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Modulation Transfer Function for Development to Complete

Field Neutralization*

S. Jeyadev ' and H. M. Stark *
Xerox Corporation, Webster, New York 14580

The method employed by Streifer and Stark to calculate toner
pile height due to the development to field neutralization of weak
sinusoidal image patterns superposed on a solid area is extended
to cover realistic development systems by applying more general
boundary conditions on the free surface of the toner layer. We
found that as long as the altered boundary conditions do not vary
spatially, the effects of the new boundary conditions are propa-
gated via a single parameter: the toner pile height correspond-
ing to a solid area part of the image. This finding allows us to
extend the realm of the analysis to the case of partial neutraliza-
tion, provided some conditions are met by the development pro-
cess. A theoretical development modulation transfer function
(MTF) is derived from the toner pile height calculations. The
variation of this MTF as a function of the solid area toner pile
height is exploited to obtain the theoretical MTF's for the devel-
opment of multiple layers in color xerography.
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Introduction

In charged pigment xerography, the development process
involves the deposition of charged toner particles on an
image receiver (usually, a photoreceptor) bearing a latent
electrostatic image. The dynamics of toner delivery is de-
termined not only by the nature of the electric fields pro-
duced by the latent image pattern, but also by the
technology used to present the toner to the latent image.
As the development proceeds, the charge in the developed
toner layer reduces the electric field above it and thus re-
duces the field for subsequent development.

Depending on the material package and process param-
eters, the amount of toner present on the photoreceptor (PR)
after the development process is complete may vary, from
the limit where the electric field due to the latent image is
not significantly altered by the developed toner layer to the
limit where sufficient toner is deposited such that the charge
in the developed toner layer eventually reduces the field
above it to zero. In modeling the former case, one usually
assumes that the amount of toner developed is simply pro-
portional to the normal component of the electrostatic field
of the bare latent image,' in which case it is possible to
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obtain the frequency response or modulation transfer func-
tion (MTF) of the development subsystem. The latter con-
dition, usually termed development to neutralization,
represents an upper limit to the amount of toner that can
be developed in the absence of toner supply limitations. For
this case, although deriving the thickness of the toner layer
for solid area images is straightforward, deriving the thick-
ness of the toner layer for a sinusoidal image pattern, and
thus extracting an MTF, is a nontrivial problem. The prin-
cipal difficulty is that the calculation required to solve the
toner layer thickness represents a free-boundary value prob-
lem: Although the boundary condition at the interface of
the developed and free toner is known (i.e., the field van-
ishes), the surface itself is not known until the problem has
been solved.

The basic boundary value problem that gives the toner
layer thickness for development to neutralization of a per-
iodic, 1-D latent image has been stated and formally solved
by Streifer and Stark.? They considered the following prob-
lem: a PR of thickness s and permittivity €, carries (see
Fig. 1) a latent image given by & (x) such that o (x + 2a) =
0 (x). The toner is described by a charge density of p and
permittivity €, . The height of the toner layer assumes de-
scription by the yet unknown function Y(x). The usual
boundary conditions are applied at the ground plane and
the PR—toner interface. Further, the potential at the up-
per surface of the toner, Y(x), is taken to be zero. This set
of boundary conditions is not sufficient to solve the prob-
lem, because Y(x) is, as yet, not known. The problem is

2a

Figure 1. The model problem solved by Streifer and Stark.2 The
latent image charge pattern o(x) has a period 2a. The surface of
the toner layer is given by Y(x). The boundary conditions at this
interface are the potential @ (x,Y(x)) = 0 and the field E (x, Y(x)) =
0 (see text).
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one other condition is required. The electric field every-
where above the toner layer should vanish. Streifer and
Stark argue that it is sufficient to require the y compo-
nent to vanish.

The formal solution consists of a set of coupled nonlinear
equations, which must be solved to obtain Y(x), as well as
the usual Fourier coefficients of the solution for the poten-
tial in the PR and the toner layer. Streifer and Stark out-
line an approximate, iterative numerical procedure to find
Y(x) (at specified points in —a < x < a) and a corresponding
set of Fourier coefficients to expand the potential.

Streifer and Stark also illustrate how a perturbative so-
lution is obtained when o(x) consists of a uniform compo-
nent that has small amplitude sinusoids superposed—the
“small signal” case. In this case, the result for Y(x) is very
interesting: Essentially, it consists of a uniform part [cor-
responding to the uniform component in 6(x)], components
with sinusoidal frequencies in the spatially varying part
of a(x), and higher harmonics of these frequencies. The last
part of the response is a result of the inherent nonlinear
nature of the problem. Thus although a part of the toner
pile height can be described by the usual MTF, there are
portions of the response that cannot be captured by the stan-
dard MTF.

