
about a thousand lines per millimeter can be recorded in-
side the material. Such holograms, both transmission and
reflective types, possess spectral selectivity of about 0.1
nm and angular selectivity of about a milliradian. These
characteristics are compatible with the ones given by regu-
lar optical devices, and therefore some of them can be re-
placed by the systems based on the usage of very thick
holograms.

Usually the holographic photosensitive material of milli-
meter thickness is associated with photorefractive crystals,
a variety of which were developed in recent years. Being the

It is well known that transmissive and reflective type volume
holograms have very high angular and spectral selectivity. Such
highly selective holograms can find wide application in different
fields, namely, three-dimensional imaging, diffraction optical el-
ements, holographic storage, etc. The main problem in manufac-
turing thick holograms (of about a millimeter thickness) is in
developing very thick photosensitive media, in which a grating
can be recorded by illumination with an interference pattern.
The analysis shows how different kinds of inhomogeneities and
material shrinkage cause distortions in the reconstructed image
and hologram selectivity properties. A review of the Russian
materials (confirmed by experimental data) suitable for the re-
cording of volume holograms is made.
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dynamic media, they can find applications in holographic
memory systems, in real-time interferometry, etc. However,
the large range of applications requires stationary media.

Holographic imaging requires the application of holo-
grams with high diffraction efficiency. Usually volume
phase holograms whose theoretical efficiency is equal to
100% are used.1 One of the drawbacks of holographic im-
aging is the necessity to record the hologram in coherent
light. This limits the wide application of holography in
everyday life. Recently a new scheme for hologram record-
ing, the so-called reference-free selectogram,2 was pro-
posed. It permits both recording and reconstruction of a
3-D image in white light. It also has low sensitivity to the
vibration of the elements of the recording scheme. To reach
the good spatial resolution of the image, the photosensi-
tive material should be of 1 to 3 mm thickness. The fur-
ther development of very thick photosensitive materials
can essentially contribute to the creation of a holographic
camera of this type.

The variety of diffraction elements that use the high
selectivity properties of thick holograms, namely filters,
angular and spectral selectors, etc., can be designed based
on very thick photosensitive materials. The angular se-
lector proposed in Ref. 3 consists of two holograms, each
of them representing a plane three-dimensional grating.
The wave vectors of these holograms are perpendicular to
each other. Each hologram of millimeter thickness per-
forms the angular filtration of the incident beam with the
milliradian bandwidth of selectivity contour. The construc-
tion of these two holograms permits the angular filtration
of the incident beam into two dimensional perpendicular
optical axes. The accuracy of this selection is equal to that
of the traditional pinhole, while the system alignment is
simpler and its sensitivity to different kinds of shifts is
much lower. Another advantage of the holographic angu-
lar selector is in its possible application to powerful lasers
where pinholes cannot work. Indeed, pinholes require light
focusing, and thus the density of beam energy greatly in-
creases at the focus to the point that it can destroy the
filtering system. The holographic angular selector oper-
ates at the beam propagation angle, and therefore the la-
ser beam energy threshold for these selectors is higher.

High spectral selectivity of thick holograms was used
for the creation of a narrow-band selector4 to be used in
astronomy, laser optics, and optical location. The band-
width of the angular selectivity contour obtained is 0.15
nm for the specimen recorded in photopolymer Reoxan
of 1 mm thickness.
    241



TABLE I. Holographic Materials Suitable for Recording of Holograms of Millimeter Thickness

Sensitivity J/cm 2 Thickness up to Thermo-resistance Drawbacks

1 Porous glass depends on the media 5 mm up to 500°C losses
inside, usually 0.1-1

2 Silver glass 1 – 10 100 mm up to 500°C recording at 300–350 nm

3 PDA photopolymer ~ 1 10 mm up to 70°C low thermoresistance
4 Reoxan ~ 1 10 mm up to 70°C low thermoresist, pre-exposure oxygen

saturation
5 Gel-like dichromated gelatin 1 – 10 3 mm up to 40°C difficult to keep, low thermoresistance
It is known that the density of holographic storage de-
pends greatly on the material thickness,5 because the num-
ber of holograms that can be multiplexed at a single
location depends on the hologram selectivity bandwidth
that varies in inverse proportion to the hologram thick-
ness. The recent successful experimental results on holo-
graphic storage in stationary media6 are based on the usage
of DuPont’s HRF-150 photopolymer of 100 µm thickness.
By the application of the materials described next the stor-
age density can be improved by order.

