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Introduction
The physics of liquid jet surface deformations is of great
interest in the continuous ink-jet field due to the funda-
mental role it plays in determining droplet generation for
the printing process. One of the questions that has be-
come of some interest to us is how the large-amplitude
deformations behave in comparison with the more well-
known and understood small-amplitude deformations.

Rayleigh,1 of course, addressed the basic problem of the
infinite liquid cylinder with an imposed uniform surface per-
turbation. He was able to show many of the salient features
of the jet deformation growth as a function of time. In real-
ity, however, the liquid jets used for our ink-jet printing do
not have infinite extent and do not usually have small per-
turbations at the surface. The jets, in a properly operating
printer, have a relatively short length before breaking up
into droplets. This is accomplished by imposing a substan-
tial surface deformation on the jet as it exits the orifice.

A large part of our investigation includes the measure-
ment of three velocities associated with the break-up of
the jets: the average jet velocity as it exits the nozzle, the
velocity of the droplets after the jets break-up, and the
wave velocity of the surface deformations propagating on
the surface of a stimulated jet.

This paper presents data showing the relationship of the jet ve-
locity Vj, the wave velocity Vw = λf, and the droplet velocity Vd of
a continuous, stimulated jet emanating from an orifice in a thin,
flat plate. The jet velocity measurement is nontrivially derived
from the flow rate, as the jet diameter D is a function of Vj due to
the presence of a dynamical meniscus at the orifice-jet bound-
ary; λ is the measured wavelength of the surface deformation
imposed on the jet at a frequency, f. The droplet velocity is mea-
sured in a straightforward fashion. We find good agreement be-
tween the measured values for λf and those calculated from the
simple velocity potential theory for cylindrical jets for λ / D < π.
However, the same theory predicts λf = Vj and Vj > Vd for λ /   D >
π, which we do not find to be strictly true. A possible factor for
this discrepancy is that the surface deformation along the length
of the stimulated jet is monotonically increasing in amplitude,
culminating in droplet formation and break-off. This finding
strongly violates the assumption of a uniform and infinitesimal
deformation in the simple theory.
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Jet Velocity. In principle, the velocity of an unstimu-
lated jet is easily determined from the flow rate, Q, and
the jet diameter, D, by:

    
V j = 4Q

ρπD2 . (1)

We found in previous experiments2 that the jet diam-
eter was not equal to the orifice diameter, due to fluid
wetting of the surface of the nozzle plate around the nozzle.
The difference between jet diameter and orifice diameter
can lead to substantial errors in the calculation of Vj from
Eq. 1. If one assumes that the value of D is the same as
the orifice diameter, and if D, ρ, and Q are measured with
an accuracy of, say, 1%, then the error for Vj is on the or-
der of 4%. The error in Eq. 1 enters as 2∆D and makes
necessary an independent measurement of D for the range
of jet velocities investigated here.

Droplet Velocity. The droplets that form from the
breakup of the jets travel with a velocity parallel to the
jet velocity. A typical video image of an array of droplets
in flight used for measuring droplet spacing, L, is shown
in Fig. 1. The magnitude of the droplet velocity was mea-
sured by using a stroboscopic light source backlighting the
array of droplets after breakoff so that they appear fixed
in space. A microscope with reticule or a video image of
the array can be used to determine the spacing of the drop-
lets in the direction of travel. Knowing the frequency of
jet stimulation, fs, allows the droplet velocity, Vd, to be cal-
culated from

    Vd = f s ⋅ L, (2)

where L is the droplet spacing in the direction of the ve-
locity. An artifact of the droplet breakoff process is visible
in the figure as a periodic distortion of the droplets from
perfect spherical shapes. The droplets in the row near the
center of the figure are somewhat flattened on the top and
bottom, compared with those in the row just above or be-
low it. The first and last two rows show droplets that are
elongated in the direction of Vd. This is typical of the oscil-
lating droplet geometry that is observed immediately be-
low the breakoff point. Even though the droplet shape is
oscillating, the velocity of the center of the droplet mass is
constant.
Wave Velocity. Small-Amplitude Waves. The most
interesting of the three velocities studied here is the wave
velocity. Rayleigh1 found that there were two regimes for
periodic surface deformations on the ideal infinite cylin-
der of fluid. The first regime is defined by λ / D < π, where
λ is the wavelength of the disturbance. The amplitude of
the surface deformations in this regime decreases with
time because of viscosity effects on the wave propagation
and surface energy minimization (see Fig. 2).
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Figure 1. Video image of droplets in flight after breakoff.
Figure 2. Stimulated jets with λ/D < π.
The simplest form of the problem of an infinite jet with
surface deformations is given by the following:

1. The fluid is considered nonviscid.
2. The flow is nonrotational: ∇ × V = ∇ • V = 0.
3. The fluid density ρ = constant.

