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Introduction
The reproduction of color images is traditionally treated in
one of the following ways. In professional color reproduc-
tion, much effort is employed to compensate for the differ-
ent characteristics of input and output devices. Very often
scanning and  recording of images are included in one single
device or single reproduction line in a printing shop, and
this is what we call a closed system architecture.

Conversely, in commercial desktop applications, colors
are represented in a color space (RGB) that is considered
to be suited for any kind of color imaging device without
any specific calibration or conversion. Consequently, the
results of reproduction are extremely poor, and therefore
trial-and-error methods of manipulating color are intro-
duced to improve quality. This in turn greatly enlarges
the effort, and the quality of professional reproduction is
probably never achieved.

The present quality of affordable desktop color devices
has reached a rather high level, and hence a better sys-
tem of color handling is worthwhile. On the other hand,
even in the printing industry the creation of an image
document is more and more geographically separated from
the reproduction, and often, when an image is prepared
for reproduction, no knowledge of the kind of printing press
is available. This situation represents an open system.

Both cases require color management systems that al-
low device-independent representation of color and that
enable the characteristics of an image to be matched to
those of a reproduction device in order to match the ap-
pearance of the copy to that of the original. Mostly, CIELAB
is used as a device-independent color space, but the prob-

A new analytical method represents the surface of a color gamut
for a  reproduction process based on three or four primary colors
by a single, closed expression directly in CIELAB. The method is
based on the similarity of a color gamut to a cube (the CMY cube),
and this similarity is represented by a kernel gamut. The kernel
gamut is distorted by distortion and scaling functions in order to
match the color gamut. The color gamut is fully represented by
the distortion and scaling functions. The total number of their
coefficients is below 150 at mean visual errors of below 2.15 ∆Eab
units.
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lem of how to compensate for the mismatch of the ranges
of reproducible colors between devices, i.e., their color gam-
uts, is still under investigation. Apart from very primitive
ones, all these methods require knowledge of the surfaces
of the color gamuts of both the image and the reproduc-
tion device.

This study addresses  a compact representation of color
gamuts  allowing transmission and storage of color gamuts
together with images while avoiding a significant increase
in the data volume. For this purpose, a new approach is
undertaken that is analytical in nature. This approach al-
lows the surface of a color gamut to be represented con-
tinuously while avoiding any kind of interpolation.

In the following sections, the basic principles of the new
analytical method are explained, followed by a descrip-
tion of its implementation. We continue with a discussion
of some results before giving an overview of extensions of
the method.

Basic Principles of the New Method
A typical color reproduction process is controlled by

three color-control signals at the input. These may be
RGB signals in the case of a CRT monitor or CMY colorant
concentrations in the case of a print process. Controlled
by the three color signals, colors reproduced at the out-
put can be described in any of the well-known color spaces,
e.g., CIELAB, CIEXYZ, or RLAB.1,2

In this study, CIELAB is used as an exemplary color
space, and a color printer is considered as an example of a
reproduction device. In fact, the proposed method is ap-
plicable to any existing color-rendering process based on
three or four primary colors.

In Fig. 1, the space of color-control signals (cyan, ma-
genta and yellow) of a printer is presented. Each of the
three control signals can be modified independently be-
tween a minimum and a maximum, i.e., between 0% and
100%. Therefore, all the colors the device can produce are
contained in a cube. This cube is called the CMY cube or
CMY gamut in the following discussion. The eight corners
of the cube control the full- and zero-tone colors and all
the integer mixtures of these colors.
All the colors the printer produces when being controlled
by any of the triplets of color control signals make up the
color gamut of the printer (Fig. 2). This color gamut is the
result of the transformation of the CMY cube into the
CIELAB space by the printer.
The color gamut normally has a strongly distorted sur-
face, because the relationship between the color space and
the space of control signals is strongly nonlinear. How-
ever, some significant characteristics of the CMY cube are
inherent. Both gamuts have eight corners, 12 edges, and
six planes, though edges and planes of the color gamut
are somehow distorted. Hence, one gamut can be derived
from the other by shifting edges and corners and by dis-
torting edge lines and surfaces by a certain amount. Thus,



Figure 1. The CMY cube of a printer in its space of color control
signals.
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Figure 2. The color gamut of a printer in CIELAB.
a color gamut can be described by a transformation into
the cube.

