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Introduction
Measuring performance of image processing techniques
is essential to evaluate results given by an image process,
to improve the quality of an image process, or to compare
different image processes. For example, measuring per-
formance can provide a feedback path by which a system
can modify its strategy during processing.1

In earlier work, comparison was realized between one
image produced by a human and another one produced by
the algorithm to be tested. This approach requires a ref-
erence image corresponding to human observation, which
is usually not available in automatic processing, render-
ing the proposed measures useless for most processing
techniques.1 For example in segmentation the reference
image used to evaluate the final result is that of human
performance in segmenting the image. Performance pa-
rameters are then measured separately for each region.

Rather than having an a priori knowledge about regions
in the initial image, we propose in this report to define per-
formance parameters according to the original studied im-
age and to the visual observation independently of the
reference image. Moreover we suggest developing measures
that are independent of image processes. Measures proposed
in this study have been developed to be applied indiffer-
ently to segmentation, quantization, compression, or other
image processing techniques. Images compared here illus-
trate the evaluation of two segmentation processes.

Current subjective methods for evaluation and compari-
son of image processing techniques are inadequate. In the
same way, current objective quantitative measures are not
effective because proposed criteria do not accurately re-
flect the amount of disagreement between an original and

Current subjective methods for evaluation and comparison of im-
age processing techniques are generally not sufficiently relevant
and accurate, essentially because they are not correlated with
human observation. We propose a method to measure and dis-
play color image differences derived from the basic characteris-
tics of human visual perception. This method provides images of
color differences. These images can be used to define a global
relative measure to predict image quality.
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a test image.2 Most of these criteria are linked to contrast,
sharpness, spatial frequency, or intensity parameters com-
puted pixel by pixel or region by region.1,3–5 Then error
measures are computed according to distortions produced
between image parameters and weighted according to their
importance.2,6 Nevertheless because these error measures
are not evaluated in terms of their correlation with a hu-
man observer, they are inadequate to compare images ac-
curately. Indeed, image processing techniques require
accurate measures of subjective differences to predict im-
age quality.

Although measures to compare images have been im-
proved during the last few years, we believe they do not
make enough reference to visual observation. Even if ex-
perience and theory show that it is extremely difficult to
define an objective measure that takes into account most
significant phenomena linked to visual observation, it has
been shown that we can, nevertheless, define a heuristic
measure from subjective criteria to evaluate image differ-
ences.7,8 Such a heuristic measure is based on subjective
criteria that have been selected both because they are
linked to psychometric observations and because they re-
late to independent but complementary features.

Three criteria are considered in this study: the bright-
ness difference, the dispersion difference, and the emergence
difference. These criteria correspond to physical measures
linked to psychometric observations. Among these mea-
sures, contrast is one of the image quality features most
commonly used.1,4,5 In this report, contrast is computed
through the evaluation of brightness differences. The spa-
tial frequency features that are also commonly used to
measure spatial activity, such as noise, texture, or unifor-
mity, are calculated here to define dispersion differences
and emergence differences; local and surround excitation
and inhibition effects also are taken into account.5,9 All these
measures are successively presented in the following sec-
tions. These criteria are defined locally according to a neigh-
borhood function to emphasize the weight of certain pixels
like the principle focus of attention.10 Moreover, using local
rather than global measures leads to accurate evaluation
of image quality, because the measure is fitted to critical
areas rather than over the whole image.9

These three criteria are combined to define a local im-
age correlation measure. By definition, the criteria in-
volved in this combination are independent, because they
are derived from a priori independent psychometric at-
tributes and because they relate to different physical at-
tributes that are really independent. It could be interesting
to analyze quantitatively the interdependence of these
criteria by statistical evaluations, but it would require a
lot of testing and observation, whereas the results them-
selves seem to satisfy the independence hypothesis, as
evidenced by Figs. 6, 8, and 9. These figures successively
present the three criteria ranged from 0 to 1 (i.e., from



.

most important differences to no difference) and displayed
through an 8-bit digital image.

We will show that to reflect human observation accu-
rately, measures need to be defined according to the de-
gree of homogeneity of the image, such as textured or
edge areas. The measure of edge differences is dissoci-
ated from other measures because it is strongly corre-
lated to them, especially to the dispersion difference
measure. Consequently, this measure cannot be multi-
plexed to the others but requires specific processing. We
will present at the end of this report a masking process
from which we can adjust our local image correlation mea-
sure according to edge differences. From a perceptual
point of view, edge elements seem to play a specific part
in the observation of images.1,5,8 In most cases, edge ele-
ments prevail over surrounding region characteristics
because they focus the attention more. That is the rea-
son for a masking process.