4. 
  

1
2

ρV 2 in Bernoulli’s equation is negligible compared

with the other terms.
5. The velocity potential, φ, is defined by

      
− = − = ∇ =∂φ

∂
∂φ
∂

φ
r zr zV V V, ,

The differential equation for this problem is the cylin-
drical Laplacian:

    

∂ 2φ
∂r2 + 1

r
∂φ
∂r

+ ∂ 2φ
∂z2 = 0. (3)

A product solution of the form φ = R(r)Z(z)T(t) is as-
sumed, and the boundary condition at the surface of the
jet is approximated by

    
Vr (R) = dR

dt
= − ∂φ

∂r
at r = R; and

∂R
∂z

<< 1,
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so that the curvature at the surface of the jet can be sim-
plified to
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These approximations, conditions, and restrictions then
allow a simple harmonic solution to Eq. 3, which yields
the dispersion relation:
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where σ = surface tension of the fluid, ρ = fluid density,
r0 = unperturbed jet radius, k = 2 π/λ, ω = 2πf, and I0(kr0)
and I1 (kr0) are Bessel functions. The dispersion relation
shows that for kr0 > 1 (λ /D < π), ω is real and positive
and represents the angular frequency of a wave on the
surface of the jet propagating with the phase velocity, Vp

= ω /k. [Note that Eq. 4 yields the right dispersion rela-
tion for propagating plane waves on the surface of a level
liquid by taking the limits k → ∞ (short wavelength) or r0

→ ∞ (large radius)].
Large-Amplitude Waves. The second regime is deter-

mined by the condition kr0 < 1 (λ /D > π), and shows re-
markably different behavior from the disturbances
discussed above. Here ω is imaginary and describes the
case where the amplitude of the disturbance grows as a
function of time at an exponential rate, but is at rest with
respect to the fluid, according to the simple theory. That
is, the disturbance is assumed to grow in amplitude with-
out propagating along the length of the jet. The ampli-
tude of the perturbed surface increases until it reaches
the value of the jet radius. At this point, the continuous
jet of fluid breaks up into equal mass drops.

When the amplitude of the disturbance on the jet is no
longer small enough to satisfy the boundary conditions
and approximations discussed above, then the solutions
Figure 3. Stimulated jets with λ/D > π.
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to Eq. 3 are less likely to describe properly the wave mo-
tion or disturbance amplitude growth that takes place. A
large-amplitude disturbance can be obtained by allowing
a true perturbation to grow until the surface variation is
on the order of the jet radius, as in Fig. 3, or by a large
initial deformation, as shown by Fig. 4.
Figure 4. Large-amplitude initial disturbance.
Experimental
Our experimental work was carried out with printhead

components from the Scitex 5100 printer. The droplet gen-
erators had 132 jets formed by forcing fluid through ori-
fices in a thin nickel plate, with orifice diameters ranging
from 1.86 to 1.88 mils. The printhead test stand was
equipped to provide wide-range frequency stimulation of
the jets and variable fluid pressure. A proprietary liquid
ink with well-known fluid properties was used as the test
fluid.

An LED strobe light source, a microscope and reticule,
and a Mideo Systems video imaging system with Media
Cybernetics ImagePro Plus analysis software were used
to record the jet surface deformations and free droplet po-
sitions during the course of the experiment. Data analy-
sis, preparation, and presentation were accomplished with
ImagePro, MS Excel, and MS Word software.

Jet Velocity. The average flow rate, Q, of a jet at each
test pressure was measured by collecting the jetted fluid
of 132 individual jets for a known amount of time and
weighing the fluid. The fluid pressure was electromechani-
cally controlled to better than ±0.05 psi. This procedure
was performed several times for each condition, so that
an average value of the flow rate was obtained.