So far, the proposed method is based on the similarity
of the color gamut and the CMY cube of a printing pro-
cess. The color gamut is defined by just the measured col-
ors of the test chart, no matter which CMY signals
controlled the printer to generate the colors. The method
is referred only to the similarity of the gamut to a cube,
and therefore a general cube in a new, virtual space is
considered. Because of the important role of this cube for
the method, it is called the kernel gamut in the following
discussion, and the virtual space is called the kernel space.

This cube is now distorted in some way until it matches
the color gamut. It appears that the kernel gamut in its vir-
tual space is applicable to the description of the color gamut
of any color reproduction process based on three primary
colors. Therefore, this method of representing a color gamut
by some “tweaking” of the kernel gamut is very general.

The distortion is carried out by analytical functions,
mapping the eight corners of the kernel gamut onto the
eight corners of the color gamut and, similarly, mapping
the edges and planes of the kernel gamut onto the respec-
tive edges and planes of the color gamut.

The Analytical Representation
The kernel gamut used is a unit cube, standing on its

vertex, with its center located at the origin of the kernel
space. A cylindric coordinate system z-ρ-φ  is used for the
representation (Fig. 3).
Figure 3. The kernel gamut in its mathematical kernel space.
The principle of the method is to represent the surface
of the color gamut by distorting the well-known kernel
gamut. Therefore, a method to describe the surface of the
kernel gamut must first be found.

The surface of a three-dimensional object can be ex-
pressed mathematically by a function of two variables.
Here the surface of the kernel gamut is expressed by the
cylindrical radius ρ as a function of z and φ. Figure 4 shows
a plot of this function. Because the angle φ is not defined
for points on the z axis, the black point and the white point
of the kernel are depicted by the straight lines
    
z = − 3

2
and z = + 3

2
,

respectively. The remaining six corners are depicted by
the six vertices lying in between.
In a similar manner, the surface of the color gamut can
be presented two-dimensionally (Fig. 5). Here the cylin-
drical coordinates have colorimetric meanings: the cylin-
drical axis is the lightness axis, the cylindrical angle is
the hue angle, and the cylindrical radius is chroma.
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Figure 4. The kernel gamut in the two-dimensional presentation.
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Figure 5. The color gamut in the two-dimensional presentation.
Again, the white point and the black point are depicted
by the straight lines L* = L*

white and L* = L*
black, respectively

(this is true if both are lying on the L* axis). One recognizes
the remaining six corners at lightnesses in between.

Mathematics. The surface of the kernel gamut (which
is a unit cube) is given in a closed form by the following
equation:

    

ρ(z, φ ) = ρk (φ )

3
4
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Here the absolute values are the means to include the
edges and corners into a single, closed expression.

The final chroma function     Ĉ(L* , h* )  of the color gamut
surface is derived from the kernel function ρ(z, φ) in two
steps. In the first step, the kernel function is scaled by
multiplication with the scaling function s(z, φ). This op-
eration transforms ρ into the correct amplitudes of     Ĉ , but
at coordinates z and φ. In the second step, therefore, the
two distortion functions zd(L*,h*) and φd(L*,h*) are intro-
duced to move the transformed amplitude values to the
right positions in the two-dimensional (L*,h*) plane. To
improve the performance of the scaling, a further func-
tion, sa(L*,h*), is added.

