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Introduction
Presently color image processing lacks effective fast algo-
rithms, notably because of the number of bytes of data
represented in a single image. Color images acquired from
cameras or scanners or color images to be displayed on a
monitor are, in fact, represented in three color bands: the
red, green and blue bands. As a result, before all treat-
ments, the information must be minimized. Two ap-
proaches are usually used: the quantization process1–3 and
the multiresolution one. The quantization process involves
selecting some representative colors from the color range
of the image and then assigning each pixel to one of them.
Our research work takes the multiresolution approach,
and, more precisely, uses image pyramids, which are
multiresolution image representations well matched to the
human visual encoding.4

The use of pyramidal techniques in computer vision has
been studied by many authors since Tanimoto and
Pavlidis.5 The basic idea of the pyramid structure, formal-
ized only for gray-level images, is to produce a stack of
interrelated images with progressively reduced resolu-
tions. The sampling rate of these lower-resolution images
is reduced in accordance with the elimination of the higher
frequencies. Note that many different functions have been
introduced to realize such a representation. Typical ones
are convolutions with different kernels, filters, or model
fitting.6 The most useful scheme is that of Burt,7 where
the principle is to apply a low-pass filter, generally a
Gaussian one, repeatedly generating reduced resolution
versions of the input image.

Color image analysis is still limited by the very significant amount
of data. Most real-world images are, of course, not monochrome,
but full color. Three-dimensional imaging utilizes large data sets,
demanding computer storage and speedy algorithms of critical
importance. With this aim in view, without taking into account
both spatial and color information, a reducing step cannot be ef-
ficient. Thus, a multiresolution process seems to be well adapted,
allowing simpler and faster computations. We present here a
multiresolution tool, the Gaussian pyramid, first introduced for
gray-scale images. We discuss the way to construct the color pyra-
mid in a gamma-corrected RGB space, where the color mixing is
additive.
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In this report, we propose to generalize such a construc-
tion for color images. More particularly, the problem of
linear color mixing will be discussed. It allows one to com-
pute, thanks to a real spatiocolor approach, a new set of
representative colors that is more relevant with regard to
the full-resolution image. Last, we will focus on its pos-
sible utilization in color image segmentation, based on
interactions between consecutive levels. We will conclude
by describing the interest for such a tool in a database.
Considering a relational database retrieval system, how
can we, in fact, find the images with most similar features
rapidly?

Tools for a Color Gaussian Pyramid
Gray Level Pyramid. Pyramidal techniques initially

used only gray values.8 In fact, a gray-level pyramid is a
hierarchy of fine to coarse resolution versions of an im-
age, decreasing generally twofold from one to the next
(Fig. 1).
Figure 1. An overlapping pyramid.
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Let 2n × 2n be the original size of the image. The levels
are then of sizes

2n–1 × 2n – 1, 2n–2 × 2n–2, . . . , 2 × 2, 1 × 1, (1)

As a result, an entire pyramid contains (4n + 1 – 1)/3 ele-
ments. Generally, the values of the current level are com-
puted by convolving the gray values at the previous level
with a K × K kernel and by sampling them at half the
current spatial frequency.
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Thus, the value of each element (x, y) at level l is com-
puted as follows:
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By definition, the K 2 pixels (2x + i – z, 2y + j – z) at level
l – 1 are the sons of (x,y) at level l. When (x, y) is used to
compute an element at level l  + 1, each of them is one of
his fathers (Fig. 1).

Different forms of the generating kernel w(i, j) have been
studied by Burt.7 The Gaussian form tends to preserve
the shape of the objects and the contrast of the image. It
is defined as follows:
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Such a kernel defines the overlapping Gaussian pyramid
presented in Fig. 1. Figure 2 shows, for example, a 1-D
overlapping pyramid built upon 8 pixels (   ■■ symbols stand
for computation of border pixels).
Figure 2. A 1-D overlapping pyramid.
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Before introducing a color image pyramid, we present
in the next section some of the most common color spaces
that are used in the field of image processing.

Colorimetry and Color Spaces. Colorimetry is a sci-
ence that tries to quantify how the human visual system
perceives color.9 Several standards defined by the “Com-
mission Internationale de l’Eclairage” (CIE) can be applied
to the field of computer graphics.

