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Introduction
May one say with certainty that an object observed is
lighter as a whole than its background if the image of the
former bears a positive contrast? No, not always. When
the angular patterns of object and background reflection
are different, the visual perception would depend on the
observation direction. Recall a bright Sun’s track on a
water table to understand that rather a harsh light spot
is seen only at the mirror direction. At other viewing
angles, smooth water surface will be relatively dark. And
what would happen with the contrast of an object image if
a layer of a turbid medium is placed between an observer
and the object? Usually, the contrast magnitude should
decrease. However, the opposite situation shown in this
paper can unexpectedly take place too, i.e., the more the
shroud, for example, of fog, the better the vision quality.

Imaging characteristics are covered by the image transfer theory.
But up to now, image transfer theory dealt mainly with observa-
tion of Lambertian (diffuse reflecting) objects on a Lambertian
background. This model of reflection is quite a reasonable one
for many natural and artificial objects to describe vision quality.
We present here the mathematical description for images of
non-Lambertian objects to permit their angular reflection pat-
terns to be dealt with under unfavorable viewing conditions
through a light-scattering medium. Retroreflectors are chosen
as an convenient example of these objects. The small-angle diffu-
sion approximation of the radiative transfer theory is used for
the calculations of light characteristics under illumination by
some source of an active vision system. The case studies con-
sider, in particular: (1) Imaging of large-area objects where some
of their parts would be seen as dark and others as bright, and (2)
the interesting effect of enhancing the contrast of a retroreflec-
tor image with increasing optical thickness of a scattering me-
dium. This is related to increasing the “effective” albedo of an
“equivalent” Lambertian object, by which the retroreflector can
be replaced. The results on imaging characteristics of retrore-
flective objects are compared with those for Lambertian. The cor-
responding differences are discussed.
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This is also related to features of angular patterns of re-
flection.

Image transfer through aerosol media is constantly at-
tracting the attention of researchers. Considerable ad-
vances in this field have led to the development of modern
vision theory.1 Methods for determining the individual com-
ponents of radiation power at a receiver have been pro-
posed to characterize image quality. However, all these
studies treat, as a rule, observation of diffuse-reflective
objects on a Lambertian background, so that already
known results cannot be applied directly to a case of an-
other reflection properties.

This paper studies the imaging of non-Lambertian ob-
jects. We have selected retroreflectors as these objects for
two main reasons. First, their reflective properties differ
drastically from that of Lambertian to demonstrate most
clearly the distinctive features of observed images. Retrore-
flectors. the simplest case of which is a well-known corner
reflector, feature in that, as their name prompts, they re-
flect light to the opposite path it is incident on. Secondly,
these objects find a wide usage in different scientific and
day-to-day fields. For example, retroreflectors are exploited
for determining the range from the Earth to space vehicles
and communicating with them,2 measuring light absorp-
tion by systems for atmospheric pollution monitoring on
the basis of the differential absorption technique,3 apply-
ing retroreflective covers to define overall dimensions of
heavy trucks,4 to make road signs or ad panels, etc.

Problem Formulation and Solution Method
We shall study imaging systems that are often known

as active. They comprise a light source, illuminating an
object observed through a scattering medium, and a re-
ceiver recording a signal. The problem is to find the
spatial-angular distribution of signal power Pr at the re-
ceiver. Let one observe an object with arbitrary radiance
factor
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where Po is the light-source power, Σr and Ωr the area and
solid angle of the receiver, respectively, µ = cos∂, µ′  = cos∂′,
    143