The local correlation measure is computed for each pixel.
It can therefore be displayed initially as an image of color
differences. We show that results emphasize distortions
observed between the original image and the test image.
Then we propose a global measure of “average misfit” be-
tween images from the spatial distribution of distortions
on the image of local correlations. Other developments will
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be necessary to define a more accurate global measure.
They will be presented in a subsequent report because they
are outside the scope of this study.

Fields of Study
Image Peppers shown in Fig. 1(a) and two segmenta-

tion processes, described as Process 1 and Process 2, have
been chosen to illustrate parameters and criteria that have
been computed in this study to underline and to quantify
the most noticeable image differences. The segmented im-
ages are shown in Figs. 1(b) and 1(c).
Figure 1. (a) Image Peppers; (b) result achieved with Segmentation Process 1; (c) result achieved with Segmentation Process 2

(b) (c)

(a)
In the following notation, I is the reference image and
J is the image to study. For example, I can be the origi-
nal image and J an image resulting from a segmentation
process. From these two images we compute three new
images: the local brightness difference image B, the lo-
cal dispersion difference image C, and the local emer-
gence difference image E, which will be used to compute
the comparison image D. These images are computed
according to the formulae introduced in the following
sections. For example, Figs. 6(a), 8(a), 9(a), and 11(a)
show, respectively, images B, C, E, and D computed from
the result achieved with Process 1 for image Peppers of
Fig. 1(a). In the same way Figs. 6(b), 8(b), 9(b), and l l(b)
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correspond to the results provided by Process 2 from the
image Peppers.

By definition, segmented images present homogeneous
regions that can be displayed by only one representative
color per region. Likewise quantized images present ho-
mogeneous sets of colors that can be displayed by only one
representative color per set. Consequently, whatever the
process applied to an image, it is important to analyze
whether representative computed colors are really relevant
for the image under study. In that way we propose first to
compute an image of differences and second to define mea-
surements to analyze these differences from the image of
comparison. Rather than computing an absolute measure
of these differences, we propose to compute a relative mea-
sure. This allows us either to improve the quality of an
image process or to compare different image processes.

Notations and Formulas
Definition of a Weighting Function. Let us intro-

duce several notations and formulas used in this report to
define our criteria of comparison.

Let P be the image plane and

V(x,y) = {(x + i, y + j) ∈ P | – 2 ≤ i, j ≤ 2} (1)

be the set of pixels that belong to the neighborhood of pixel
(x, y). This neighborhood must not be too large, because
the larger its size the fewer the peripheral pixels clus-
tered in the neighborhood linked to the central pixel.11

Moreover, the smaller this neighborhood is, the more im-
age processing techniques emphasize local information,
such as edges and details, without increasing their size.

Let ω be a weighting function that is normalized, sym-
metric, and unimodal, as described in Fig. 2. This function
gives to each pixel a weight that is proportional to its dis-
tance from the central point [see Figs. 2(a) and 2(b)]. It is
represented as a discrete function defined only for integer
values on i and j axes. The weighting function ω can be
rescaled and adjusted for fractional values, as shown in Figs.
2(c) and 2(d). With weights initially chosen [see Fig. 2(a)],
its shape converges rapidly to a characteristic form that
closely resembles the Gaussian probability density function.12
Figure 2. Weighting func-
tion ω used in this study:12

(a) ω defined at (i, j) with
–2 ≤ i, j ≤ 2; (b) ω viewed
according to i axis; (c) ω
rescaled and expanded
twice; (d) the weighting
function ω converges rap-
idly to a characteristic
Gaussian-like form.

ω(i,0)

ω(i,j)
Even if this function does not correspond to the math-
ematical model that has been defined to simulate the focus
of attention of visual acuity by Burt,13 it can be considered
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as a good descriptor for a 5 × 5 kernel for which the goal is
to emphasize central vision relative to the periphery. Thus,
when we use this kernel in a convolution we underline the
contribution of the central pixel and, in the same way, take
into account the influence of the surrounding pixels that
belong to the neighborhood under study.

Definition of an Average Function and a Variance
Function. Let

    
µω

K (x, y) = ω (i, j) ⋅ f K

j
∑ (x + i, y + j)

i
∑ (2)

be, according to weighting function ω, the weighted aver-
age value of the f K(x + i, y + j) values of the neighborhood
V(x, y) centered at pixel (x, y). The value f K (x + i, y + j)
represents
• the gray level of pixel (x + i, y + j) when K = 0,
• the trichromatic components of pixel (x + i, y + j) when

K = 1, 2, 3. For example, f l, f 2, and f 3 will, respectively,
represent the R, G, and B values of pixel (x + i, y + j).
Let
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be, according to weighting function ω, the variance around
the weighted average value of the f K(x + i, y + j) values of
the neighborhood V(x, y) centered at pixel (x, y).