Holographic Materials Suitable for the Recording
of Very Thick Holograms

In this paper we limit our material review to the
stationary media. All of them are developed in Russia
(Table I.)

Porous materials7 are the volume recording media based
on the usage of a rigid silicate porous matrix, a silicate
glass that is penetrated by the system of interconnecting
pores. The photosensitive composition is introduced into
the pores, but it covers only the surface (not the whole
volume) of these pores. The other empty volume of pores
forms a continuous capillary network providing the reagent
penetration inside the specimen during the postexposure
processing of holograms.

It should be mentioned that the capillary media based
on porous materials are practically compressionless. In-
deed, the photosensitive medium is connected rigidly with
the matrix, and the characteristic sizes of cavities in which
it is distributed are essentially less than the light wave-
length. Therefore its deformation during the development
process has a local character and does not distort the whole
holographic structure.

The efforts of many researches show the possibility of
introducing into the internal volume of porous materials
a wide spectrum of photosensitive materials based either
or organic compositions or on inorganic ones, namely: pho-
topolymers, photochromic materials, silver halide media,
photorefractive media, photostructuring compositions, and
photoresist materials. Thus properties of resulting holo-
graphic materials may be widely varied by using different
fillers.

Another light sensitive medium that can be used for the
recording of very thick holograms is the so-called silver
glass.8 The photothermorefractive glasses consist of
Sio2AI2O3ZnOLi2O(Na2O) doped with Ag and CeO2. Under
the action of Tungsten light illumination the photoinduced
crystallization occurs inside this material. At first, radia-
tion creates metal atoms in the glass, then the thermal treat-
ment (T = 400°C) creates the metal colloids (color centers).
These color centers work as the centers of nucleation dur-
ing the next stage of the specimen processing: the treat-
ment under higher temperature. The refractive index of the
formed microcrystals, Li2O, SiO2, or NaF, or BaO, SiO2, etc.,
differs from the refractive index of the glass, and therefore
the structure inside the material is recorded.
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Photopolymer holographic material with diffusive ampli-
fication (PDA)9 is a medium consisting of poly-
methylmethacrylate (PMMA), including photochromic
quinone molecules. The photoreconstruction reaction of the
phenanthrenquinone in polymethylmethacrylate leads to
the formation of phenanthrenic structures associated with
polymers. As a result, at the stage of recording the two op-
posite phase gratings are produced, one of which is formed
by variations of concentration of these phenanthrenic struc-
tures and the other by variations of concentration of free
quinone molecules. During the postexposure processing
(thermal treatment), the free quinone molecules are redis-
tributed uniformly in the polymer matrix volume. This re-
distribution leads to a disappearance of one of the opposite
phase gratings and, thus, to a considerable increase of the
hologram diffraction efficiency.

Reoxan10 is also based on the use of PMMA that serves
as a matrix in which a photosensitive compound of an-
thracene structure is dispersed. Sensitization of the speci-
mens is carried out by means of the polymer matrix
saturation by oxygen inside the chamber with increased
pressure. In the presence of the sensitizer, the photooxi-
dizing reaction occurs inside the material caused by laser
radiation. This reaction leads to the formation of photo-
induced modulation of the material refractive index.

Dichromated gelatin (DCG) material is widely used for
hologram and speclogram recording since the 1960s. Its
modification, gel-like DCG,11 is the moisture saturated layer;
its thickness exceeds 10 to 15 times the thickness of the
dry layer. This material is very useful for preliminary ex-
periments due to its rather simple preparative procedure
and cheapness. However, its keeping time is short even
when the layer is protected from drying by a covering glass.