Is ( . . . ) and Ir ( . . . ) the radiance distribution over the
object surface from the unit-power real and dummy light
sources, respectively. The latter is a unit-power too, located
as the real receiver and having the same orientation of the
optical axis, but with radiation pattern the same as the
spatial-angular sensitivity pattern of the real receiver. The
notation ∫. . .     d

r
n abbreviates integration (∫. . . dµdϕ) over

angular coordinates, and ∫. . .     d
r
R over spatial ones. Thus,

the problem of object imaging is reduced to the calcula-
tion of the radiances Is (. . .) and Ir (. . .) and to the compu-
tation of the 6-fold integral according to Eq. 1. Note that
Eq. 1 is derived by using only the optical reciprocity theo-
rem,1 which is valid for the majority of imaging systems
and scattering media. No restrictions on system and me-
dium properties are imposed. Therefore, Eq. 1 is of a gen-
eral character and can be used for any radiation sources
and receivers (including an eye) as well as for any media
and reflective properties of objects.

Below, we will consider the imaging of objects through a
light-scattering medium (e.g., fog) composed of coarse aero-
sols. Their phase function is known to have a sharp peak
in the forward direction. This allows the aspect-invariance
principle1 to be used for the computations. It is valid for
small-to-moderate optical thicknesses of a medium, where
the “small-angle” approximations of the radiative trans-
fer theory (RTT) are working well. Then, the principle can
be shown to result in Is and Ir dependencies of Eq. 1 on the
differences       

r
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r
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Rr ,
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nr ,  respectively,
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Rr  are the intersection points of the optical

axes of the real and dummy sources with the object (or
background) surface,       
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nr  the directions of their optical

axes, i.e.,
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In particular, for Lambertian objects,
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R( ) is the object albedo. Then, Eq. 2 takes the

form
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where Es (. . .) and Er (. . .) are the irradiances at the object
surface produced by the unit-power real and dummy
sources, respectively. Eq. 4 is similar to one6 widely used
to describe imaging of Lambertian objects except that the
case of     

r
Rs =

r
Rr  is considered usually. This case corre-

sponds to a wide radiation pattern of a source, to wide
sensitivity pattern of a receiver, or to joint scanning by
the said narrow patterns over an object surface, i.e., to
situations that often take place for different active vision
systems. However, this equality does not hold for illumi-
nation by a fixed source with a nonwide radiation pattern
(e.g., under illumination by a searchlight or car headlamp)
or observation by moving the optical axis of a receiver (e.g.,
a driver’s or other observer’s eyes). Then, the more gen-
eral case described by Eq. 4 should be considered. Note
that an active vision system is nonisoplanatic in this case.

For an ideal retroreflector, we have
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where δ (. . .) is the delta function. Arr 
      

r
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n( )  the retrore-

flector albedo that, in the general case, can depend on spa-
tial and angular coordinates. Substituting Eq. 5 into Eq.
2 gives
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The forms of Eq. 4 and Eq. 6 are very similar, and their
contrast shows the differences in imaging of Lambertian
and retroreflective objects through a scattering medium.
These differences are discussed elsewhere.5,7

Let the irradiances and radiances of Eq. 4 and Eq. 6 be
separated into components related to direct superscript
d) and scattered (s) light, i.e., represent them in the form

    Is = Is
d + Is

s , Es = Es
d + Es

s , (7)

    Ir = Ir
d + Ir

s , Er = Er
d + Er

s . (8)

Then, each of the integrals of Eq. 4 and Eq. 6 is parti-
tioned into four integrals comprising combinations of di-
rect and scattered irradiances or radiances produced by
real and dummy light sources. At the spatially overlapped
real and dummy sources, the integral of the form
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for imaging of a retroreflector is expressed via 
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i.e., has the singularity at the corresponding point. To avoid
dealing with infinities, we will assume below that optical
axes of the source and receiver are always separated by
some small angle to give       

r
ns ≠

r
nr ,  so that the said integral

is zero. This singularity is inessential in practice because
the angular reflection pattern of a retroreflector always
has a finite halfwidth, but Eq. 5 is for an ideal retroreflec-
tor. Note that for spatially spaced real and dummy sources
of finite dimensions, the above integral is always zero.
Below, we will make some additional remarks with respect
to allowing for the finite halfwidth.