The two functions   µω
K and   σω

K  are then locally defined
by convolving the neighborhood of each pixel with the
weighting function introduced above (see Fig. 3).
Definition of Covariance Functions. Let
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Figure 3. Convolving the neigh-
borhood V(x, y) by weighting func-
tion ω to define an average value
for pixel (x, y).
be the covariance of the f K (x + i, y + j) values of the neigh-
borhood V(x, y) centered at pixel (x, y) and computed be-
tween two images I and J according to kernel ω. The values

  f I
K (x,y) and   f J

K  (x, y) represent the respective f K(x, y)
values for Image I and Image J. Likewise,   µ Iω

K  (x, y) and

  µ Jω

K  (x, y) represent the weighted average values of the
respective f K(x, y) values for Image I and Image J.

The function covω
K (x, y) is locally defined by cross-con-

volving the two color distributions of images I and J with
the weighting function ω under study (see Fig. 4).
Figure 4. Cross-convolving of the two color distributions f I
K  and f J

K  with kernel ω(i, j) to define a covariance value for pixel (x, y).
In contrast to functions µω
K  and σω

K, which character-
ize only the local color distribution of an image, the func-
tion covω

K  enables us to analyze simultaneously two local
color distributions and differences that can appear between
these two distributions.

Whatever the descriptors used to characterize color dis-
tributions, we can indifferently use scalar or vectorial no-
tations. We can use any Euclidean metric as norms L1, L2,
or L∞. Nevertheless, considering there is no order relation
between colors, it does not make any sense to define an
average color value for a set of colors or to compare two
averaged color values when the colors involved do not have
the same hue. Consequently, rather than using a 3-dimen-
sional color descriptor to characterize color distributions
and their differences we will use a combination of the three
1-dimensional descriptors computed from the three color
components f 1, f 2, and f 3.

Then, by using norm L1, the color variance value and
the color covariance value will simply be defined accord-
ing to the following formulae:

σω (x, y) = σω
K (x, y),

K =1

3

∑ (5)
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covω (x, y) = covω
K (x, y).

K =1

3

∑ (6)

Another way to measure differences of distribution be-
tween two images consists in analyzing each distribution
according to the other one.

Let

    
e x y i j f x i y j f x yIJ

K
I
K

J
K

ji

( , ) ( , ) ( , ) ( , )[ ] = ⋅ + + −[ ]∑∑2 2
ω  (7)

be a measure of dispersion of the central value f J
K (x, y)  of

Image J relative to the f I
K  values of Image I on the neigh-

borhood V(x, y) centered at point (x, y) (see Fig. 5).

In the same way we can define the measure eJI

K (x, y),
which is symmetrical with the first one, or we can define
two measures eII

K (x, y)and eJJ
K (x, y),  which compute the

variance of the neighborhood values around the central
values, respectively, for Image I and Image J.

Remark. All the previous examples have been computed
by convolving the neighborhood under study with kernel
ω to emphasize the weight of the central pixel.

To analyze only the color distribution of a neighbor-
hood without making reference to the central pixel, we
can use measures such as those previously introduced
but changing the weight of each kernel element by the
same constant value. For example, the average and vari-
ance values of neigborhood V(x, y) can be defined for an
image I by:

µ I
K (x, y) = 1

25
f I

K (x + i, y + j),
j =−2

2

∑
i=−2

2

∑ (8)
sual Attention Vol. 40, No. 6, Nov./Dec. 1996     525



526  
  eIJ
K (x,y)

Figure 5. Measure of dispersion between the f J
K (x, y)  and the f I

K (x + i, y + j) values.
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Local Brightness Differences
Three criteria have been used to define a color correla-

tion measure. The first one involves the local brightness
differences defined as follows:10

    
B x y

x y x y
KK I

K
J
K

( , )
( , ) ( , )

,= −
−

−
=1 0

log log

log log
with

max min

µ µ
ω ω

L LK K  (10)

and where

Lmax
K = max f I

K (x, y), f J
K (x, y)|(x, y) ∈P{ },

Lmin
K = min f I

K (x, y), f J
K (x, y)|(x, y) ∈P{ }.

The values Lmax
K  and Lmin

K ,  respectively, represent for K = 0
the highest and lowest brightness values of the two im-
ages under study.

Thus BK(x,y)∈[0,1] with BK(x,y) = 1 when brightness dif-
ference is minimal and BK(x,y) = 0 when brightness differ-
ence is maximal.