The difficulty of defining a relevant color space can be
illustrated by the color matching experiment.10 In this ex-
periment, the observer is asking to match a test light by
specifying intensities of several control lights. These lights
are sources at different wavelengths that together cover
the visible spectrum.

Combining that experiment with the study of the re-
ceptors of our visual system, it has been shown that the
human eye can match a test light with three types of
receptor in the short, medium, and long wavelength
range, respectively.

To be able to match a color with those three control lights,
some matching curves have been defined experimentally.
One important point is that for some test lights, the ob-
server must add a color light in the left side of the experi-
mental setup. In other words, for some colors, one has to
add a control light with a negative intensity.

XYZ Color Space. For those reasons, the CIE decided
to create a theoretical color space called CIE XYZ color
space. This space is based on three hypothetical prima-
ries (X, Y, Z), which have the following properties:
• all colors in the positive octant
•  equal integration of matching curves
• Y component matches the luminance.

´
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The global shape of the XYZ matching functions is shown
in Fig. 3.
Figure 3. XYZ matching functions.
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RGB Color Space. In the field of computer graphics,
one manipulates the three RGBd color components as three
8-bit integers (here RGBd is the digital color space), corre-
sponding to the output from cameras and to the way the
video cards send their data to the monitor. But these com-
ponents do not give any information about the color. For
example, the triplet (255,0,0) is a red but we don’t know
which red it is!

Thus, in order to have a colorimetric approach to the
RGBd color space, it is important to understand the links
between the CIE XYZ and the RGBd color space.

Gamma Correction. Because of the nonlinear response
of the electron gun of a cathode ray tube (CRT) to voltage
input, the RGBd color space must be compensated. The
commonly used correction is the gamma correction (noted
γ), which takes into account the specification of a given
CRT. The actual value of gamma may range from 2.3 to
2.6.11 From now on, we will note as RGB the gamma-
corrected RGBd space.

RGB to XYZ Transformation. The transformation of
the RGB color space to the XYZ color space is a linear
transformation taking into account the chromaticity of the
three primaries. Usually, these primaries are the set of
primaries of the RGB monitor.

Equation 4 gives the transformation formula:
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where (Xr, Yr, Zr), (Xg, Yg, Zg), and (Xb, Yb, Zb ) are the
XYZ coordinates of the red, green, and blue primaries,
respectively.

L*a*b* Color Space. One other restriction of the RGB
color space is its non-uniformity. In other words, the same
distance between two colors does not give the same per-
ceptual difference, depending on the color space area
considered.

Therefore, in 1976, the CIE L*a*b* color space was
introduced by the CIE. This color space, which is a non-
linear transformation of the XYZ space, has uniformity.
It is built from the XYZ color space with the following
relations:12
Konik et al.
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The CIE L*a*b* space, which is often used in colorim-
etry applications, is not widely used in the field of com-
puter graphics. The main reason is that it implies a space-
and time-consuming manipulation of real numbers. The
L*a*b*  space is well designed for any applications where
color distances are computed.

I1I2I3 Color Space. Another problem of the color spaces
is the correlation of the three axes. One common solution,
if one wants to work in a decorrelated space, is to perform
the Karhunen–Loeve transformation. This transformation
consists of three steps:
• compute the covariance matrix W of an image (or re-

gion of an image) I
• compute the eigenvalues of W, λ1, λ2 , λ3, with λ1 ≥ λ2 ≥ λ3

• compute the eigenvectors wi corresponding to the λi.

We can then compute the three new components X1, X2,

and X3 as follows:
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This transformation is used to derive color features with
large discriminant power. More precisely, the first axis,
X1, has the largest variance for the region I, and X2 is the
“best” axis among those orthogonal to X1.

Ohta, Kanade, and Sakai13 have proposed a method to
avoid the computation of the eigenvalues for each region
or image. They have defined an experimental “well-
decorrelated” color space, derived by computing the
Karhunen–Loeve transform on eight test images. This
experiment involved

I1 = 1/3(R + G + B)
I2 = 1/2(R – B)  (8)
I3 = 1/4(2G – R – B)

as three important components for representing color
information.