The components of Eq. 7 and Eq. 8 due to the direct
light (with superscript d) attenuate according to the
Bougier’s law and are easily computed.

As noted above, we will consider the imaging of objects
through a fog layer. Let, for simplicity, the optical proper-
ties of the medium be independent of spatial coordinates.
The phase function of fog is highly forward extended to
allow the small-angle diffusion approximation1 (SADA) of
the RTT to be used for computing the scattered compo-
nents of the light field. The SADA comprises the repre-
sentation of spatial-angular radiance distributions as the
Gaussian functions of the radial       
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respectively to the plane of the object viewed (being paral-
lel to the layer boundaries and normal to z axis). There-
fore, one has for the case of illumination by a narrow-angle
real or dummy source1
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where τ = εz is the optical thickness of the medium be-
tween the source or receiver and object observed (ε is the
extinction coefficient and z is the geometrical thickness),
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the full radiative flux at optical thickness τ, T(τ) = 1 -
exp (– Λτ) cosh (sτ), s = [Λ (1 – Λ) γ2/2]1/2, Λ the single
scattering albedo, γ2 the second angular moment of the
phase function of the medium, 

      S's,r (τ ,
r
ρ 's,r )  and

      I 's,r (τ ,
r
ρ 's,r ,

r
n'⊥s,r )  the normalized spatial and spatial-

angular distributions of irradiances and radi-ances
with variances    Dρs,r (τ ) = Dρ (τ ) + Dρs,r
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respectively.
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where     Dρs,r
o (τ )  depends on the area and angular pattern

of the source and, in particular, can be shown by using the
aspect-invariance principle1 to be equal to     τ β β2 2 2s r s r, ,/  is
the characteristic angular scales of the radiation patterns
of the real and dummy sources, respectively) for a point
source with Gaussian angular pattern,

    Dρθs,r (τ ) = Dθ (τ ) − A2 (τ ) / Dρs,r (τ ), (10b)

Dθ(τ) the variance of the angular distribution of an infi-
nitely wide light beam propagating through the medium,
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Under illumination by a wide light source, such as the
sun, Eqs. 9(a) through 9(d) take the form
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Imaging Simulation for Non-Lambertian Objects Observed Thro
Here Eo is the irradiance from the source at the upper
(illuminated) boundaries of the layer and Dθ(τ) is deter-
mined by Eq. 10c.

As usual for small-angle approximations of the RTT, let
light scattered over rather large angles (γ ≥ γo = 45°) be as-
sumed as absorbed. This assumption is equivalent to intro-
ducing an effective medium with single scattering albedo

    
Λ =

Λo

2
p(γ )

γ o∫ sin(γ )dγ , (12)

where Λo is the true single scattering albedo and p(γ) the
phase function. For the well-known Cloud-C1 fog model,8

Λ = 0.87 at Λo = 1. Optical parameter γ2 of the medium can
be found1 from the correlation8 γ2 = (1 – g)/2 between γ2

and the mean cosine g of the scattering angle (g ∼ 0.86 for
the model in the visible) that gives γ2 = 0.07.

We use the representation of the radiance factor of a
retroreflector in the form of Eq. 5. Suppose a Gaussian
function with halfwidth βrr for its reflection pattern. Val-
ues of βrr range9 within fractions of a degree for retrore-
flectors of different classes . How will the real halfwidth
βrr affect the obtained results? The answer to this ques-
tion depends on the ratio of βrr to the values (2Dρθ)1/2 for
scattered light (terms with superscript s of Eqs. 7 and 8)
and to the characteristic scales βs and βr of the patterns of
the real and dummy sources, respectively, for direct light
(superscript d). It can be shown that for τ ÷ 1 – 3, where
an object can be viewed yet, (2Dρθ)1/2 ≈ 9 to 12°. Therefore,
the angular reflection pattern of a retroreflector can prac-
tically be regarded as δ−function in this case to be reason-
ably expressed in the form of Eq. 5. For the corresponding
estimation with respect to direct light from both real and
dummy sources, note that we have neglected the term
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i.e., is rather small at the corresponding values of τ and
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2 .  In the following, we will continue to ne-
glect this term, that is we neglect the sharp narrow peak
[having the value proportional to exp(–2τ)] near direction

      
r
nr =

r
ns .