The BK values are computed according to the logarithm
of the f K values to take into account the perception of
brightness, which is not linearly proportional to luminance
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or color differences but approximately linearly proportional
to the logarithms of these quantities.14

Let B be the image corresponding to the BK values when
K = 0. This image can be rescaled in the range [0, 255] and
can be viewed as a gray-level image to show pixels for
which brightness differences are the highest (black pix-
els) or the lowest (white pixels). For example, Fig. 6 shows
the brightness differences between the images in Fig. 1(a)
and 1(b) and between the images in Fig 1(a) and 1(c).
Figure 6. (a) Brightness differences between Figs. 1(a) and 1(b), (b) brightness differences between Figs. 1(a) and 1(c).
Values given by Eq. 10 involve only brightness differ-
ences without taking into account chromatic differences.
It is possible to generalize Eq. 10 to chromatic differences
by considering the BK values for K = 1, 2 or 3, i.e., color
component by color component. Image B′ of local chro-
matic differences will be computed according to the fol-
lowing formula:

B′(x, y) = α1 • B1(x, y) + α2 • B2(x, y) + α3 • B3(x, y) such
that B′(x, y) ∈[0, 1]. (11)

Image B′′ of local color differences will be computed with
the following formula:

[B′′(x, y)]1/2 = β1 • [B0(x, y)]2 + β2 • [B’(x, y)]2 such that
B′′(x, y) ∈[0, 1]. (12)

Most of the time color differences observed between two
images are essentially due to brightness differences
rather than to chromatic differences. Color differences
Trémeau et al.



are primarily perceived in terms of brightness differences,
because our visual sensitivity to brightness differences
is more accurate than our visual sensitivity to chromatic
differences. Moreover, by stating that in color image
analysis, the brightness value f 0 is computed from the
three color component values f 1, f 2, and f 3 (see Fig, 7),
we can consider that the calculation of brightness differ-
ences also leads to computation of chromatic differences.
Consequently, in our study we have taken into account
only local brightness differences.
Figure 7. For each color
image there are three  cor-
responding  color compo-
nent images from which
we can compute a gray-
level image characteristic
of the brightness of the
color image.
It is important to note that function   µω
K  given by Eq. 2

can be applied to the brightness values f 0 and to the three
chromatic component values f 1, f 2, and f 3 but cannot be
applied to the trichromatic color value (f 1, f 2, f 3), because
no color relation order can be defined. Indeed it does not
make any sense to define an average color value for a set
of colors and to compare two average color values unless
the colors involved have roughly the same hue.

Local Dispersion Differences
The second criterion used to define the color correlation

measure is linked to the local dispersion difference, which
is expressed as follows:10

cor(x, y) = 1

3
cor K (x, y)

K =1

3

∑ (13)

with

cor K (x, y) =
covω

K (x, y)

σ Iω
K (x, y) ⋅σ Jω

K (x, y)
, (14)
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where σ Iω
K (x, y)  and σ Jω

K (x, y)  represent the variance val-
ues of the respective f K values for Image I and Image J.

Then cor(x, y) ∈ [–1,1] with cor(x, y) = 1 when the dispersion
difference is minimal (i.e., correlation maximal), cor(x, y) = 0
when the dispersion difference is maximal (i.e., correlation
minimal), and cor(x, y) = –1 when the dispersion difference
is minimal inverse (i.e., correlation maximal inverse).

To avoid problems of uncertainty about a null variance
we will consider the following definition:
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Let C be the image corresponding to the |cor(x,y)| val-
ues. This image can be scaled between 0 and 255 and can
be viewed as a gray-level image to show pixels where dis-
persion differences are the greatest or the lowest. We as-
sume that the sign of the correlation value does not matter
in the case under study.

Consequently black pixels correspond to the greatest
dispersion differences and white pixels correspond to the
lowest dispersion differences. For example, Figs. 8(a) and
8(b) show the dispersion differences between Image (a)
and Images (b) and (c) of Fig. 1.
Figure 8. (a) Dispersion differences between Figs. l(a) and l(b), (b) dispersion differences between Figs. l(a) and l(c).
(a) (b)
Local Emergence Differences
The last criterion used to define the color correlation

measure is linked to the local emergence differences and
is stated as follows:
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with K = 0, where eIIω
K (x,y) and eJJω

K (x,y) represent, re-
spectively, for Image I and for Image J, the local emer-
gence of the central pixel according to its neighborhood.
In the same way, eIJω

K (x,y) and   eJI
K

ω (x,y) represent, respec-
tively, for Images I and J and for Images J and I, the local
cross-emergence of a pixel of an image according to the
corresponding neighborhood on the other image.