Color Pyramid Construction
Considering the pyramid in gray levels and the different

color spaces, let us then introduce the color pyramid. The
Gaussian pyramid construction consists mainly of two steps:
a Gaussian convolution and a subsampling operation. Ap-
plied to a color image, the first step—which is a linear op-
eration—is to perform an additive color mixture.

Grassman’s Laws. Grassman’s laws14 specify that, for
an additive color mixture, if two colors C1 and C2, with
tristimulus values (X1, Y1, Z1) and (X2, Y2, Z2), respectively,

,   (5)
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are mixed with proportion α and β, respectively, then the
tristimulus values (X, Y, Z) of the mixture color C are:

X = αX1 + βX2

Y = αY1 + βY2 . (9)

Z = αZ1 + βZ2

The RGB color space (γ-corrected RGBd ) can then be used
to perform an additive color mixture as outlined by Berns,
Motta, and Gorzynski.15

Construction. Equations 10 through 12 give us a way
to build each pixel of level l , using a Gaussian kernel. The
level l is computed using three Gaussian pyramids, one
per color component. For example, in an RGB color space
(see Fig. 4), the color Cl = (Rl  , Gl  , Bl ), can be computed as
follows:
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Figure 4. Color pyramid.
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Nonlinear Color Spaces. Let us consider the CIE
L*a*b* color space, which, as we said previously, is a non-
linear transformation of the CIE XYZ color space. Note
that in such a space, the mixture of two colors C1 and C2 is
not located on the straight line that links the two initial
colors. We can formulate this fact by:

C1,C2 ∈ {L*a*b* } ⇒ C ≠ αC1 + βC2. (13)

For example, if we map the RGB cube in the L*a*b*
color space, we can see in Fig. 5 that the yellow, a mixture
of green and red, is not on the straight line linking those
colors.
The metric is, in fact, no longer Euclidean, but Rieman-
nian, implying geodesic lines instead of straight ones.16

Thus, the color pyramid cannot be mathematically con-
structed in the L*a*b* color space.

Nevertheless, the L*a*b* color space is well designed for
the calculation of color distance and can be used in this
context. For example, we show here a color quantization
process applied to a level of a Gaussian pyramid. Such a
process generally consists of two steps: (1) clustering the
color space of the level to be quantized, and (2) assigning
the centroid of the nearest cluster to each color of this level.
Vol. 40, No. 6, Nov./Dec. 1996     537



Figure 5. RGB cube in the L*a*b* space.
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The second step is often called the mapping process and
involves many color distance calculations. Performing the
mapping in the L*a*b* color space can often increase the
quality of the resulting quantized level (see Fig. 6).
Results and Discussion
Pyramid Construction. Figure 7 shows classical im-

ages to test our multiresolution process: airplane, mandrill
and miss; airplane has relatively little contrast in the white
colors, mandrill is interesting because of its texture, and
miss covers a wide range of color in the color space.
Figure 8 presents the RGB pyramids of 4 levels associ-
ated with each test image, with consecutive images re-
duced two times in both horizontal and vertical directions.
The overlapping kernel is Gaussian.
For better visualization of the propagation of the infor-
mation, Fig. 9 presents all levels at the same size as the
original.
At the same time, we construct a special diagram in the
a*b* plane for each level (Fig. 10); this diagram is a “view”
of the color cluster associated with a level as seen from
the white point looking toward the black point along the
L* axis. It can be seen that the more characteristic colors
are retained in the higher levels, until the subsampling is
not too high. This is particularly evident with the image
miss, where the small details disappear rapidly. In this
connection, it can be demonstrated that the maximum level
hmax where an object of diameter d can be detected is:17
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Thus, the structure seems to be quite limited for describ-
ing elongated objects, as is the case in the airplane image.
The object is disproportionate along one direction, and the
subsampling is the same for the two different spatial fre-
quency components. A solution exists for luminance images
using a local approach.18 Considering the mandrill image,
the filtering smooths the texture in accordance with the
human visual analysis, especially in the coat. The color as-
sociated to the coat is then still representative at the third
level, where the color seems to be a logical “average.”

In conclusion, the color range of the image is well retained
at each level while the spatial resolution decreases. More-
over, the coarser the resolution is, the more homogeneous
the relevant regions appear. The effect of this is a conver-
gence of the clusters to their center of gravity (Fig. 10).

