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Introduction
Thermal ink-jet (TIJ) is a drop-on-demand printing pro-
cess. The printing element consists of a transducer and
an ink-feeding system. The transducer is physically a min-
iature complex assembly that produces the ink drops in
response to an electrical signal. The transducer has mul-
tiple channels, through which the ink flows, and each chan-
nel has a resistor that superheats the ink in contact with
it when the electrical pulse is applied. The ink in contact
with the resistor produces a vapor bubble that grows and
pushes the ink out from the channel. After a short inter-
val the vapor bubble collapses and an ink drop is ejected.
Under the surface tension effect the channel is refilled
and is ready to receive the next electrical pulse. The pro-
cess is repeated for the next ink drop.

As a result of this periodic pulsing of the drop ejection
process, the fluid flow through the channel is constantly
changing as long as the printing process continues. Thus
the flow through the ink passages is always transient. If
the flow is stationary, the flow rate through a given pas-
sage, for a given pressure gradient, is governed by the vis-
cous resistance of the passage. However, if the flow is
transient, the flow rate is governed by not only the resis-
tance, but also the inertance. The inertance results from
the inertia of the fluid.

The fluid mechanics textbooks provide abundant infor-
mation about the fluid resistance, but very little is discussed
about the inertance. Furthermore, the fact that the resis-

The fluid flow in thermal ink-jet transducers is highly dynamic
in the sense that at no time during its operation does the flow
reach a steady-state condition. The transient flow is affected by
the inertial and viscous effects. These two effects are reflected
through the inertance and resistance parameters of the trans-
ducer geometry. In this study we present a general background
on the inertance and resistance parameters, present a method
for calculating these parameters for a given three-dimensional
geometry, and briefly outline their role in the ink drop ejection
process.
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tance and inertance are functions of frequency is not elabo-
rated. In this study we discuss these aspects and show how
one can calculate these values for a given geometry. As an
application we consider a channel geometry used in a TIJ
printhead and show the significance of inertance and resis-
tance in analyzing the flow characteristics of the printhead.

Oscillating Flow through a Circular Pipe
To bring out the essential features of the transient flow,

let us consider a simple problem of flow through a circular
pipe subjected to a time-dependent pressure gradient. As-
suming that the only nonzero velocity component is the axial
velocity u = u(r,t), the Navier–Stokes equation becomes
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where dp/dx is the pressure gradient, ρ is the density, and
µ is the viscosity. If the pressure gradient varies sinusoi-
dally with time, then we can assume
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where J0 is the Bessel function of the first kind, ν is the
kinematic viscosity, a is the radius of the pipe, and ω is the
frequency. The expression for flow rate q through the pipe
can be obtained by integrating the velocity over the cross-
sectional area of the pipe. The flow rate q is of the form

q = qa exp(iωt), (4)

where qa is the amplitude of the flow-rate. This is a com-
plex number suggesting that the pressure and flow-rate
fluctuations are out of phase with each other. The ratio
of pressure gradient to flow rate is called the impedance,
Z, which is also a complex number. We can express Z in
the form

Z = Rω + iωLω , (5)

where Rω is the resistance and Lω is the inertance. The
subscript ω on the resistance and inertance indicates that



they both are functions of frequency ω. Rezanka2 has de-
rived the full expression for Z.

Lumped Parameter Model for Ink Flow Analysis
To study the refill process in a TIJ printhead, Torpey3 de-

rived an approximate lumped parameter equation in the form

      
L
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where Ll and Rl are the lumped element inertance and
resistance, respectively, and ∆p is the pressure difference
across some length l. The lumped inertance and resistance
for a circular pipe of radius a and length l are
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In view of the fact that the inertance and resistance are
functions of frequency, the question arises as to how these
lumped values relate to those defined in Eq. 5. Rezanka
plotted the values of R/Rl and L/Ll as functions of frequency
and made some interesting observations. He found out that
the resistance equals the lumped element resistance at
zero frequency, the resistance diverges as the square root
of the frequency, the inertance equals the lumped element
inertance at infinite frequency, and the limit of inertance
at low frequencies is only 4/3 of its lumped element
inertance. In mathematical terms the relation between
lumped element values and exact values is given as