    ρs (z, φ ) = ρ(z, φ )s(z, φ ), (4)
    
ˆ , , , , , .* * * * * * * *C L h z L h L h s L hs d d a( ) = ( ) ( )[ ] + ( )ρ φ (5)

In practice, this distortion is approximated by analytical
functions composed of simple rational functions, Fourier
expansions, etc. The interested reader is referred to the
Appendix for more details on the distortion and scaling
functions.

Determination of the Parameters of the Functions.
To determine the parameters of the distortion and scaling
functions, a test chart must first be printed and then mea-
sured colorimetrically. This is the first procedure to be
carried out when a device is characterized. The colors of
the test chart subsample the CMY cube of the printer usu-
ally equally spaced in three dimensions, and therefore the
necessary data for color gamut descriptions are obtained
incidentally when a device is calibrated.
Figure 6. Example of a distortion function zd(L*,h*).
Herzog



In practice, a test chart containing 6 × 6 × 6 = 216 colors
was used, but actually only the colors lying on the surface
of the color gamut are considered here. Therefore, the num-
ber of colors is reduced to 152. The CMY values are of no
interest to the method, the measured colors (L*a*b*) them-
selves being sufficient to define the color gamut. In fact,
the colors need not be equally spaced; the data must  just
be given in a predefined, systematic order. For example, it
must be possible to identify the color that was produced by
maximum yellow and zero magenta and cyan.

The parameters of the analytical representation are then
computed by an iterative algorithm to fit the approximated
chroma function     Ĉ to the measured colors. Herewith, some
constraints, e.g., monotonicity for some partial functions,
must be satisfied. It is beyond the scope of this discussion
to describe the algorithm in detail.

Limitations. Until now it has been assumed that the
white point and the black point lie on the L* axis. This is
true for the white point if colors are referred to the paper
white, as is the normal procedure if gamut mapping is to
be applied.3,4 However, in many cases, the black point is
located off the gray axis. Then all colors having lightnesses
lower than the darkest neutral gray cannot be considered
by the method at issue. In practice, however, this loss is
not very meaningful, because neutral gray colors should
always be mapped to neutrals. Color wedges that include
very dark grays and very dark, but more colorful, colors
cannot be properly mapped by using color regions that do
not include the gray axis. Therefore, one would avoid uti-
lizing these color regions. If the white point must be de-
scribed with respect to the white of the nonselective
diffuser, then all colors lighter than the lightest neutral
gray are also cut off.

Another limitation is caused by ambiguities of the gamut
surface in terms of the hue angle. Edges and planes of the
color gamut are generally more or less curved, both in
CIEXYZ and in CIELAB space. CIELAB often increases
this effect, because it is known that in CIELAB points of
constant hue are not contained on halfplanes of constant
hue angle. Therefore, because of cavities in the surface,
the border of the gamut with respect to the hue angle can
be ambiguous. This depends on the location of the L* axis
relative to the gamut.

These ambiguities are very troublesome in practice, be-
cause reducing chroma while retaining lightness and hue
can lead to out-of-gamut colors. The analytical color gamut
representation also cannot handle problems that occur
with bright, yellowish colors. Hence, the conclusion is ei-
ther to cut off these colors that can lead to out-of-gamut
colors when reducing chroma or to ignore the fact that
colors resulting from reducing only chroma may be out of
gamut. Here the author prefers the latter case because it
preserves the largest possible volume of the gamut. Out-
of-gamut colors then must be mapped onto the nearest
possible producible color, a method often implemented in
device characterizations. The errors, in practice, are be-
low ∆Eab = 3 and mainly perpendicular to the chroma axis,
yielding angular differences of below 2.5 degrees. This is
well below the perceptibility threshold of pictorial images
of about 5 degrees, as given by Stokes et al.5,6

Results
For the practical application of the method, the required

distortion and scaling functions are approximated by com-
binations of limited polynomials, limited series, etc., to
keep the number of parameters as low as possible. Given
a pair of values (L*,h*), the job of the representation for-
mula is to furnish an optimal representation of the gamut’s
maximum chroma. Therefore, the visual error is defined
Analytical Color Gamut Representations
solely as the difference between the original and the ap-
proximated chroma:

    ∆Eab = Corig
* − Ĉ. (6)

Given an erroneous approximation     Ĉ  of the gamut hull
for a given pair (L*,h*), the nearest point on the actual
gamut hull is generally not located in the radial direction.
It follows that the distance of the approximated chroma
from the gamut hull is actually less than that given by
Eq. 6.