Considering this attractive tool, we now present some
possible uses in color image segmentation and in a data-
base. In fact, such a process permits simpler and faster
computations.
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Segmentation Process. Color image segmentation
permits us to delineate the meaningful areas that are usu-
ally homogeneous in a color and a texture sense. With this
aim in view, histogram-based methods are classically
used,19 but this approach suffers objectively from the lack
of local spatial knowledge. Consequently, the chosen repre-
sentative colors unfortunately can be in poor agreement
with the reality. Other methods exist; among them the
multiresolution approach seems the most relevant.20,21 In
fact, this approach simulates the human visual system by
taking into account the focus-of-attention principle, assum-
ing that there exists a resolution where the detection and
the delineation of a region are easier. More precisely, the
color pyramid is attractive because the lower resolutions
provide a global view of the image, while the higher reso-
lutions provide the details. The higher resolutions permit
us to take into account local information that is impor-
tant in the human visual process of seeing an image. Gen-
erally speaking, the segmentation method depends on a
bottom-up process for detecting and a top-down process
for delineating.

Starting at the bottom of the pyramid, we must decide on
the best cell to represent a region: its root. This detection
depends on the analysis of the links inside the pyramid be-
tween each cell and its fathers. For example, a color homo-
geneity criterion, defined as follows can be used:
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The more homogeneous a set of colors is, the more sensi-
tive this distance is to the color contrast. Specifically, we
can allow nodes to refuse to link to any of their fathers if
the gray-level value of the current father is some number
m times the color dispersion, and we then consider the re-
gion homogeneous. In fact, we stop just before the region
disappears or is connected with another neighboring one
because of the subsampling. After that, each homogeneous
region is represented by a root at an optimal level in the
pyramid, where it contrasts best from its neighborhood.
From this root, a top-down process can be performed until
the full resolution image is obtained, keeping at each level
the closest sons.

As a conclusion, the results are improved by using two
color pyramids: one RGB and one L*a*b* or L*u*v*. In
fact, the pyramid is constructed in the RGB color space,
and consecutive levels are compared in the L*a*b* or
L*u*v* space. These color spaces are objectively more
uniform and more conceivable because each level is trans-
formed in the L*a*b* system only after the construction
in the RGB system.22

Conclusion
Regarding the propagation of both spatial and color in-

formation through the pyramid, the structure defined here
can be efficient in image processing (compression, seg-
mentation, database,. . . ). The construction must be done
in a linear color space such as RGB, and comparisons be-
tween consecutive levels are improved in more uniform color
spaces such as L*a*b*. At present, the number of elements
is divided by four at each level, and this growth may be too
fast for some applications. We can then work on fractional
color pyramids to increase the number of levels.23

The increasing importance of databases and the need
for short computation times have the potential to lead to
Konik et al.



Figure 6. Mapping in the RGB and L*a*b* color space.
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Figure 7. Test images airplane, mandrill and miss.
Figure 8. RGB pyramids on the test images.
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Figure 10. Color cluster projection onto the a*b*plane.
Color Pyramids for Image Processing
Figure 11.Color cluster projection onto the a*b* plane.
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the utilization of such a tool. Particularly, fast algorithms
are needed for query-by-content retrieval or image match-
ing. In fact, image-by-image review to delineate content
features is not feasible when the collection contains a large
number of images. Our tool can then be used, for example,
in a coarse retrieval process and improve the ability to
retrieve images efficiently.

As both color and morphometric information are well
propagated through the pyramid, the main features can
be at first extracted at a lower resolution level. In fact, all
the details are not absolutely necessary for finding im-
ages with the most similar features. Subsequently, a more
precise query can be launched only for selected images in
a higher resolution.

Finally, there is at least one commercial implementa-
tion of multiresolution: the PhotoCD format introduced
by Kodak.24 This file format stores an image at multiple
levels of resolution. To minimize the amount of data of
each file, high levels of resolution are not stored in the
file, but instead are reconstructed by interpolation from
the lower level of resolution. This data structure can then
be seen as an application of one field of pyramidal pro-
cessing: the Laplacian pyramid.25
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