      
L Ll =

→∞
lim ,
ω ω (9)
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lim .
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We have used the case of a circular pipe to understand
the relationship between the lumped element values and
the exact values for the resistance and inertance. The re-
lationship defined by Eqs. 9 and 10 is true in general. In
our further discussion we consider only the lumped ele-
ment values of the inertance and resistance, and for con-
venience we omit the subscript l on R and L. The question
now is how can we determine the R and L values for any
three-dimensional geometry. The answer is relatively
simple. We calculate the flow rate q(t) as the response of
the system to a step function in ∆p and calculate the
inertance and resistance from the following equations:

    

L = ∆p
dq

dt




 t=0

,
(11)
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q(∞)
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The reason Eqs. 11 and 12 represent Eqs. 9 and 10, re-
spectively, is that the step function excites all the frequen-
cies; the system response at t = 0 corresponds to the ω →
∞ and the steady state corresponds to ω → 0. We will now
consider a specific example to illustrate the case.

Figure 1 shows a channel geometry one might use for a
TIJ printhead. The channel has a triangular cross sec-
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tion, and the heater is located in a recessed well as shown.
The rear channel consists of a plug and a passageway
around the plug for ink supply from the reservoir. This
three-dimensional structure can be represented in a
lumped element model as shown in Fig. 2. In Fig. 2, pa is
the ambient pressure, pb the bubble pressure, pr the res-
ervoir pressure, Lf and Rf are the inertance and resistance
of the front channel, and Lr and Rr are the corresponding
values for the rear channel. The mid-position on the heater
is used to divide the channel into front and rear sections.
Figure 1. A channel geometry for a TIJ printhead.
Figure 2. Lumped element model of the printhead.
The pressure in the bubble formed at the heater surface
is very high at the instant of bubble formation, and it falls
very rapidly as the bubble begins to expand.4,5 The pres-
sure becomes less than atmospheric within a few microsec-
onds and remains at that level until the bubble collapses.
For the lumped element model we can approximate the
bubble pressure pb as follows:
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where pmax and pmin are the maximum and minimum pres-
sure values, and tp is the time at which the pressure reaches
pmin. The impulse, i.e., the positive area under the pressure–
time curve, rather than the exact value of pmax, governs the
flow behavior. For our example we have assumed pmax = 30
atm, pmin = –0.6 atm, and tp = 1.4 µs with an approximate
impulse of 21 atm-microseconds. For the pressure history
assumed, the flow rate in the front channel section can be
expressed as a solution of Eq. 6 as follows:
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where qf is the flow rate in the front channel of the trans-
ducer, Rf is the lumped element resistance of the front
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channel, and tf = Lf /Rf is the characteristic time for the
front channel. A similar expression can be obtained for
the flow rate in the rear channel qr by replacing appropri-
ate variables in Eq. 14.

Comparison of the Lumped Element Model with Full
3D Model

We have used the CFD three-dimensional code FLOW-
3D6 to solve the flow in the three-dimensional geometry
shown in Fig. 1 for the pressure history given in Eq. 13.
The front and rear channel flow rates obtained for this
case are shown in Fig. 3. The volume of fluid displaced in
the front and rear channels and the bubble volume are
shown in Fig. 4. Note that the bubble collapses at about
41 µs after it is generated and the volume of the drop
ejected is equal to 102 pL.
Figure 3. Flow rates in the front and rear channels of the trans-
ducer obtained from a full 3D calculation.
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Figure 4. Volume of fluid displacement in the front and rear
channel of the transducer and the bubble volume as a function of
time calculated using a 3D model.
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The same three-dimensional code is used to calculate the
response of the front and rear channels to a stepped pres-
sure input, and the resistances and inertances of the chan-
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nels are calculated from Eqs. 11 and 12. For the particular
set of dimensions used, these numbers come out to be Rf =
0.73747 × 108 g/(s, cm4), Lf =1354.0 g/cm4, Rr = 0.8440 × 108