The density of the fluid used for these experiments was
determined at the time of manufacture and was checked
periodically during the experiments. The fluid supply was
also routinely replaced during the course of the experi-
mentation, so that any variations of the data due to fluid
density fluctuations could be kept minimal.

Measurements of D versus the fluid pressure, P, were
made using two different setups. The first method em-
ployed a strobe light source backlighting the unstim-
ulated jet array and a photodetector in conjunction with
a microscope focus on a portion of the jet array. The jets
were imaged onto the photodetector, which was connected
to a lock-in amplifier referenced to the strobe source.
When the pressure of the fluid behind the orifice plate
was varied, the diameters of the jets changed in concert
with the jet velocity, causing the “shadow” cast by the
jets on the detector to vary in proportion to the changing
Jet, Wave, and Droplet Velocities for a Continuous Fluid Jet
diameters. This caused the output of the detector to vary
accordingly; the output was then amplified with a high
signal-to-noise ratio by the lock-in amplifier. The output
voltage of the lock-in amplifier was, in this setup, pro-
portional to the average diameter of the jets in view of
the microscope.

The lock-in measurement had the advantage of having
very high resolution, with the detector output being an
analog signal proportional to the amount of light striking
it. This method had the disadvantage of being difficult to
calibrate and sensitive to detector and light source drift.
It also was generally used with low-power microscope mag-
nification of the jets, and therefore the results are values
of D that are averages over several individual jets.

The second method of jet diameter measurement was
direct analysis of the video images of highly magnified,
unstimulated jets, made with the Mideo Systems video
system. Many individual measurements of several jets for
each trial were made and averaged, producing an average
diameter for a single jet.

Because the jet images were made with the video sys-
tem having two jets always in the field of view, and be-
cause the jet spacing for the arrays used were very well
known, these images were self-calibrating. This proved to
be a big advantage over the lock-in method, where abso-
lute calibration was difficult to achieve. The major disad-
vantage of the video method was that, because the captured
images were digital, the resolution of the D measurements
was often lower than that provided by the lock-in method.
This was partially compensated for by using many images
and measurements and finding an average value for a jet
diameter.

Drop Velocity. An extensive series of measurements
was made, using the video imaging of the droplet posi-
tions to obtain values for Vd. These measurements were
made for 3.0- and 9.5-psi fluid pressures. The 9.5-psi tri-
als were repeated for stimulation frequencies of 32.663,
48.778, and 67.113 kHz. The 3.0-psi trial used a stimula-
tion frequency of 24.442 kHz.

Video images like the one shown in Fig. 1 were ana-
lyzed with an image analysis program. This program had
several advanced features, including one that determined
the position of the droplet centroids in the x and y direc-
tions. The difference between neighboring droplet cen-
troids in the velocity direction is L, from which Vd can be
determined, using Eq. 2.

Some care was given to making the droplet velocity
measurements reasonably close to the point of breakoff,
so that aerodynamic drag did not slow the droplets
enough to produce an error in the measurement of L.
However, if the measurements are attempted too close to
the breakoff point, the position of the droplet center of
mass becomes more difficult to determine because of the
large distortion of the droplet shape, as previously men-
tioned. Generally, the droplet position measurements
were made on an array of droplets a few λ below the
breakoff point to minimize the effects of both air drag
and distorted droplet geometry.

Wave Velocity. Images similar to those shown in Fig. 2
(propagation mode) and Fig. 3 (amplitude growth mode)
were also recorded with the video measurement system.
The images were analyzed with the Image Pro software,
giving the jet radius, r, as a function of the distance along
the axis of the jet, z. The wavelength, λ, of the surface de-
formations was obtained by measuring the distance along
z between the maxima (or minima) in the figure. The wave
velocity, Vw, was then determined from Eq. 2 using the
known frequency of jet stimulation, f, and the measured
wavelength, λ.
Vol. 40, No. 5, Sept./Oct.  1996     407



Results
Jet Velocity. The dependence of D on P is shown in

Fig. 5, which includes measurements of D by both the video
and lock-in methods. As can be seen, the diameter of the
jet is found to increase rapidly as P decreases toward 0
psi. As the pressure increases, the jet diameter decreases
and appears to approach an asymptotic lower limit at
higher pressures. With Q, D, and ρ being known (mea-
sured) quantities, the values for Vj were calculated from
Eq. 1. The results of our measurements of jet velocity at
3.0 and 9.5 psi are given in Table I.
Figure 5. Average single jet diameter versus pressure.
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TABLE I.