Sample Results
We consider below some examples to illustrate several

cases where visual perception and image characteristics
of retroreflectors are radically different from that of
Lambertian objects under observation through a
light-scattering medium such as fog. Using the method-
ology of the previous section, object images are derived
analytically by quite a simple way. Really, one would de-
rive the desired formulas describing the imaging by sub-
stituting Eqs. 9 through 11 into Eqs. 4 and 6 and
performing the integration to obtain the results in the
final analytical form. The calculations were made under
the assumption that the light receiver is a human eye to
provide its representation as a dummy point source with
the divergence of some arc minutes. This allows us to
treat the radiation pattern of the dummy source, corre-
sponding to an eye, as δ-function of both spatial and an-
gular coordinates. For simplicity, the albedos of
retroreflective and Lambertian objects will be assumed
to have constant values dependent on neither spatial nor
angular coordinates.
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Visual Perception of Retroreflective Objects having
Different Dimensions. Visual perception of an object is
determined, mainly, by a light signal arriving at an eye,
further processing of the signal by the human brain, and
accompanying physico-chemical processes. We consider here
only the optical problem for an approach to the solution to
the first stage of this complex sequence. The case of obser-
vation of a retroreflective or Lambertian object against a
Lambertian background is taken as the basis for quantita-
tive estimations and qualitative illustrations. A square with
side 2b is the object. Two types of illumination are consid-
ered, i.e., by light sources with wide (Figs. 1 through 3) and
rather narrow (Fig. 4) radiation patterns. The first can be
used as a model of illumination by, e.g., street lights or
antifog headlights along the horizontal axis (to do so10 one
needs to invoke the aspect-invariance principle1 too)
whereas the second one can serve to simulate the illumina-
tion by high or low beam of a car, etc.

Below, the object size will be expressed in the units of
the characteristic size of light-ray radial spreading in a
scattering medium, i.e., in the units of d = (2Dr)1/2, where
Dr = Dρ /ε2 is the dimensional variance of the SADA to be
computed by Eq. 10a. Fig. 1 shows the signal profiles that
arrive at an eye from the object and background common
plane under illumination and observation through a fog
layer with optical thickness τ = 1 [top line, cases 1(a)
through 1(c)], τ = 2 [middle, 1(d) through 1(f)], and τ = 3
[bottom, 1(g) through 1(i)]; i.e., Fig. 1 illustrates only a so-
called object component without taking backscattering in-
terference into account. The illumination is along the normal
to the object plane. Here, the values of P = Prr /Ωr Σr Eo (solid
lines) or PL /Ωr Σr Eo (dashed lines), where Eo is the irradi-
ance produced by the source at z = 0, are computed via
Eqs. 11a through 11d. The left [1(a), 1(d), and 1(g)], middle
[1(b), 1(e), and 1(h)], and right [1(c), 1(f), and 1(i)] columns
of Fig. 1 correspond to the decreasing object size b = 3d, d,
and 0.1d respectively. The image is formed by scanning
the eye along the mean line of the square (along the
x-coordinate). (An eye is a multielement receiver of opti-
cal radiation, and such scanning often includes the record-
ing of radiation by its different elements.) Point X = 0, Y =
0 corresponds to the center of the square, and X-, Y-values
are measured in b-units. i.e., X = xr /b, Y = yr /b, where xr, yr

are the dimensioned coordinates of the intersection point
of the receiver ’s optical axis with the object plane

   (
r
rr = {xr , yr }). Thus, the object occupies the space |X|, |Y|

≤ 1, and background –|X| > 1 at any Y or |Y| > 1 at any
X. Here, the location of the receiver has coordinates (xr =
0, yr = 0, zr = 0), the object albedo Ao(Arr or AL) = 0.3 and
that of background Ab = 1.