In Ref. 2, the potential boundary condition applied at
the upper surface of the toner layer is that the potential
vanishes at this surface (and also in the region above the
toner layer, because the electric field also vanishes in this
region). However, development subsystems are usually
deployed with a bias voltage (or cleaning field) to keep
toner away from the background areas of the image; for
example, in magnetic brush development a bias voltage is
applied to the development roller.

We also note that the present calculation is more rel-
evant to development technologies that, in the process of
depositing toner to the image, do not disturb toner that
may have been previously deposited on the PR surface.
The well-known scavenging effects of the magnetic brush
development subsystems will dominate over those trying
to achieve field neutralization on local and global length
scales and wash out the subtle structures in Y(x) that
would be produced by pure field neutralization.

As mentioned earlier, we must solve the problem with
the more general boundary condition

®x,y)=V,, y2Y(x) eh)

to obtain solutions relevant to practical development sub-
systems. Because of the inherent nonlinear nature of the
problem, linear superposition of a uniform electric field—
corresponding to V,—cannot be used to obtain the new
solution. We will restrict ourselves to charge densities of
the form

ox)= 0, + 3 0, cosh,x, @)
n=1
because it sufficiently illustrates how the results of Ref. 2
should be modified. In Eq. 2

. =nk=02mn/2a)n=m/a, 3

where 2a is the period of o(x). The modified problem can
be solved by following the same process used in Ref. 2.
Although the solution procedure is rather long and com-
plex, the mathematical modification to the formulas of
Streifer and Stark is minimal. In this study we present
only the formulas relevant to the toner pile height, Y(x),
and the MTF in the weak signal limit. A more complete
presentation will be published elsewhere.
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Perturbative Analysis of the Toner Pile Height

For the perturbation analysis we take the expansion
parameter to be

d =max{o,}/ g,. (4)

Assume the perturbative form for the toner pile height
to be

Y(x) = go(x) + dg,(x) + 62 g (%) + ..., (5)

where the functions g,(x) are determined using the
method in Ref 2. The first term on the right-hand side of
Eq. 5 is the toner pile height corresponding to the uni-
form component of the image represented in Eq. 2 by g,
and is given by

gox) = -SLs+[(gs/e,)? -25L v, 112, (6)
£, P,
where
g,s
V e :g_O—Vb =V,-V, (7

s

is the development voltage corresponding to a PR initially
charged to a voltage V. To facilitate comparison with Ref.
2, we have implicitly assumed charged area development
in Egs. 6 and 7. However, the analysis is also applicable to
discharged area development after the requisite changes,
such as substituting the background voltage V,, for V in
Eq. 7, are made.

The next term on the right-hand side of Eq. 5 is the
first-order contribution from the sinusoidal components
of the image to the toner pile height. Before giving the
expression for this term, we first define the quantities

Y, = ¢, coth(k,s)-¢,, (8)
w, = &, coth(k,s) - ¢, 9)
6, = w, exp(k,go) ~ Y, exp(-k, g). 10)

In terms of these quantities, we now write the first-or-
der term as

=3

0,(x) =21 5 Zrcosh,x. (11)

t n=1 Y,

Comparing the expression for the solid area portion of
the response, given by Eq. 6, with that in Ref. 2, we see
the difference is that the surface potential of the PR is
replaced by the actual development potential V,,, due to
the modified boundary condition given in Eq. 1. Compar-
ing Eqgs. 8-11 with their counterparts in Ref. 2 shows that
their mathematical form remains identical. This remains
true for the second-order terms, as well. Thus the only ex-
plicit change required to the formulas of Streifer and Stark
is the modification of the expression for g,; all of the effects
of the new boundary condition are propagated via g,. We
can use this fact to extend the realm of the analysis to
specific cases of partial neutralization.

In principle, the solid area toner pile height g, is a mea-
surable quantity and we can use it as a basic parameter
in describing the MTF. However, in practice, one measures
the developed mass per unit area (DMA) on the PR, rather
than on g,. Knowledge of the mass density of the devel-
oped toner on the PR allows us to parameterize the MTF,
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using the solid area DMA rather than the calculated solid
area response in Eq. 6, at least for a given development
technology and toner package: If p, .. is the mass density
of developed toner on the PR, then

_DMA _DMA _
& o p, (12)

where <g/m> is the tribo of the toner. Equation 12 can be
used to parameterize the MTF in terms of the DMA on the
PR. For the sake of convenience we shall continue to use
8, 1n our expressions.