Pressure Stimulaton Freq. Q D λ/D Vw Vd Vj

(psi) (kHz) (10-6 kg/s) (10-5 m) (m/s) (m/s) (m/s)

3.0 24.442 9.130 ± 0.003 5.28 ± 0.05 3.3 4.20 ± 0.07 3.78 ± 0.03 4.12 ± 0.05

9.5 32.663 16.90 ± 0.03 4.79 ± 0.10 6.1 9.48 ± 0.04 9.10 ± 0.02 9.21 ± 0.23

9.5 48.778 16.90 ± 0.03 4.79 ± 0.10 4.1 9.55 ± 0.08 9.22 ± 0.02 9.21 ± 0.23

9.5 67.133 16.90 ± 0.03 4.79 ± 0.10 3.0 9.57 ± 0.06 9.25 ± 0.02 9.21 ± 0.23
Drop Velocity. Measured values for the droplet veloc-
ity at 3.0 and 9.5 psi are also shown in Table I. Additional
data are shown in Fig. 6, where Vd is plotted as a function
of P. The solid line in the figure is a power law fit of the
data to Vd = a(P – P0)x, where P0, a, and x are fitted param-
eters. The values of the fitted parameters are P0 = 0.05
psi, x = 0.61, and a = 2.4, where the units for a are consis-
tent with P raised to the x power.
Figure 6. Droplet velocity versus pressure.
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The values for x and P in simple Bernoulli theory are
0.5 and 0 psi, respectively. The deviations of x and P0 from
these values are probably the result of viscosity effects
and the possibility that the droplet velocity is slightly re-
tarded upon breaking off from the jet because of surface
tension effects (which are discussed later). The deviations
from Bernoulli theory are relatively small, though, and
not important here, because only the measured values of
the droplet velocity are of interest.
f Imaging Science and Technology
Wave Velocity. Measurements of the wave velocity, Vw

= ω / k, and the droplet velocity, Vd , at P = 5 and 16 psi
were made at a number of values of λ /D. The difference
between Vw and Vd, which is the velocity of the wave on
the jet in the frame of reference where the dropets are
stationary, is calculated and plotted in Fig. 7. The solid
line to the left of λ /D = π is the phase velocity, Vp , calcu-
lated from the dispersion relation, Eq. 4, with the proper
parameters for the test conditions used. As can be seen in
the figure, the theoretical calculations for ω /k (in the frame
of reference where the jet is staionary) are very close to
the measured values of Vw – Vd. To the right of λ /D = π, the
value of Vp is approximately constant and slightly larger
than zero. This is possibly due to droplet slowing at
breakoff (Vj > Vd) or the wave on the jet surface having a
small velocity relative to the jet that is weakly dependent
on, or even independent of, the stimulation frequency.
Figure 7. Plot of ω/k – <Vd> versus λ/D.
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Figure 8 is a plot of the 9.5-psi data from Table I, where
the velocities are plotted versus their values of λ/D. This
figure reveals that the wave velocity Vw is significantly
larger than the droplet velocity and that both dip slightly
as λ/D approaches π. The large error bars for the jet veloc-
ity prohibit any strong statements concerning the magni-
tude of Vj. It appears from these data that the jet velocity
is comparable to the droplet velocity and is substantially
less than the wave velocity; however, the error bars are
relatively large and only more precise measurements of
Vj would bear this out.
Figure 8. The velocities Vw, Vd, and Vj versus λ/D for 9.5 psi.
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Large-Amplitude Wave Propagation. The propaga-
tion of large-amplitude waves was studied by analyzing
plots like that showin Fig. 9. The droplets, as represented
in this plot, break away from the jet at about 7.0E – 04
m. Therefore, the maxima (minima) to the left of this point
are on the continuous part of the stimulated jet, whereas
the maxima to the right of 7.0E – 04 m are those of the
droplets that have broken off. The numbers near the curve
in the figure are the values for z where the jet radii are
at local maxima. From these numbers, the wavelength of
the disturbance on the jet and the droplet spacing can be
determined.
Figure 9. Surface profile of large initial disturbance jet.
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In Fig. 10, the z values of the maxima discussed above
are plotted in the sequence in which they occur for both
the wave and droplets. The slopes of the fitted lines for
each are the velocities for each: Vd = 3.85 ± 0.04 m/s and
Vw = 4.32 ± 0.04 m/s. The difference between the droplet
and wave velocities is thought to be due to a retarding
force acting on the breakoff droplet during the last period
for which the droplet is still connected to the jet.3 How-
ever, this mechanism is probably inconsistent with the
measurements of Vj and Vd compared in Fig. 8.
Figure 10. Wave maxima versus distance from origin: 3.0 psi.
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Figure 11 shows a similar plot for the maxima from a
9.5-psi large-amplitude stimulated jet. The wave velocity
calculated by a linear fit of the wave maxima data gives Vw