Problems Associated with Photosensitive Materials
All photosensitive materials more or less possess a num-

ber of drawbacks, including, the change in average refrac-
tive index during the postexposure processing; the
existence of shrinkage; and nonuniformity in depth of grat-
ing power, average refractive index, and shrinkage. The
objective of this section is to attract the attention of re-
searchers in the field of holographic materials to the con-
sequences ensuing from these drawbacks. We estimate
below the influence of these drawbacks on the quality of
the reconstructed three-dimensional image as well as on
the spectral and angular selectivity. It turns out that in
many cases, even when the regular holographic materials
of 10 to 100 µm thickness are used, neglecting the effects
associated with the above mentioned processes will cause
essential errors in interpretation of experimental results.

The Influence of the Average Refractive Index
Changing and Shrinkage on the Reconstructed Im-
age Quality. The spatial frequency theory of
three-dimensional holograms developed in Ref. 12 allows us
to describe the image quality for the holograms of complex
wave fields. It has been shown that for a three-dimensional
Reinhand et al.



hologram recorded by a plane reference wave, the recon-
structed image may be described by means of the optical
transfer function of the hologram Π(θ,ϕ). This function
makes the connection between angular spectra of the ob-
ject SO(θ,ϕ) and reconstructed SS(θ,ϕ) waves:

SS (θ,ϕ) = Π(θ,ϕ)SO , (1)

where θ,ϕ are the azimuth and polar angles, respectively.
Consider the influence of the shrinkage and the average

refractive index change on the transfer function for the case
of the object wave with a continuous uniform angular power
spectrum and normal incidence angle relative to the record-
ing medium surface (Fig. 1). Consider that the reconstruct-
ing plane wave having the wavelength λ and incident angle
θR differs from the corresponding parameters of the refer-
ence wave by the values ∆λ and δ. We assume that after the
recording stage, the hologram was subjected to uniform
shrinkage α, and its average refractive index was changed
by ∆n. Based on the results from Ref. 12 the transfer func-
tion may be expressed as follow:

Π(θ ,ϕ ) = Π3 (θ ,ϕ )exp(−iβT )

1+ α( )cosθ − α cosθ R − 1− sinθ cosϕ / β( )2[ ]1/2
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


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
, (2a)

where β = 2πn/λ and T is the hologram thickness.
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Figure 1. The problem of the reconstructed wave distortions by
the hologram of complex wave field.
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Bragg mismatch for the corresponding angular component
of reconstructing wave:
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∆θ is the angular divergence of the object beam.

Z(θ,ϕ) = Γ(θ,ϕ) – (Q + ∆Q)/2,

where m is the factor determined by the medium sensitivity
and ν is the hologram power, whose value is proportional to
the exposure and determines its diffraction efficiency. (For ν
= π/4, the diffraction efficiency of the hologram is about 50%.)

Figures 2 and 3 represent the transfer function behav-
ior for the change of the average refractive index of the
hologram. The hologram of T = 1 mm thickness is recorded
with the object wave angular divergence ∆θ = 50 deg and
the incidence angle of the reference beam θR = 30 deg, ν =
π/4. The change of the refractive index is proposed to be
∆n = 0.003. It has been taken into account for the calcula-
tion of the transfer function that the change of the aver-
age refractive index of hologram causes the change of the
angle θR by the value δ = – tg(θR) ∆n/n due to the recon-
structing beam refraction on the hologram boundary. The
data shown in Figs. 2 and 3 and later in this section are
related to the angular components of the object beam whose
angular vectors are in the plane XOZ (Fig. 1), i.e., for ϕ = 0 or
π. The new azimuth angle θ' is introduced that is positive for
ϕ = 0 (θ’ = θ) and negative for ϕ = π (θ' = –θ). Figure 2 repre-
sents the dependence of |Π (θ')|2/A2 on θ’ for the previ-
ously described case, and Fig. 3 represents the dependence
of the transfer function phase Φ on θ'. As can be seen from
the data, the change of the average refractive index leads
to the essential nonuniformity of the transfer function in-
side the angular spectrum of the reconstructed wave. The
attempt to compensate the nonuniformity in the transfer
function amplitude by the change of the incidence angle
of the reconstructed wave leads to some improvement of
the uniformity of the transfer function amplitude (Fig. 2),
but its phase is still very nonuniform (Fig. 3). The analy-
sis of Eq. 2 shows that for the total compensation of the
phase distortions, simultaneous change is required in the
wavelength of the reconstructing beam by the value ∆λ = λ
∆n/n, and its incidence angle by the value δ = tg(θR) ∆n/n.
The latter compensates the θR change caused by the wave
refraction on the hologram boundary.
ns Vol. 41, No. 3, May/June 1997     243
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igure 2. Square of modulus of the normalized transfer function
 a 1-mm-thickness hologram subjected to uniform change of
erage refractive index of 0.3 % as it was being reconstructed
 the reference wave (solid curve) and with a compensation of
e amplitude distortions by the reconstructing wave incidence
gle variation on δ = 5 × 10–4 rad (dotted curve).