Thus eIIω
K (x, y) − eIJω

K (x, y)( )  represents the difference of
local emergence of a pixel (x,y) of Image I with regard to
Image I and to Image J when pixel (x,y) is compared with
its neighborhood.

In the same way, the other cross-difference represents
the difference of local emergence of a pixel (x,y) of Image J
with regard to Image I and to Image J when pixel (x,y) is
compared with its neighborhood. Whatever the change that
intervenes in an image, it could be analyzed not only in
the context of its own neighborhood, but also in the con-
text of the original neighborhood.

In Eq. 15

    

e

e x y e x y x y P N I J M I J

K

NN
K

NM
K

max max

( , ) ( , ) ( , ) ; , ,

=

− ∈ = ={ }ω ω
and

represents the highest emergence value measured into the
two images under study, and

    

e

e x y e x y x y P N I J M I J

K

NN
K

NM
K

min min

( , ) ( , ) ( , ) ; , ,

=

− ∈ = ={ }ω ω
and

represents the lowest emergence value measured into the
two images under study.

Then EK(x,y)∈[0,1] with EK(x,y) = 1 when emergence dif-
ference is minimal and EK(x,y) = 0 when emergence differ-
ence is maximal.

Let E be the image corresponding to the EK values when
K = 0. This image can be scaled between 0 and 255 and
can be viewed as a gray-level image to show pixels where
emergence differences are the highest (black pixels) or the
528     Journal of Imaging Science and Technology
lowest (white pixels). For example, Figs. 9(a) and 9(b) show
the emergence differences between Image (a) and Images
(b) and (c) of Fig. 1.
Figure 9. (a) Emergence differences between Figures 1(a) and 1(b); (b) emergence differences between Figs. 1(a) and 1(c).
(a) (b)
Values given by Eq. 15 involve only brightness emer-
gence differences without taking into account chromatic
emergence differences. As for brightness differences, it will
be possible to generalize Eq. 15 to chromatic emergence
differences by considering EK values for K = 1, 2, or 3, i.e.,
color component by color component. Image E′ of local chro-
matic emergence differences will be computed according to
the following formula:

E′(x,y) = α1 • El (x,y) + α2 • E2(x,y) + α3 • E3(x,y) such
that E′(x,y) ∈ [0,1]. (16)

Image E′′ of local color emergence differences will be com-
puted with the following formula:

[E′′(x,y)]1/2 = β1 • [E0 (x,y)]2 + β2 • [E′(x,y)] 2 such that
E′′(x,y) ∈ [0,1]. (17)

We refer to the justifications previously given to under-
stand these two definitions.

Measure of Local Image Correlations
As mentioned in the Introduction, each of the three cri-

teria previously presented is scaled into the same range
of values from 0 to 1 and is defined independently of the
others. Therefore the measure of local image correlations
can be based on an orthogonal representation. In other
words, the three criteria are combined on the base of norm
L2 as shown in Fig. 10.
Thus

    
D x y

B x y x y E x y
( , )

( , ) ( , ) ( , )
.=

[ ] + [ ] + [ ]0 2 2 0 2

3

cor
(18)

Consequently D(x,y) ∈ [0,1] with D(x,y) = 1 when local
image correlations are maximal (i.e., minimal brightness,
dispersion, and emergence differences) and D(x,y) = 0 when
local image correlations are minimal.

Let D be the image corresponding to the D values. This
image can be scaled between 0 and 255 and can be viewed
as a gray-level image to show pixels where local image
correlations are the highest or are the lowest. For example,
Trémeau et al.



Figure 10. Combination of the three criteria B0, cor, and E0 to
define a measure of local image correlations.
Figs. 11(a) and 11(b) show image correlations measured,
respectively, between Image (a) and Images (b) and (c) of
Fig. 1.
Figure 11. (a) Image of local image correlations between Figs. 1(a) and 1(b); (b) image of local image correlations between Figs. 1(a)
and 1(c); (c) false color look-up table used to display images of local image correlations: red color corresponds to pixels where local image
correlation is the highest and purple color corresponds to pixels where local image correlation is the lowest.

(c)

(a) (b)

0   1
A false color look-up table has been used in the display
process to emphasize different types of local image corre-
lations. As shown by Fig. 11(c), red color corresponds to
pixels where local image correlation is the highest and
purple color corresponds to pixels where local image cor-
relation is the lowest.

We observe in Figs. 11(a) and 1l(b) that contours appear
well correlated, whatever the process under study and what-
ever the difference of magnitude of the contours between
the original image and the processed images. As we can
see in Figs. 8(a) and 8(b), this contour correlation is essen-
tially provided by the computation of dispersion differences.