= 9.17 ± 0.23 m/s, which is close to the velocity droplet ve-
locity of 9.00 ± 0.04 m/s. The large error for Vw calculated
from the points in Fig. 11 is not all from random measure-
ment error, but has a large contribution from the fact that
the maxima are not linearly spaced along the length of the
jet. As a comparision, the value for Vw with small-ampli-
tude stimulation of 9.5-psi jets is 9.53 ± 0.06 m/s, obtained
from the average of a large number of measurements.
Jet, Wave, and Droplet Velocities for a Continuous Fluid Jet
Figure 11. Wave maxima versus distance from origin: 9.5 psi
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A closer examination of the variable wavelength of the
high-amplitude surface deformation is shown in Fig. 12.
This plot shows an expanded view of the wave maxima
positions along the axis of the jet for the wave and the
first two free droplets for P = 9.5 psi. The line in Fig. 12 is
drawn connecting the first two points on the left and shows
that the subsequent points fall successively farther below
the line. Taking the differences between adjacent zmax val-
ues and dividing by the period of stimulation yields the
velocity of the wave maxima (droplet) averaged over one
λ(L). A plot of these velocities for the 9.5-psi jet stimu-
lated at 48.778 kHz is shown in Fig. 13. The effect of the
variable wavelength of the wave on the local values of Vw

is apparent in this figure, which shows that Vw dips sharply
near the breakoff point and then appears to increase to
the (constant) droplet velocity. Similar behavior is exhib-
ited by the 3.0-psi, 24.445-kHz data plotted in Fig. 14.
These data appear to indicate that the disturbance on the
surface of the jet is slowing down as it approaches the
breakoff point.
Figure 12. Position of maxima along jet.
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Figure 13. Wave velocity profile on highly stimulated jet for 9.5 psi.
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One implication of Vw not being constant along the length
of the stimulated jet is that Vw is probably not equal to Vj.
However, to say this with certainty would require knowledge
Vol. 40, No. 5, Sept./Oct.  1996     409



Figure 14. Wave velocity profile on highly stimulated jet for 3.0 psi.
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of the velocity of the fluid everywhere in the jet, as the
surface deformations will be displacing the fluid below the
surface of the jet, producing local variations in the z com-
ponent of the fluid velocity. It is possible, though not likely,
that the local value of Vj averaged over a radial cross sec-
tion of the jet is equal to the velocity of the surface bound-
ing the cross section. This is clearly not an issue with
small-amplitude stimulation, where the surface deforma-
tions are too small to drive the interior fluid. An analo-
gous situation would be that of shallow and deep water
waves, where the magnitude of the surface deformation
relative to the depth of the water has a large effect on the
physics of the wave propagation.

The overall behavior of the wave and the breakoff pro-
cess found here seems to be consistent with prior analy-
ses in that there is an apparent reduction in the fluid
momentum in the droplet breakoff region.4 What has ac-
tually been determined experimentally here is that the
surface wave velocity is retarded near breakoff, which is
also the point where the amplitude of the stimulation be-
comes of the same order as the jet radius.

Large-Amplitude Wave Growth. The rate at which
the perturbation on the surface of the jet grows was deter-
mined by Rayleigh to be an exponential function of time
for λ/D > π. As discussed before, once the amplitude of the
wave on the jet becomes too large for the conditions lead-
ing to the dispersion relation, Eq. 4, the simple theory prob-
ably does not describe the real physical situation as well.

