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For a variety of molecularly doped, pendant-, and main-chain
polymers, and vapor-deposited molecular glasses, the mobility of
photoinjected charges at high electric fields is described by the
Poole–Frenkel law; µ = µ0 exp    (γ E ) . Apart from their organic
constituents, the primary transport-related feature shared by
these materials is the lack of a periodic structure. We review the
relation between the   E -dependent mobilities and dispersive
transport, as described by the theory of Scher and Montroll for
hopping transport in a disordered medium. We show that with a
small modification, the theory predicts dispersive transport be-
low and nondispersive transport above a transition temperature
Tc. We argue that the  E dependence of the mobility and the
universality of the current–time curves may be retained above
and below Tc if the bulk film behaves as a lattice of bonds of length
L, where L is intermediate between the dopant spacing and the
thickness of the sample.
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Introduction
Observations. Measurements of time-of-flight (TOF)
mobilities of photoinjected charges in amorphous molecu-
lar films by Pai,1 in 1970, showed that the mobility for a
wide class of materials obeys the Poole–Frenkel law,2 in-
creasing exponentially with the square root of the electric
field,3

  log .µ γ= +E const (1)

In contrast to the present state of affairs, the early TOF
current–time transients generally show an anomalous dis-
persion of the packet of photoinjected carriers. Both be-
fore and after the transit time τ, the current I decreases
approximately algebraically with time t, indicating a con-
tinuous slowing and broadening of the carrier packet. Un-
less the transients are plotted on double-log paper, this
combination of behaviors hides the distinction between the
plateau and tail regions that are observed in similar ex-
periments on molecular crystals.4

If the current decreases slowly and monotonically be-
fore the transit time, e.g., in an algebraic manner such
that I ~ t–(1–α), where the parameter α < 1, it is possible for
the TOF mobility to decrease with increasing film thick-
ness L, as L1–1/α. This feature of highly dispersive transport
may be appreciated without regard to a specific transport
model. First, if none of the charges have yet to cross the
sample, the current I will be proportional to the velocity v
of the centroid of the carrier packet. Thus the observation
that I ~ t–(l–α) before transit implies that v ~ t–(l–α). In a time
t the centroid of the carrier packet will move a distance z,
such that

    
z v u du u du t

t t

= ∝ ∝∫ ∫ − −( ) .( )

0

1

0

α α (2)

It follows from Eq. 2 that t ∝ z1/α. If we define the aver-
age drift velocity as the ratio z/t, we find the mobility

µ = z/tE ∝ z1–1/α. (3)

Should it be the case that the experimentally determined
transit time τ is proportional to the time t in which the
centroid of the carrier packet moves a distance L, it fol-
lows from Eq. 3 that the mobility will depend on sample
thickness, such that µ ∝ L1–1/α. Such sample-length-
dependent TOF mobilities are found in a variety of amor-
phous films, and they have been attributed to a broad
distribution of hopping rates caused by spatial and ener-
getic disorder in these materials.

Many of the essential effects of disorder on hopping
transport in amorphous films are described in the context
of a theory by Scher and Montroll (SM),5 which relates the
highly dispersive TOF transients to an algebraic decay of
the pausing time distribution function for a continuous-
time random walk,

    Ψ(t) ~ 1 / t1+α , (4)

where the constant α is referred to as the disorder param-
eter. In this context the observed universality of the cur-
rent–time curves is understood, one signature of which is
the relative width of the transient tail,

W = (τ1/2 – τ0)/τ1/2, (5)

which is independent of electric field and sample thickness.
In Eq. 5, τ0 is the time to reach the shoulder of the current–
time curve, and τ1/2 is the time at which the current has
decreased to half of its value at the shoulder. The SM theory
predicts a field-dependent mobility as well, such that

log µ = (1/α –1) log E + const. (6)

For amorphous films such as the molecularly doped poly-
mers, a strict logarithmic field dependence of log µ has rarely
    291
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been observed in preference to the Poole–Frenkel law.3,6 It
has been shown, however, that a combination of the log E
dependence of Eq. 6 and other field dependencies arising
from the detailed balance of the hopping rate closely re-
sembles the  E law over at least one and a half decades in
E.7 Moreover, when the algebraic decay of Ψ(t) is caused by
energetic disorder, the disorder parameter α increases with
T, giving rise to an effective Poole–Frenkel factor that is in
agreement with the empirical form, γ = B(1/kT –1/kT0), sug-
gested by Gill.8,9 One could assert that, at least to a first
approximation, all of the universal features of transport in
molecularly doped polymers are associated with the alge-
braically decaying pausing time distribution of SM, were it
not for the fact that one of the key predictions of the SM
theory is no longer consistently observed in experiments; if
it is observed at all, the anomalous dispersion of the cur-
rent–time curves is observed only at low temperatures.