Note that the images used in this study to illustrate our
measure of color image differences result from a seg-
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mentation process. Moreover, these images have been
naturally displayed according to each average color value
computed for each region. Consequently, the more ho-
mogeneous a region is in the original image, the less
color differences are in the region between the original
image and the segmented one. On the other hand, the more
the spatiocolor distribution of a region is textured, the
greater these differences become. In other words, color dif-
ferences resulting from a segmentation process are essen-
tially linked to dispersion differences, but other color
differences can nevertheless superimpose over the disper-
sion differences, such as emergence differences linked to
the loss of details in segmented images, or luminance dif-
ferences linked to the fading of brightness areas.

This is the reason that the results obtained using all
three measures look quite similar to those using only
the dispersion criterion, as shown by Fig. 11(a) and Fig.
8(a). For other image processes, such as image compres-
sion, for example, the observations would be different.
Actually color differences are just as much dependent on
the images considered as on the processes under study,
which justifies the use of the three criteria previously
defined.

Adjustment of the Measure to Specifilc Image
Analysis Problems

A More Important Weight for Brightness Differ-
ences. In Eq. 18, the same weight has been given to each
component. Nevertheless it is possible to amplify the
weight of one component by rescaling and expanding its
distribution in the range [0,1] toward the central value or
toward the boundaries.

For example, in Eq. 10 the computation of local bright-
ness differences has been normalized according to the high-
est and the lowest brightness differences measured in the
whole images under study.
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We can introduce another equation that normalizes the
calculation of local brightness differences according to the
highest and the lowest local brightness differences com-
puted not on the whole images, but only on the neighbor-
hood under study.

Thus

    
B x y

x y x y

L LV
K I

K
J
K

V
K

V
K( , )

( , ) ( , )

max, min,

= −
−

−
1

log log

log log

µ µ
ω ω (19)

represents another measure of local brightness differences
when K = 0, where

    

L f x y f x y x y V x y

L f x y f x y x y V x y

V
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I
K

J
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= ∈{ }
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Thus the BV
K  values are better distributed in the inter-

val [0, 1] and the brightness contrasts are better discrimi-
nated [see Figs. 12(a) and 12(b), in contrast with Figs. 6(a)
and 12(c)]. It is equivalent to giving a greater weight to
the component of local brightness differences than to the
other components.
Figure 12. (a) Brightness differences between Fig. l(a) and Fig. l(b) computed with Eq. 19; (b) histogram of the image of Fig. 6(a); (c)
histogram of Image 12(a).

(a)

(c)(b)
A More Important Weight for Dispersion Differ-
ences. In the same way, we could provide a more impor-
tant weight to local dispersion differences by using the
following formula:

cor(x, y) =
covω (x, y)

σ Iω
(x, y) ⋅σ Jω

(x, y)
, (20)
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which measures local dispersion differences according to
the variance of the color distribution of Images I and J
and according to norm L2.

Thus
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because with norm L2
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In the same way
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We must keep in mind that even if norm L2 gives more
relevant results in terms of difference measurements, it is
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less adapted to characterize color dispersion. Indeed, con-
sidering that no order relation exists between colors, it does
not make any sense to define an average color value for a
set of colors when colors involved do not have the same hue.

According to the L metrics used before, some distribu-
tion features can be more robust and more relevant. It is
then essential to choose the best metric among L1, L2, or
L∞ metrics to improve the quality of descriptors.15

In this section we have seen that the measure under
study should amplify the weight of one criterion over the
others. This is required by the fact that the cost of errors
is not identical for each image analysis problem. For this
reason the proposed measure has properties that can be
adjustable to a specific image analysis problem, as advised
by Yasnoff, Miu, and Bacus.2

Discussion
The representation of local image correlations is locally

defined (i.e., pixel by pixel) from two entry images, one of
which is used as a reference image. This representation
emphasizes brightness, dispersion, and emergence dif-
ferences that appear between the entry images accord-
ing to the local distribution of colors. This representation
can then be used only for a relative comparison between
images provided the reference image is the same in all
cases of study (see Fig. 13).
Figure 13. Cases of study for
which relative comparison be-
tween images of local image cor-
relations make sense (Refer, for
example, to Figs. 1 and 11).

Original Performed Resulting Images of Local Meaningful
images processes images image correlations comparisions
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For example, images provided by Process 1 and Process
2 are compared with the same original image. The seg-
mented image shown in Fig. 1(b) is compared with the im-
age Peppers shown in Fig. 1(a), as is the segmented image
of Fig. 1(c). Results of these comparisons are represented,
respectively, in Figs. 11(a) and 11(b). As these two images
of comparison refer to the same original image, they can be
compared with each other. For example, it will be interest-
ing to know for which segmentation process the most no-
ticeable differences appear and if pixels highlighted by
differences are clustered in the image plane.