Consider first Figs. 1(a), 1(d) and 1(g). The appearance
of a large (with respect to d) uniform retroreflective object
(solid lines) changes considerably. For τ = 1 or 2, an ob-
server would see a clear small spot near the center of the
object. Note that this spot is brighter than the background
even though Ao < Ab. With increasing τ, the spot becomes
darker than the background [see Fig. 1(g)], but is clearer
than surrounding regions of the retroreflector. At the pe-
ripheral parts of the square, dark belts along four sides of
the real object are detected. The outer borders of these
belts coincide with the real boundaries of the square. We
will not give a quantitative estimation of the border loca-
tions of these regions here, but will restrict ourselves by a
qualitative description to attract one’s attention to the
image transformations. So, the observer could think, e.g.,
that he sees two objects with variable brightness instead
of the single original square illuminated by a uniform wide
light beam with constant albedo, or that reflective char-
acteristics change substantially along the object surface.
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Note that the similar Lambertian object appears in the
usual way being approximately uniformly dark against a
clear background.

At smaller object sizes [Figs. 1(b), 1(e) and 1(h)], the
retroreflector images are featured not only by inverted
brightness as contrasted with that of the images of the
Lambertian object, but because of the influence of a scat-
tering medium, give wrong information on the object shape
and dimensions too. Indeed, the retroreflective square
looks essentially like a clear circle (note once more that Ao

< Ab) having a diameter larger than the side of the original
object. Image brightness is again variable, being maximal
near the true center of the object to decrease monotoni-
cally toward the edges.

Only for small objects [Figs. 1(c), 1(f) and 1(i)], would an
observer see the real contours of a retroreflective object,
but its Lambertian background with Ab = 1 would look dark.
So, one could say as if the albedo of a retroreflector has
increased to introduce the “effective’ albedo of a Lambertian
object, the retroreflector could be replaced by. This ques-
tion will be considered in the next subsection.

Figure 2 shows the object component profiles along the
x-coordinate for the same large-area retroreflective square
(b = 3d) and τ = 2 at different Y values. Figure 2(a) is the
same as Fig. 1(d) (Y = 0). One would see the transforma-
tions of the central spot of the images with increasing Y
and approach of these profiles to that of the Lambertian
object [cf. solid and dashed curves in Fig. 2(d)].

Simulated 2D images (only object components) of the
retroreflective squares with halfside 3d, d, and 0.1d ob-
served through the model fog layer having τ = 2 are illus-
trated in Figs. 3(a), 3(b), and 3(c), respectively. These
images represent vividly all the above features. Note the
images of Fig. 3 are normalized by some other way in con-
trast with that of Fig. 1 through Fig. 2; i.e., their bright-
ness values are equalized in the center of the square.

A more intricate situation takes place under illumina-
tion of a retroreflective object by a source with a narrow
radiation pattern (Fig. 4). The source is assumed as point
one providing a divergent light beam with characteristic
angle βs = 10°. Here are illustrated the images of objects
with albedo only 0.02 observed on Lambertian background
with Ab = 1 for the source and receiver located at the same
point. As in Fig. 1, the top, middle, and bottom lines of
Fig. 4 give object component profiles for τ = 1, 2, and 3,
respectively. The left column of Fig. 2 corresponds to the
case when the center of the light spot and that of the ob-
ject coincide, but the right one corresponds to the case when
there is a distance of 0.2b between the said centers along
x-axis. Object size b = d here. Signal power values are
normalized by P = Prr /Ωr Σr ε2 (solid lines) or PL /Ωr Σr ε2

(dashed). All the features mentioned with respect to Fig.
1 are also observed here. However, the pictures are more
complicated because of the superimposition of the above
effects of Fig. 1 on nonuniform illumination. We will not
give a detailed description of the resulting images, but
note only that the amplification of real albedo of a ret-
roreflector is more pronounced under illumination by such
a source. Really, a retroreflector can be seen as a clear
object under such a large difference in the albedos.