g/(s, cm4), and Lr = 1619.0 g/cm4. These values are substi-
tuted in Eq. 14 to obtain the lumped parameter solution.
Figure 5 shows the comparison of flow rate in the front chan-
nel between the lumped element model and the full three-
dimensional model. The agreement is very good until the
time the fluid meniscus begins to retract into the front chan-
nel. This occurs at about 25 µs and then the drop breakoff
occurs at about 30 µs. The retraction of the meniscus into
the channel modifies the inertance and resistance values,
and the two solutions deviate after that point.
Figure 5. Comparison of flow rate in the front channel obtained
from lumped element and 3D models.
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By integrating the flow rate we can calculate the vol-
ume displacement as a function of time. The results are
shown in Fig. 6 for the lumped and three-dimensional
cases. The peak values are 128 pL and 108 pL for the two
cases, respectively. The drop volume from three-dimen-
sional calculations is 102 pL. Thus if we use the peak value
as an approximate measure of the drop volume, the error
in using the lumped model results is less than 20%. The
three-dimensional model calculations require a few hours
of CPU on a Sparc workstation, whereas the lump ele-
ment model calculations take only a few milliseconds. Thus
one can get a very good and fast estimate of the perfor-
mance of a given structure of a TIJ transducer using the
lumped element model. One may estimate the inertance
and resistance values for the given structure by calculat-
ing an equivalent radius and using Eqs. 7 and 8.
In a similar manner we can calculate the flow in the
rear channel. Figure 7 shows the comparison of flow rates
in the rear channel obtained from the lumped element
model and the three-dimensional model. It again shows
very good agreement until the bubble collapse time. At
the bubble collapse time there is a very high pressure im-
pulse for a very short duration. The flow is abruptly
brought to rest and some ringing occurs, as seen in the
figure. The volume displacement can be calculated in this
case also and additional information can be obtained about
the flow, but it is not discussed here.
Effect of Inertance and Resistance Change
We can use the lumped element model of the channel

geometry to understand the effect of changing the geom-
Deshpande



Figure 6. Comparison of front channel fluid volume displace-
ment in the lumped element and 3D models.

Time [Microsec]

D
ro

p 
V

ol
um

e 
(P

ic
o 

Li
te

rs
)

Figure 7. Flow rate in the rear channel obtained from the lumped
element and 3D models.
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etry. When the geometry changes, both the inertance and
resistance will change, but for illustrative purposes we
can change these numbers independently and study their
effects. We will consider only the front channel geometry
and calculate the drop volume estimate. Figure 8 shows
the effect of changing the inertance. It shows that increas-
ing the inertance decreases the drop volume. The initial
slope of the volume curve is an indication of the drop ve-
locity. The results show that the drop velocity will also
decrease with increasing inertance.
Significance of Inertance and Resistance in Fluidics of Thermal I
Figure 8. Fluid volume displacement in the front channel for
three values of inertance.
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Figure 9 shows the effect of changing the resistance of
the front channel. In this case also, an increase in the re-
sistance decreases the drop volume, but the drop velocity
seems to be unchanged. The peaks in these curves occur
at different times and the retraction of the meniscus is
also probably significantly different for these cases, and
one can make additional inferences on the behavior of the
channel geometry.
Figure 9. Fluid volume displacement in the front channel for
three values of resistance.
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Summary
A brief outline of the origin of the inertance and resis-

tance for a fluidic system is given and the dependence of
these properties on the frequency of excitation is brought
out. The connection between frequency-dependent values
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and the lumped element representation values is pointed
out and a method to calculate these values for any three-
dimensional geometry is outlined. As an example, a ge-
ometry used for a TIJ transducer is considered, and the
inertance and resistance of that geometry is calculated. A
lumped element model of the transducer is used to obtain
the flow through the transducer during the drop ejection
process, and it is shown that the results are in close agree-
ment with those obtained with a full three-dimensional
CFD code. The lumped element model is used to investi-
gate the effects of resistance and inertance change on the
performance of the transducer, and it is shown that both
the inertance and the resistance of the front section of the
channel govern the drop volume and drop velocity from
the transducer.
400     Journal of Imaging Science and Technology
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