The performance of the formula was studied for several
output devices (e.g., dye diffusion printer, Cromalin), and
we found that the mean visual errors for any device could
be kept below 2.15 ∆Eab units, which is the perceptibility
threshold for pictorial images, according to Stokes et al.5,6

Because the method is based on the corners and edges
of the gamut, these can be represented very accurately.
This is important, because these locations contain the most
saturated colors the device can produce. In fact, this ex-
actness is given up in favor of a more homogeneous over-
all error distribution. Therefore, the maximum errors can
be located far from edges or near, or on an edge.

In practice, the maximum errors are below 10 ∆Eab units
and are located in the regions of the light yellow edge
([CMY] = [001]) and the dark blue edge ([CMY] = [110]).
As mentioned before, the visual error is only an error of
chroma, which consequently means an error in the radial
direction. If the MacAdam and the Brown–MacAdam el-
lipses are plotted in the a*b* plane, respectively,7,8 it can
be observed that right in these yellow and blue regions
the ellipses are strongly nonuniform and that the main
axes extend exactly in the direction of the error, i.e., the
radial direction. The same is true for the Wyszecky–Fielder
ellipses8 and can also be seen in the CIE 1931 chromatic-
ity diagram.9 Also, Luo and Rigg10 show in a compound
investigation that ellipses for the yellow and blue centers
tend to point along lines of constant dominant wavelength.
In other words, the numerical value of the maximum er-
ror is relatively high, but the error is expected to be visu-
ally much less noticeable. Thus, it can be said that virtually
all errors are below the acceptability threshold of normal
images, which is specified to be ∆Eab = 6.6,11

The necessary number of coefficients of the whole color
gamut representation was in the range 100 to 150. There
were no investigations on  optimal coding, but for simplic-
ity we can assume that 16 bits each will suffice. There-
fore, the total data set consists of a number below 300
bytes. It must be pointed out that because the kernel gamut
is well defined, the coefficients by themselves represent
the whole color gamut.

Figures 6 and 7 show examples of the distortion func-
tions zd(L*,h*) and φd(L*,h*), respectively. These functions
turn out to be relatively smooth in practical applications.
Therefore, relatively simple analytical approximations are
possible, yielding low numbers of parameters. We should
mention that no kinds of edges are present in these func-
tions. The scaling functions show the same behavior ex-
cept that they are not monotonic in one direction.
Extensions of the Analytical Method
Four-Colorant Print Processes. Most of the print-

ing processes utilize not three (CMY), but four (CMYK)
colorants. The reasons are costs (three color inks are re-
placed by only one, even cheaper, black ink), enlargement
of color gamuts, and the reduction of the amount of wet
ink printed on the paper.

With the introduction of a fourth colorant, the problem
arises that color is uniquely defined by three terms, but
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Figure 7. Example of a distortion function φd(L*,h*).
the space of the color-control signals is four-dimensional.
The problem itself will not be addressed here, but if a well-
defined algorithm for the separation of three color values
into four control signals is assumed, then this algorithm
can be considered to be part of the print process, which is
then controlled by three signals.

If this separation algorithm (GCR or UCR, for exam-
ple12–15) is well behaved and no jumps and edges are
present, then the color gamut of the four-colorant process
is very similar to that obtained by using only three inks,
though it is widened toward darker colors.

Because only three signals are input to the black box
“print process,” the analytical representation of color gam-
uts can be applied to four-colorant processes as well, and
the gamut representation is valid for one specified sepa-
ration algorithm.