It is evident that the first-order response given by Eq.
11, each component of which corresponds to a component
in Eq. 2, will produce the traditional MTF. But, due to the
inherent nonlinear nature of the problem, the second-or-
der response involves coupling between the various input
frequencies, resulting in the appearance of “sum” and “dif-
ference” frequencies.

MTF in the Weak Signal Limit

Let the only nonzero amplitude in Eq. 2 be that of the
m’th component:
0,=0,0,,. (13)
In this case the solid area component is still given by
Eq. 6. For the first-order response only the n = m term
survives in Eq. 11. Because there is only one nonzero wave
vector, we will henceforth drop the subscript on & (i.e.,
we set k,, = k) and use k itself as the index for quantities
such as g, 0, w, etc. We now express the first-order re-
sponse as

£,0,
g, (x) = —2‘—9cos kx, (14)
+ Yk
s = 2b um
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Figure 2. The MTF as a function of spatial frequency for four
different solid area responses. In multiple layer color xerography
the curves could be interpreted as the MTF's for different colors,
depending on the number of layers of toners already present on
the PR (see text for discussion).
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and hence the normalized MTF is given by

limk - 0(6,}

M(k) = 5, . (15)

Using Eq. 10 for 8,, we express the MTF as

Mk) = ZLIARLZ . e
&, coth(ks)sinh(kg,) + €, cosh(kg,)

Because single-pixel lines at 600 spi correspond to a
wave vector of the order of 10° m! (or roughly 12 line pairs/
mm) we will confine our attention to wave vectors less
than 25 line pairs/mm. Figure 2 shows the MTF, as calcu-
lated from Eq. 16 for g, = 5, 10, 15, and 20um. We have
used s = 25 um, €, = 2.5 ¢, for the PR parameters, and €, =
1.6 g, for the permittivity of loosely packed toner.

Conclusions and Remarks

The formalism set up by Streifer and Stark to calculate
the neutralization limit toner pile height for sinusoidally
varying line patterns has been extended to the case where
bias fields are present in the development nip. We find
that the presence of the bias alters the responses in a non-
linear manner, but the formulas describing the spatially
varying portion of the response remain identical, as all
information about uniform boundary conditions is propa-
gated via the solid area response. The MTF was obtained
by considering the case of a small sinusoidal modulation
on top of a solid area. The analysis can be extended to
the case of partial neutralization by using the fact that
all the effects of spatially uniform changes to the bound-
ary conditions are propagated via the uniform component
of the response.

Figure 2 shows that the MTF begins to roll off at about
12 lines/mm—the spatial frequency corresponding to
single-pixel lines at 600 spi—in the case of development
to neutralization. This has some interesting consequences
for development systems that deposit multiple layers of
color toner on the PR (e.g., the Konica 9028/Hewlett-
Packard Color Laser Jet and the Panasonic FPC1 copier/
printers) if the development is allowed to get close to this
limit. Let us assume that a monolayer of toner corre-
sponds to a pile height of 5 ym. Then the solid line in the
diagram corresponds to the MTF for the first color. Now
consider trying to develop lines of the second color on top
of a solid area of the first color. The MTF for this process
is given by the dot—dash curve. This is because we can
mimic this two-step two-color development by a single
step, with the first color corresponding to the solid area
part that we represent by 0, and the lines of the second
color by 0,. The analog represented for the third layer is
given by the long—short dashed line in the diagram. By
comparing the curves labeled g, = 5, 10, and 15 ym, we
can see that this model predicts that the developability
of single-pixel lines on top of previously developed solid
areas will be greatly affected in marking engines that
deposit multiple layers of toner on the PR. This effect is
another manifestation of the Gundlach rule for resolu-
tion loss of overcoated photoreceptors.

In deriving an expression for the MTF, we have worked
within the “weak signal” limit. In Ref. 2, Streifer and Stark
have shown that this approximation gives a very good de-
scription for values of & as high as 0.7 by comparing the
perturbative solution with the exact one obtained by solv-
ing the full nonlinear coupled equations. However, if one
wishes to calculate the toner pile height for an isolated
line, one should work with the full nonlinear equations,
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because the “uniform” component 0, would vanish in this
case. However, the general formalism remains valid.
The geometry used both here and in the original paper
addresses the case of infinite line patterns (along the third
dimension). However, the same basic formalism can be
used to solve for toner pile height for the case of charge
patterns with azimuthal symmetry (i.e., circular “dot” pat-
terns)—the case of primary interest when imaging is done
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using dot screens—by setting up the equations in cylin-
drical coordinates. /A&
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