To compare one image of local image correlations with
another, we can use global descriptors such as those we
present in the following section.

Definition of Descriptors for a Global Compari-
son. Generally to compare two image distributions we re-
fer to their histograms. For example, to compare Figs. 11(a)
and 11(b), we can refer to histograms given in Figs. 14(a)
and 14(b). Nevertheless, as we can see in these two fig-
ures, histograms are not relevant enough to define an ab-
solute descriptor of similarity between images with
sufficient accuracy.
Figure 14. (a) Histogram of the image of local image correlations shown in Fig. 11(a); (b) histogram of the image of local image
correlations shown in Fig. 11(b).

 (a)  (b)
Indeed, in our cases of study, we are faced with rela-
tively similar histograms. It is then absolutely necessary
to use robust and accurate features to characterize small
differences that appear between histograms.
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Among descriptors we can use, we suggest a measure
based on both numbers of pixels having high-local-im-
age correlations and of pixels having low-local-image cor-
relations. This measure must estimate the number of
poorly correlated pixels relative to the number of corre-
lated pixels. It can be defined on the basis of the two
following criteria.

Let

HD = x, y( ) ∈P D(x, y) ≥ (1− rh ){ } (24)

be the set of pixels for which local image correlation is
higher than (1 – rh), and let

LD = x, y( ) ∈P D(x, y) < rl{ } (25)

be the set of pixels for which local image correlation is
lower than rl.

Then
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D H

R
L

D LH
D

D
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D

D
D D

=
−

=
−

card

card card
and

card

card card
 (26)

represent, respectively, the proportion of pixels of high cor-
relation and the proportion of pixels of low correlation in
Image D under study. These two complementary propor-
tions can be jointly used to derive a global descriptor that
quantizes color image differences.

For example, rh = rl = 10%, RHD
= 9.8% and RLD

= 0% for
the histogram corresponding to Fig. 11(a). In the same way,
RHD

= 46.3% and RLD
= 0%  for the histogram of Fig. 11(b).

According to these criteria, Process 2 seems to give better
results than does Process 1. Consequently, from a signal
processing point of view, Process 2 introduces less local
distortion in the image than does Process 1. These crite-
ria can be improved by filtering the image with processes
like neighborhood averaging to smooth noise and to de-
crease details in the image, such as isolated pixels or small
size areas.

Nevertheless, the criteria RHD
 and RLD

alone do not
accurately reflect the amount of disagreement between the
original image and the one studied.6 Moreover, they do
not agree with human visual observation.

The disadvantage of histogram-based methods is the loss
of spatial information in computing the histogram.1 That
leads us to introduce other distribution features more rel-
evant to the spatial distribution of data in an image, as
recommended by Yasnoff, Miu, and Bacus.2 Moreover, it
has been shown that methods based on histograms are
not robust to aspects such as slight shift, for example,
unless we consider cumulative histograms with distribu-
tion features as central moments.15

Until now we have taken into account only local differ-
ences that appear between one original image and one
test image, without according any importance to the spa-
tial distribution of colors into these images. Human ob-
servation is more sensitive to distortions observed in large
homogeneous areas than to distortions appearing in tex-
tured areas or along contours.16 Even if the three criteria
previously defined have been evaluated as proportional
to the local degree of homogeneity (from the variance of
neighborhood pixels), they do not accurately reflect per-
ceptual disturbances. This is due to the fact that, first,
they do not take into account region features such as size,
spatial density, or surface area, and, second, they do not
distinguish textured areas and contour areas.

From a local point of view it does not make any sense to
take into account region size, for example. That can be done
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only from a global analysis of the spatial distribution of im-
age elements. To distinguish textured areas from homoge-
neous areas, we can use a local homogeneous criterion, such
as those defined by Balasubramanian and Allebach16 or by
Trémeau, Calonnier, and Laget.17 Next we can compute the
degree of importance of these areas and weight measures
previously defined according to the selected criterion.

Actually, when we analyze the image of local correla-
tions in a global way, we are more interested in detection
of poorly correlated elements than well-correlated ele-
ments and in analysis of spatial distribution of poorly cor-
related elements relative to the spatial distribution of
well-correlated elements.

Consequently, we first propose to threshold the image
of local image correlations in three classes according to
two values rh and rl (see Eqs. 24 and 25), and we next
propose to analyze the image provided by this segmenta-
tion in terms of spatial density, surface area, and surface
size. After this step we compute one or several descriptors
of image comparison.