Effective Albedo of a Retroreflector. Figures 1 and
4 show a retroreflective object as having a higher effec-
tive albedo than the real one. The reason for such an in-
crease is rather obvious: radiation is reflected strictly
backward, being directed preferably to the receiver. The
analytical expression for the effective albedo is derived
quite simply. By substituting the explicit form of Is and Ir

according to the SADA into Eq. 6 and integrating, one
obtains that, at a small-sized retroreflector [b << (2Dr)1/2,
Barun



Figure 1. Signal power profiles from retroreflective (solid lines) and Lambertian (dashed lines) objects observed through the model
scattering medium Cloud C-1 with optical thickness (a) through (c), τ = 1; (d) through (f), τ = 2; (g) through (i) t = 3, under illumination
by a wide light beam for Y = 0 and Ao = 0.3, Ab = 1. Object—square with side 2b, b = 3d (left column), d (middle column), and 0.1d, (right
column).

(g) (h) (i)

(a) (b) (c)

(d) (e) (f)
here b is not necessarily the side of a square, but a char-
acteristic size of an object], a retroreflective object with
albedo Arr can be approximately replaced by a Lambertian
one having effective albedo α(τ)Arr. For (sτ)2 << 1 and il-
lumination by a wide light beam,

    
αd

w (τ ) = 1
8Dρθ (τ )

exp − δ 2

8Dρθ (τ )












, (13)

under imaging preferably by direct light (here, δ is the
angle between the optical axes of a source and receiver),
i. e., under the main contribution to Prr (see Eq. 6) from
the integrals of the type 
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under the dominant contribution of scattered light to an
image, i.e., under the main contribution to Eq. 6 from

      µd
r
n' Is

s Arr Ir
sd

r
R∫∫ , where Dρθ(τ) is determined by Eq. 10(b).

When a retroreflector image is formed by both direct and
scattered light, that is for contributions from the above
integral types being the same order, α takes some inter-
mediate value relative to that given by Eqs. 13 and 14
respectively. Similar formulas can be derived11 for illumi-
nation by a narrow-angle light beam. Note that the condi-
tion (sτ)2 << 1 is valid practically at all the values of τ
when an object still can be seen.

As follows from Fig. 1 through 4, effective albedo of a
large-sized retroreflector would depend on the coordinates
of a point within its area and vary over the object surface.
Hence, the introduction of the effective albedo is not so
useful here. Nevertheless, one could do this in an analyti-
cal form by substituting the explicit expressions for Is and
Ir of Eqs. 9, and 10 into Eq. 6 to replace a retroreflector by
a Lambertian object with the said albedo value.
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Figure 2. Signal power profiles from retrore-
flective (solid lines) and Lambertian (dashed
lines) objects observed through the model scat-
tering medium Cloud C-1 with optical thick-
ness τ = 2 under illumination by wide light beam
for (a) Y = 0, (b) 0.5d, (c) 0.7b, and (d) 0.9b, Ao =
0.3, Ab = 1. Object—square with side 2d.

(c)        (d)

(a)         (b)
Unusual Behavior of the Contrast of Retroreflector
Image. By definition, the contrast κ of an object image is κ
= Pvs/Pint, where Pvs and Pint are the power values of valid
signal and optical interferences, respectively. The valid sig-
nal is understood as the difference of signals corresponding
to two points of an image; one of these points belongs to the
object image and the other to the background. Optical in-
terferences comprise the sum of signal power from the back-
ground against which the object is viewed and power of
backscattering interference because of a medium between
the object and receiver. Above, we have studied the object
components of the signals (P values at |X|, |Y| ≤ 1 and
|X| > 1 or |Y| > 1, respectively in Fig. 1 through Fig. 3).
To compute the backscattering interference power, we have
used the method12 described in Ref. 5 as applied to the prob-
lem considered here. The description of this method will
not be included in this paper.