igure 3. A phase of the transfer function of the hologram sub-
cted to uniform change of refractive index and reconstructed
nder conditions corresponding to the data of Fig. 2.
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Figure 4. Square of modulus of the transfer function of a 1-mm-
thickness hologram subjected to uniform shrinking of 0.3 % as it
was being reconstructed by the reference wave (solid curve) and
with a compensation of the amplitude distortions by the recon-
structing wave incidence angle variation on δ = 7 × 10–4 rad (dot-
ted curve).

Figure 5. A phase of the transfer function of the hologram sub-
jected to uniform shrinking and reconstructed under conditions
corresponding to the data of Fig. 1.
The influence of the uniform shrinkage on the hologram
transfer function is shown in Figs. 4 and 5. The same
scheme parameters were used: ∆θ = 50 deg, θR = 30 deg, T
= 1 mm, and ν = π/4. The shrinkage value is proposed to
be α =0.003. It can be seen from Figs. 4 and 5 that the
uniform shrinkage of holograms leads to the essential dis-
tortions in the transfer function (solid curves). They can-
not be compensated by the change of the incidence angle
of the reconstructing beam (dotted curves). The analysis
of Eq. 2 shows that the situation in this case (α-type dis-
tortions) is different from the case described before (∆n-
type distortions). The transfer function distortions caused
by the hologram shrinkage cannot be compensated even
by simultaneous change in wavelength and incident angle
of the reconstructing wave. This can be explained by the
fact that the grating vectors of the hologram without
shrinkage are located on an Evald sphere, while for the
hologram with uniform shrinkage they are located on the
ellipsoid with the ratio of the axis lengths determined by
the shrinkage value. This distortion of the sphere to the
ellipsoid cannot be compensated by the changes in the re-
constructing wave.
Reinhand et al.



Influence of Inhomogeneities on the Hologram Se-
lectivity Properties. Every photosensitive material suit-
able for the recording of volume holograms possesses
different types of inhomogeneities: inhomogeneous distri-
bution of the amplitude modulation of refractive index (n1),
nonuniformity in depth of the average refractive index (n),
and inhomogeneity of the grating period in depth. These
inhomogeneities are caused by the radiation absorption
inside the material, its variable sensitivity, and the im-
pact of the pre- and postexposure processings that lead to
nonuniform shrinkage of the material.

Consider the most general case of the grating inhomo-
geneous in depth,13 where n1, n, and Z components of the
grating vector are changed KZ(z) = KZ(0) + ∆KZ(z). (The
OZ axis is directed inside the hologram perpendicular to
its surface). Consider that the grating vector   

r
K , wave

vector of the incident wave   
r
ρ , and the normal vector to

the hologram surface are in one plane, and the electrical
vector is perpendicular to this plane. In this case the field
inside the hologram 

  
Ψ

r
r( ) can be described by the scalar

wave equation:

  
∆Ψ = ω / c( )2 ε

r
r( )Ψ r

r( ) = 0. (3)

As previously mentioned, the hologram dielectric per-
meability 

  
ε

r
r( )can be expressed as:

  

ε
r
r( ) = ε0 + δε (z) + ε1(z) KZ (z)dz + KX x

0

Z

∫
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

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
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
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where 
  
δε

r
r( ),ε1

r
r( ) << ε0 ,  and the scale of the average di-

electric permeability of the grating [δε(z)] as well as the
scales of ε1(z)and KZ(z) are much larger than the wave-
length and are compatible with the hologram thickness.