Other Color-Rendering Processes. The analytical
method was developed to give a representation of the color
gamuts of color-rendering processes based on three pri-
mary colors. The addition of “black” is considered here to
be a special case of a three-colorant process, as explained
in the preceding section. The method was designed to ex-
hibit a modular structure using a kernel gamut. This ker-
nel gamut anticipates the principal characteristics of the
process (i.e., edges and corners), so that the distortion and
scaling functions can be smooth and well-behaved.

Likewise, it is possible to include other color-rendering
processes such as transparency film, six- or seven-colorant
processes, etc., into the approach if a particular kernel
gamut, specifically designed to represent the basic char-
acteristics of the process, is used. Such processes have not
yet been investigated. It seems that the main difficulties
will be defining the kernel gamut; the number of param-
eters is not expected to be higher than for three-colorant
processes.

Extension to the Transformation of Color Spaces.
The analytical distortion and scaling functions, until now
considered to be only a means to distort the kernel gamut,
can also be considered to represent analytically the trans-
formation between the kernel space and the color space,
but this is valid only for the colors contained on the sur-
face of the color or kernel gamut. The extension to the
whole space (within the limits of the color gamut) is car-
ried out by defining nested subsurfaces, e.g., surfaces
parallel to the outer surface. The analytical correspon-
dences must be determined for any pair of respective sub-
surfaces of the kernel and the color gamut. Once correct
mappings between the corresponding subsurfaces exist,
these “submappings” must be combined to form the whole
mapping, e.g., by making use of blending functions.

Thus, an analytical formula is given that represents the
transformation between the kernel space and the color
520     Journal of Imaging Science and Technology
space in a closed form for all colors lying in the range of
reproducible colors of the specific device.

The remaining task is to rotate, translate, and scale the
kernel cube by a simple, linear operation to transfer it
into the CMY cube. The present result is the analytical
description of the transformation from the color-space
(CIELAB) into the space of color-control signals (CMY) of
the device. Therefore, one can immediately specify the
CMY signals that lead to the reproduced color demanded.
For more details see Ref. 16.

Conclusions
The new analytical method described represents the sur-

face of a color gamut by a single, closed expression. Though
the method is still under development, it has proved to be
very useful, because the errors are within the range of
visual perception. Because the representation is very com-
pact, it is well suited to storage or transmission of color
gamuts together with images.

Because the method is analytical, no kind of interpola-
tion is required, once the coefficients are determined. The
method is applicable to any color space that allows repre-
sentation by lightness, chroma, and hue.

The new method was demonstrated with a three-colorant
print process, but it was shown that processes adding a
black colorant can easily be included by the reference to a
definite separation algorithm. Moreover, the method is
flexible enough to include other color reproduction pro-
cesses because of its structure based on a kernel that can
be adjusted to other processes.

As a further application, the method has enough poten-
tial to be extended to represent analytically a whole device
characterization by giving an analytical transformation
from CIELAB to the space of control signals.
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Appendix: A Description of the Distortion and Scal-
ing Functions

The distortion and scaling functions described here are
the ones temporarily used. Because the method is still
under development, they may be changed for the sake of
improvement.

The Scaling Functions.

    
s(z, φ ) = s(φ ) = so + sc,n cos nφ + ss,n sin nφ ,

n=1
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The Distortion Functions. The distortion function for
the φ direction is first taken one-dimensionally and com-
puted to yield exact values along the kink-line connecting
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the six middle vertices (at lightness values between the
white point and the black point):

    
φd,h (h*) = h * + p0 + pc,n cos nh * + ps,n sin nh*.

n=1

Nφ

∑ (A4)

Then it is expanded two dimensionally by introducing a
correcting function φd,corr(L*,h*) to give also the exact course
of the function at the remaining six edges:

    

φd L h
b h

L k h
V L k h

b h
k h L

V k h L
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max
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−