Because of increasing effective albedo of a retroreflec-
tor, a question arises on changes of its contrast with opti-
cal thickness. Really, as seen from Eqs. 13 and 14, the
albedo gain α(τ) has a maximum as a function of τ. So, two
competing processes would take place at growing τ to af-
fect κ in opposite directions. The first is the increase in
α(τ) up to the maximum, thus enhancing the contrast. The
second consists of the attenuation of the valid signal and
growth of the backscattering interference to lead to the
contrast decrease. The combined action of these two pro-
cesses results in the dependences of the contrast magni-
tude of retroreflector images shown in Fig. 5. This
illustrates the case of illumination of a small retroreflec-
tor by a wide light beam and its observation against a
Lambertian background with albedo Ab = 0.4. Object al-
bedo ranges from 0.1 (curve 1) to 0.2 (curve 3). At low τ,
contrast magnitude |κ| decreases, contrast itself being
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negative and the object darker than the background. Then,
at intermediate τ, the object becomes invisible because its
image has negligible contrast, and during further submerg-
ing into a scattering medium, it appears as clear (although
Ao < Ab). And what is most interesting is a maximum of
the contrast at some optical thickness. In other words,
there is an optimal τ value where a retroreflector would
be viewed most clearly, other conditions being fixed.

Conclusion
This paper has presented an approach to treating im-

aging, in general, and visual perception in its first stage,
in particular, of objects with arbitrary reflection dia-
grams. We considered here the observation of retrore-
flective objects through a light scattering medium. Their
images formed by an active vision system show a num-
ber of surprises. First, a retroreflector may be visually
perceived as two different objects. An image of a retrore-
flector being illuminated uniformly and having constant
reflective characteristics can be highly nonuniform in
brightness, etc. Second, a retroreflector with very low
albedo located against the ideally white Lambertian back-
ground may be viewed as a clearer object than the back-
ground. We give a quantitative estimation of the albedo
gain. This effect of albedo amplification by a scattering
medium leads to interesting unusual behavior of the con-
trast of a retroreflector image. The dependence of the
contrast on optical thickness of a medium can have a
maximum to provide the best conditions of object obser-
vations for a case when a retroreflector is submerged into
the medium rather than “lying on its surface.” This
mechanism of contrast enhancement can be set up as a
hypothesis for improving visibility of objects from space
Barun



Figure 3. Simulated 2D images (only object components) of the retroreflective squares with halfside (a) b = 3d, (b) d, and (c) 0.1d
observed through the model scattering medium Cloud C-1 of optical thickness τ = 2 under illumination by wide light beam.

(a)

(b)

(c)
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Figure 4. Signal power profiles from retroreflective (solid lines) and Lambertian (dashed lines) objects observed through the model
scattering medium Cloud C-1 with optical thickness (a) and (b) τ = 1, (c) and (d) τ = 2 and (e) and (f) τ = 3 under illumination by narrow-
angle (βs = 10°) light source for Y = 0 and Ao = 0.02, Ab = 1. Object—square with side 2d. The center of the light spot coincides with the
center of the object (left column) and is 0.2d-spaced from it (right column).

(e) (f)

(c) (d)

(a) (b)
150     Journal of Imaging Science and Technology Barun



Figure 5. Image contrast for a small retrore-
flector illuminated by wide light beam as a
function of optical thickness of the model scat-
tering medium Cloud C-1 for Arr = 0.1 (curve
1), 0.15 (curve 2), 0.2 (curve 3), Ab = 0.4.
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as compared with that from low altitudes, i.e., as a hy-
pothesis explaining the fact being repeatedly told us by
astronauts. However, the hypothesis requires further in-
vestigations to substantiate.
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