Further qualitative analysis is carried out in the ap-
proximation of single scattering of the incident wave on
the periodic structure of the grating, and the wave propa-
gation is described in the approximation of geometrical
optics.14 The latter is valid owing to the slow change of

  
δε

r
r( ),ε1

r
r( ) and KZ(z). Therefore the field inside the holo-

gram volume is expressed in the form of superposition of
incident R and diffracted S waves

  
Ψ

r
r( ) = R

r
r( ) + S

r
r( ), (5)

where the incident wave can be described14 by the follow-
ing expression:

  

R
r
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R0 ρZ (0)
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exp −iρX x − i ρZ (z)dz
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2

β (z) = 2π
λ
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, (6a)

where RO is the amplitude of the incident wave on the
front surface of the hologram. The diffracted wave is ex-
pressed in the form:

  

S
r
r( ) = S(z)exp −iσ X x − i σ Z (z)dz
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(6b)
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Substituting Eq. 6 into the wave Eq. 3, taking into ac-
count the approximations given, and neglecting non-Bragg
orders of diffraction, we obtain the following expression
for the complex amplitude of the diffracted wave:

S(z)' + iΓ(z)S(z) = – ik(z)R0, (7a)

where

  

Γ(z) =
β 2 (z) −

r
σ (z)

2

2σ Z (z)
,

n1(z) = ε1(z)

2 ε0
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,
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and the Bragg mismatch Γ(z) can be expressed in an ex-
plicit form:

Γ(z) = Γ0 + β0
dn(z)

n0

1

cS

− 1
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

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n0 = ε0 , dn(z) = δε (z)

2 ε0

. (8b)

In Eq. 6a, Γ0 = [β0
2 – |σ(0)|2]/2σZ0, the Bragg mismatch on

the front surface of the hologram is described by Kogelnik’s
formulas,15 and the second and third terms are the addi-
tional mismatch caused by the inhomogeneities of the av-
erage refractive index [dn(z)] and the grating period
[∆KZ(z)].

The solution of Eq. 7a is well known,16 and under the
zero boundary conditions on the front surface of the holo-
gram the amplitude of the diffracted wave on the back
surface is

S(T ) = −i exp(−iΓ0T )R0 f (z)exp(iΓ0z)dz,
0

T

∫ (9a)

f (z) = k(z)exp −i β0
dn(z' )
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dz'
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
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. (9b)

It can be seen from Eqs. 9a and 9b that the amplitude of
the diffracted wave is equal to a Fourier transform of the
distribution of the grating power [k(z)] multiplied by some
phase function whose character is determined by the be-
havior of the average refractive index (dn) and Z compo-
nent of the grating vector (∆KZ). It should be pointed out
that according to Ref. 15, the Bragg mismatch Γ0 is the
linear function of the angular deviation (δ) and wavelength
s Vol. 41, No. 3, May/June 1997     245



Figure 6. Angular selectivity contours for the holograms recorded: (a) in porous glass with the thickness of T = 1.8 mm and spatial
frequency of ξ = 2200 mm–1, (b) in porous glass, T = 1.2 mm, ξ = 900 mm–1; (c) and (d) in photopolymer with diffusive amplification
(PDA) T = 2 mm, ξ = 900 mm–1; and (e) calculated selectivity contour for the plane grating, where δ is the deviation of the incident
angle from the Bragg angle.
246     Journal of Imaging Science and Technology Reinhand et al.



deviation (∆λ) of the reconstruction conditions from the
Bragg ones. Therefore in our approximation the contours
of the grating angular and spectral selectivity are the
square modulus of the Fourier transform of the function
f(z) within the accuracy of scale coefficients, i.e.,

η(Γ0 ) ~ f̂ (Γ0 ) f̂ * (Γ0 ), (10)

where η(Γ0) is the diffraction efficiency and Λ indicates
Fourier transform.