As the temperature is increased from 200 to 300 K, the
current–time curves for molecularly doped polymers
change character and become less dispersive. At higher
temperatures, the TOF transients show clearly defined
plateaus, and the mobility is found to be independent of
length.10~12 In the context of the SM theory, such a transi-
tion from dispersive to nondispersive transport comes
about as a result of there being a narrower distribution of
hopping rates at higher temperatures. When the distri-
bution is so narrow that the first moment of Ψ(t) is
bounded, log µ will no longer increase in proportion to log
E. Without this mechanism for anomalous field depen-
dence, we should observe Ohmic behavior when the po-
tential energy for a single hop over a distance ρ in the
direction of the field, eEρ, is smaller than kT. For most
molecularly doped polymers, however, the mobility re-
mains strongly field-dependent in this low-field regime and
continues to obey a Poole–Frenkel law.11 In p-
diethylaminobenzaldehyde diphenylhydrazone (DEH)-
doped polycarbonate, for example, the   E  law was
observed for fields as low as 0.8 × 104 V/cm at a tempera-
ture of 300 K.13 This finding suggests that the field depen-
dence of the mobility and the dispersive nature of the
transport are consequences of independent mechanisms.
In fact, the only evidence that high-temperature trans-
port features might still be attributed to an algebraically
decaying distribution of pausing times is the fact that uni-
versality of the current–time curves persists. The relative
tail-width W remains field independent, even at high tem-
peratures.11,12

The failure of an algebraic pausing-time distribution to
describe the transport properties of molecularly doped
polymers does not necessarily imply that disorder effects
are negligible. It is possible that the SM theory misses
details that are essential in describing how the TOF tran-
sients can simultaneously have well-developed plateaus
and anomalously broad tails, while at the same time the
mobility is strongly field dependent. This angle has been
actively pursued by Bässler and coworkers14–17 via
Monte-Carlo simulations of hopping in an energetically
and spatially disordered environment. There is remark-
able agreement between simulation and experiment as far
as describing features of the current–time transients and
their relation to the temperature dependence of µ.12,15,16

The agreement of simulations with the Poole–Frenkel law
is not conclusive, however, for although simulations pre-
dict mobilities that follow the   E  law, they do so only for
fields in the high 105 to 107 V/cm range.17 Parris and
Bookout18 have developed a large-cell-renormalized effec-
tive medium theory that gives steady-state hopping con-
ductivities at high fields in a topologically and energetically
disordered array. They also find a   E -dependent mobil-
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ity at high fields only, in agreement with the Monte-Carlo
simulations of Borsenberger, Pautmeier, and Bässler.17

Recent simulation studies by Gartsein and Conwell19 have
shown, however, that the field-dependent mobility will
shift to lower fields when long-range correlations between
dopant energies are introduced. The effect of these corre-
lations on the current–time curves has not been reported.

The Branching Length LLLLL.  The discrepancies between
theory and experiment suggest that if disorder is indeed
the key to understanding transport in molecularly doped
polymers, there must be an attribute of disorder that has
not yet been adequately considered. Such an attribute
should be compatible with the fact that the same field de-
pendence of the mobility is observed, whether or not the
current–time transients show a plateau. Such an attribute
must also be subtle enough to have escaped detection in
systematic approaches to the calculation of transport co-
efficients, such as Monte-Carlo simulations and effective
medium theories. As a possible candidate we suggest the
effect of large-scale fluctuations in the transport network,
which arise as a result of the disparity in hopping rates.
We will motivate and develop this remark in the context
of a continuous-time random walk.