1

1
1

2

2
2

(A5)

with

    bi (h*) = bi,0 + bi,1 cos h * +bi,2 sin h*, i = 1,2, (A6)

    
ki (h*) = ki,0 + ki,c,n cos nh * +ki,s,n sin nh*,

n=1

2

∑ (A7)

    V (L*) = L * + L * . (A8)

Hence, the distortion function φd(L*,h*) is

    φd (L*, h*) = φd,h (h*) + φd,corr (L*, h*). (A9)

In Fig. 7, a plot of a possible function φd(L*,h*) is presented.
The distortion function zd combines a straight-line part

and a fractional rational part for the  L* direction. For the
h* direction, it is modified by a parameter function

    
z L h

z z h L

z z h L
z z Ld

d h

d h
d d( *, *)

( *) *

( *)( *)
*,

,
, ,

*

*
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2 31

(A10)
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with

    
zh* (h*) = z0 + zc,n

n=1

Nz

∑ cos nh * +zs,n sin nh*. (A11)

In Fig. 6, a possible function zd(L*,h*) is plotted.

References
1. M. D. Fairchild and R. S. Berns, Image color-appearance specification

through extension of CIELAB, Color Res. Appl. 18: 178–190 (1993).
2. M. D. Fairchild, Visual evaluation and evolution of the RLAB color

space, Proceedings of the 2nd IS&T/SID Color Imaging Conference:
Color Science, Systems and Applications, Scottsdale, Arizona, 1994,
pp 9–13.

3. J. A. Viggiano and C. J. Wang,  A comparison of algorithms for mapping
color between media of differing luminance ranges, TAGA Proceed-
ings (M. Pearson, Ed.) 1992, 959–974.

4. J. Gordon, R. Holub, and R. Poe, On the rendition of unprintable colors,
TAGA Proceedings, 1987, pp 186–195.

5. M. Stokes, M. D. Fairchild, and R. S. Berns, Precision requirements for
digital color reproduction, ACM Trans. Graphics 11(4): 406–422 (Oct.
1992).

6. M. Stokes, M. D. Fairchild, and R. S. Berns, Colorimetrically quantified
visual tolerances for pictorial images, TAGA Proceedings, (M. Pearson,
Ed.) 2: pp 757–777, (1992).

7. A. R. Robertson, The CIE 1976 color-difference formulae, Color Res.
Appl. 2(1): 7–11 (1977).

8. M. Mahy, L. Van Eycken, and A. Oosterlinck, Evaluation of uniform color
spaces developed after the adoption of CIELAB and CIELUV, Color
Res. Appl. 19(2): 105–121 (1994).

9. J. Romero, E. Hita, and L. Jiménez del Barco, Chromaticity differential
thresholds and successive stimuli  presentation, Die Farbe 32/33: 264–
274 (1985/1986).

10. M. R. Luo and B. Rigg, Chromaticity-discrimination ellipses for surface
colours, Color Res. Appl. 11(1): 25–42 (1986).

11. S. Stamm,  An investigation of color tolerance,  TAGA Proceedings,
(1981) 156–173.

12. E. Jung, Programmed and complementary color reduction, TAGA Pro-
ceedings, 36: pp 135–150, (1984).

13. W. F. Schreiber, A color prepress system using appearance variables,
J. Imaging Technol. 12(4): 200–211 (1986).

14. H. R. Kang, Gray component replacement using color mixing models,
Proc. of SPIE, 2171: pp 287–296, 1994.

15. P.-C. Hung,  A smooth colorimetric calibration technique utilizing the
entire color gamut of CMYK printers, Proc. of SPIE, 2171:  275–286,
(1994).

16. P. G. Herzog, Analytical color space transformations, AIC Interim Meet-
ing, Berlin, September 1995.
Vol. 40, No. 6, Nov./Dec. 1996     521


	Analytical Color Gamut Representations*
	Patrick G. Herzog
	Introduction
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Results
	Figure 7.
	Conclusions
	Acknowledgments.
	Appendix:
	References