In Fig. 15, the radius of the jet is measured as a func-
tion of time for one period at a fixed position along z. In
this plot R(t) is a periodic function, but not described by a
single frequency component.5

It is of interest to calculate the square of the time av-
eraged radius, <R>2, and of the square of the radius, <R2>;
for comparison purposes. If the jet velocity at a particu-
lar point along the axis of the jet is assumed to be con-
stant with respect to time, then <Q> = ρπVj <R2>. The
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value of <R2> versus z is plotted in Fig. 16, along with
the value of <R>2. At first glance, the data plotted in this
figure appear to be quite noisy and, not unexpectedly, <R2>
does not equal <R>2 everywhere. The values of <R2> and
<R>2 are experimentally equal near the origin of the jet
(the orifice plate), and they diverge as the jet moves away
from the orifice. This divergence is presumably due to the
meniscus formed on the surface of the plate surrounding
the nozzle. For larger values of z, <R2> and <R>2 continue
to diverge, with the difference becoming greatest at the
breakoff point.
Figure 15. Stimulated jet radius versus time.
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Figure 16. Plot of <R2> and <R>2 versus z.
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Figure 17. Plot of <R2> – <R>2 versus z.
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It is surprising though, that the difference <R2> – <R>2

plotted versus z (see Fig. 17) results in a curve that is quite
smooth and is reasonably well described by a simple expo-
nential function. The smoothness of this curve indicates
that the variations between the <R2> and <R>2 data are
real and not noise. The difference data also show that the
amplitude disturbance grows with time in an exponential
fashion, as predicted by Rayleigh.1 If the time-dependent
radius can be written as R(t) = R0 + r(t), where r(t) is a
periodic function of time and <r> = 0, then <R2> – <R>2

 =
<r2>. If r(t) = r0cos(ω.t), then <r2> = r0

2/2, and the ampli-
tude, r0, is found to grow exponentially with time.

Conclusions
The analysis of waves on a cylindrical jet yields a

straightforward analytical solution only when the ampli-
tude of the deformation is small. Small deformation waves
were generated for λ/D < π and the phase velocity of these
waves as a function of λ/D was found to be in good agree-
ment with the dispersion relation, Eq. 4. This dispersion
relation came from the solution of Eq. 3 with many sim-
plifying assumptions and approximations. When these
conditions are not allowed, as is the case when the ampli-
tude of the wave motion becomes large, the solutions be-
come less useful in describing the actual wave motion of
the jet.
Fagerquist



The deviation from simple theory of the wave when
the surface deformation is large was revealed in the mea-
surements of the wave propagation along the length of
the jet for λ /D > π. We found that the wavelength of the
large-amplitude deformation decreased as the amplitude
increased in the direction of the jet velocity. This sug-
gests that (1) the jet and wave velocities are probably
not the same, as is often assumed, and (2) the wave ve-
locity decreases as the amplitude of the wave increases,
until droplet breakoff occurs.

The droplet velocity was shown, without question, to be
less than the wave velocity. Schneider3 and Lienhard4 con-
sidered the problem and found that the droplet velocity
should be less than the jet velocity due to surface tension
effects during the period just before breakoff. In both cases,
however, it was assumed in the analyses that the jet ve-
locity and wave velocity were the same when λ/D > π. It
appears from the measurements made here that this is
unlikely. It would not be surprising to find the nonlinear
nature of the fluid dynamics to be important when the
amplitudes of the surface deformations are no longer small.

Measurements of the jet radius, R, as a function of time
at constant z showed that the radial motion of the surface
of the jet is not simple periodic motion.5 The time-averaged
values of R2 and R were used to show that the growth of the
deformation amplitude is still roughly an exponential func-
Jet, Wave, and Droplet Velocities for a Continuous Fluid Jet
tion of time, when the amplitude is defined as r0
2 = [<R2> –

<R>2], even though there is a more complicated dependence
of the individual values of <R2> and <R>2 on z.

An experimental difficulty that proved to be nontrivial
was the dependence of the jet radius on jet velocity. This
relationship makes the measurement of jet velocity some-
what more complicated and requires an extremely accu-
rate measurement of the jet radius in order to maintain a
reasonable error for Vj. Even with the high-resolution video
system measurements, where the radius measurement er-
rors were quite small, the jet velocity measurement could
still not be made routinely with an error of less than a few
percent, which is large compared with the errors associ-
ated with the droplet and wave velocity measurements.
More accurate measurements of the jet velocity will be
needed before comparison of the wave and jet velocities
can be made with more confidence.
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