A More or Less Important Weight for Edge Differ-
ences. It is also important to distinguish textured areas
from contour elements. To achieve this distinction we first
compute color edges from each image under study. Then
we compute color edge differences according to the follow-
ing formula (see Fig. 15):

C(x, y) = 1−
Edge I (x, y) − Edge J (x, y)

Edge I (x, y) + Edge J (x, y)
, (27)

where EdgeI (x,y) corresponds to the color edge measure
defined by Cumani and computed on Image I.18
Next we can define a mask operator M, which discrimi-
nates local image correlations linked to homogeneous or
textured areas from local image correlations linked to edge
elements. The mask operator M has been empirically de-
fined from a thresholding process of color edge elements
as follows:

    

M x y x y x y r

M x y
I J e( , ) ( , ) ( , ) ,

( , ) ,
max= ≥ ⋅

=
1

0

if Edge or Edge Edge

otherwise (28)

with

    Edge Edge Edgemax max ( , ), ( , ) ( , )= ∈{ }I Jx y x y x y P

and where re = 0.02 in reference to Cumani’s scheme.18 It
has been applied to the local image correlation measure D
to introduce a new measure DC stated as follows:

DC(x,y) = D(x,y) if M(x,y) = 0,

DC(x,y) = C(x,y) otherwise. (29)

Figure 16 shows results provided by this measure DC,
which takes into account color edge elements.
In the context of image analysis it seems more impor-
tant to underline the presence of a contour than to ana-
lyze its magnitude. Consequently, we suggest using
Measure D for the general case of study. Indeed we can
justify this by the fact that in visual observation, edge
attributes focus the attention more than contrast at-
tributes linked to the magnitudes of these edges.

Inversely, in the context of image comparison, it is not
only the presence of contours between two images that is
important, but also the differences of color edge magnitudes.
Trémeau et al.



Figure 15. (a) Edge elements detected in Fig. 1(a); (b) edge elements detected in Fig. 1(b); (c) edge elements detected in Fig. 1(c);
(d) color edge differences between Fig. 15(a) and Fig. 15(b); (e) color edge differences between Fig. 15(a) and Fig. 15(c). In Figs. 15(d)
and 15(e), white pixels correspond to color edge differences equal to zero.

(a) (b)

(c)

(d) (e)
As an illustration, compare Figs. 11(a) and 16(a) [also 11(b)
and 16(b)] with Figs. 1(a) and 1(b) [and 1(a) and 1(c)]. From
a general point of view it seems that contours are relatively
well preserved by the segmentation process, i.e., on these
elements the local correlation measure is maximal, as we
can see in Fig. 11. Inversely a more precise analysis shows
that contours have been more perceptibly modified than
the first measure points out, i.e., on these elements the lo-
cal correlation measure can be relatively small, as we see
in Fig. 16. This last measure also shows that if color edge
differences are no more important than other color differ-
Measurement and Display of Color Image Differences Based on Vi
ences, color edges may not appear on the image of local
image correlations.

Conclusion
The measure of color image differences proposed in this

report is based on visual observation. This measure en-
ables us to evaluate results of a process or to compare dif-
ferent processes in terms of image quality. The measure
presents two characteristics: it can be displayed as an
image of local image disturbances, and it can be computed
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Figure 16. (a) Image of local image correlations between Figs. 1(a) and 1(b); (b) image of local image correlations between Figs. 1(a)
and 1(c). These images have been computed according to measure DC defined by Eq. 29.

(a) (b)

(c)

0 1
as a quantitative global attribute of image differences.
Thus, better than the mere measure, it allows us to ana-
lyze and to understand why a process gives good or bad
results on an area of the image under study. Indeed, mea-
suring performance of a process is a key factor in provid-
ing a feedback path by which a system can modify its
strategy during processing to improve its result.

This measure does not require any a priori knowledge
about the reference image nor about the test process. It
results from a good trade-off between various attributes
involved in image difference observation to reflect accurately
the amount of disturbance that appears between one refer-
ence image and one test image. Even if this measure has
been developed in terms of independent process features, it
can be adjusted component by component to perform better
according to processes or images under study.

In this report we have essentially dealt with local color
image differences without giving too much detail about
the global measure that can be computed from these dif-
ferences. It will be interesting to extend the field of study
to this point of view. Such an investigation is included in
our current research area. We also plan to test the accu-
racy of this global measure with different kinds of refer-
ence images and different processes. In that way it will be
interesting to extend this field of study to different color
spaces to test their performance accurately in terms of
image quality. In earlier works this testing has been done
without taking into account parameters linked to visual
observation.
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