Figure 6 represents the experimentally measured an-
gular selectivity contours for the holograms in porous glass
[Figs. 6(a) and 6(b)], photopolymer PDA, [Figs. 6(c) and
6(d)], and the calculated contour for the uniform grating
[Figs. 6(e)]. It should be pointed out that most of the grat-
ings recorded in porous glass and some gratings recorded
in PDA have asymmetric contours of angular selectivity.
According to Eqs. 10 and 9b, this asymmetry cannot be
associated with the inhomogeneity of the grating power
in depth because k(z) is a real function and its Fourier
transform is Hermation k̂(Γ0 ) = k̂* (−Γ0 ). Therefore the dif-
fraction efficiency is a symmetric function of Γ0:

    η(Γ0 ) = η(−Γ0 ) ~ k̂(Γ0 ) = k̂* (Γ0 ) = k̂* (−Γ0 )k̂(−Γ0 ) (11)

for dn, and ∆KZ = 0.
This permits us to draw the conclusion that the result-

ing holograms possess inhomogeneity in depth of the av-
erage refractive index or z component of the grating vector.
The first type of inhomogeneity is natural for the holo-
grams in porous glass. It is the result of the transport pro-
cesses during the etching stage17 and during the filling of
the free space inside the pores by the photosensitive me-
dium. However, for the symmetric grating (cS = cR, KZ = 0)
according to Eq. 9b the influence of n and KZ inhomogene-
ities is equal to zero. The measured asymmetry of the se-
lectivity contours for the holograms in porous glass is
caused by some errors in the orientation of the recording
material (cS ≠ cR). The asymmetry of the contour for the
holograms in PDA is also caused by the deviation from
the symmetric scheme and probably by the nonuniform
deformation in depth of the samples during the
postexposure processing, i.e., by the appearance of the
variable component KZ.

It is interesting to point out that the phase of function f
decreases with the increase of the wavelength of the inci-
dent wave. This must lead to the reduction of the contour
asymmetry in the long wave spectral range. However, si-
multaneously with the increase of wavelength the Bragg
angle of reconstruction increases and the difference (1/cR

– 1/cS) can increase faster than the wavelength λ growth
(Fig. 7). The latter leads to the enhancement of the influ-
ence of phase inhomogeneities on the selectivity contour
in the long wave spectral regime.

The analysis of Eq. 9 shows that the value of side maxima
of the selectivity contours is determined mainly by the in-
homogeneity of the grating power [k(z)]. Side maxima grow
up when the drop in the k(z) function occurs in the middle
of the grating, and these maxima weaken when the grating
power decreases from the grating center to hologram sur-
faces.18 The fall in the sensitivity in the center of the po-
rous recording material of 1.8 mm thickness [Fig. 6(a)] is
caused by incomplete etching of the glass during the pro-
cess of the porous sample preparing. Special methods for
introduction of the photosensitive material into the porous
glass and formation of holograms in PDA19 permit compen-
Very Selective Volume Holograms: Manufacturing and Applicatio
Figure 7. Coefficient (1/CR – 1/CS)/λ normalized to its value at λ
= 0.450 µm via wavelength λ: (1) ξ = 1000 mm–1 and (2) ξ = 2000
mm–1; [the inclination angle of isophase surfaces is (–1) deg].

sation of the distribution of the grating power in the mate-
rial depth and, therefore, suppression of the side maxima
in selectivity contours [Figs. 6(b) and 6(d)].

Conclusions
Very selective stationary (nondynamic) holograms of mil-

limeter thickness can find applications in different fields,
namely in three-dimensional imaging and in systems for
holographic storage, as well as different kinds of diffrac-
tion optical elements in laser optics, astronomy, etc. The
holographic materials suitable for the recording of holo-
grams of millimeter thickness is reviewed briefly in this
paper. The main problem associated with the manufactur-
ing of such holograms is in preparing the photosensitive
materials with minimal shrinkage and inhomogeneities.
The analysis has been carried out on the influence on the
image quality and selectivity properties of the following pa-
rameters: the change of average refractive index during the
postexposure development; shrinkage; and nonuniformity
in depth of grating power, average refractive index, and
shrinkage. It was shown that the small changes in the av-
erage refractive index and shrinkage (of about 0.003) lead
to extremely large distortions in the reconstructed image
both in phase and amplitude that leads to losses in the re-
constructed image resolution. The inhomogeneities in depth
of grating power, average refractive index, and shrinkage
affect mainly the behavior of the selectivity contour and
can lead to its broadening and asymmetry. The latter is
important to take into account, for example, for the calcu-
lation of the information capacity of holographic memory
systems based on volume holograms. All the effects men-
tioned above reduce with the decrease of the hologram thick-
ness, but even for ordinary holographic materials they are
observed.
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