In the SM theory, the time to make n hops is deter-
mined by the addition of n times, which are drawn from
a pausing-time distribution. The distribution of pausing
times can be determined, in principle, by following the
trajectory of each charge as it crosses a sample and plot-
ting a histogram of the various dwell times encountered.
Alternatively, one can determine the distribution of paus-
ing times by working backwards from the experiment,
requiring that Ψ(t) be compatible with current–time tran-
sients. To describe the dispersive features seen at low
temperatures and at the same time preserving analytic
tractability, SM suggests that the tail of Ψ(t) decays al-
gebraically with the exponent 1 + α, as described by Eq.
4. For α < 1, Ψ(t) has no first moment. Transport is anoma-
lous, and the mobility is field-dependent, because the sum
of n dwell times grows as n1/α. This approach leads to the
scaling of µ with both L and E, as described by Eqs. 3
and 6. If the dwell times are determined by energetic
disorder, the same hops are made in less time as the tem-
perature increases. This tendency is characterized by a
disorder parameter α, which increases with increasing
temperature. A second phenomenon occurs as the tem-
perature is increased, however; the ensemble of trajecto-
ries available to the carriers will broaden. At higher
temperatures, energetically isolated paths that were sel-
dom explored will compete more favorably with those that
comprise the minimal percolating network. To charac-
terize this tendency, we introduce a temperature-depen-
dent branching length L. We define the distance L to be a
demarcation for the pausing-time distribution; for ran-
dom walks over distances much smaller than L, we as-
sume that Ψ(t) may be described by Eq. 4, in keeping
with SM; on the other hand, for walks over distances
much greater than L, we modify Ψ(t) to reflect the possi-
bility of branching onto new paths.

The primary results that emerge from our analysis
are as follows. We obtain a modified pausing-time dis-
tribution that predicts a transition at a temperature Tc

at which α = 1. Below Tc, α lies between 0 and 1, and the
current–time curves for t < τ and for t > τ are character-
ized in the usual manner by algebraically decaying
asymptotes.
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Above Tc , on the other hand, α is greater than 1. In this
case the current for t < τ approaches a constant, and for t
> τ, it decays algebraically.
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We show that the current–time curves maintain uni-
versality with respect to the electric field in both tem-
perature regimes. In addition, we show that in spite of
the modifications of the pausing-time distribution, the mo-
bility retains a strong field dependence above and below
Tc, which resembles Eq. 1 over a wide range of electric
fields. We find that below Tc the calculated mobility de-
pends on the sample width L, but above Tc it depends only
on the intrinsic length L. Our interpretation of the
pausing-time distribution in terms of a length L is there-
fore in reasonable agreement with the experiments.

The remainder of this article is as follows. In the Back-
ground section we briefly review the essential features
of the pausing-time distribution function that describe
the TOF current–time transients and give rise to a field-
and length-dependent mobility in the highly dispersive
regime. This effect provides a motivation for the present
investigation. Following this discussion, we introduce
bonds of length L and describe their effect on the paus-
ing-time distribution function. We obtain asymptotic ex-
pressions for the current–time curves, which lead to the
essential results stated in Eq. 7, and summarize our find-
ings in the last section.

Background
Field-Dependent Mobility. In this section we will

briefly review those aspects of the SM theory that lead to
the unification of Eqs. 3, 5, and 6, which characterize some
molecularly doped polymers in the dispersive transport
regime. We make a number of simplifying assumptions
and approximations to clarify the essential picture; fur-
ther discussion may be found in Refs. 5, 7, and 9.

We begin with an estimate of the pausing-time distri-
bution function Ψ(t) for hopping in an array of dopant mole-
cules with random energies distributed uniformly over a
width σ. Let us consider only (spatial) nearest-neighbor
hopping and only energetic disorder. We are interested in
the long-time behavior of Ψ(t), which is characterized by
the lowest hopping rates. These hops are necessarily up-
ward in energy from states with energy ε ≅ 0. Therefore,
we take the underlying hopping rate to be R = v0 exp (-βε),
where v0 is typical of the hopping rates one might find in
an ordered molecular solid, ε is the energy of one of the M
spatial neighbors, and β = 1/kT. For σ/kT >> 1, the M
rates are extremely disparate, and a particular hop is likely
to be to the state that is closest in energy to a state at ε =
0. Thus we are interested in the distribution of nearest-

neighbor energies,20  P(ε)=
  

M
σ

(1 – ε/σ)M – 1. For large M this
is approximately an exponential;

    
P(ε ) = M

σ
exp(−Mε / σ ). (8)

The exponential in Eq. 8 is contrived in the sense that
M is not truly an asymptotic parameter; we expect M to
range between 6 and 12. Nevertheless, the tendency for
the distribution of nearest neighbors to approximate an
exponential, regardless of the specific form of the under-
lying density of states suggests that these specific calcu-
lations may have broad applicability. We will therefore
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adopt the exponential form of Eq. 8 in what follows, both
for simplicity and for illustrative purposes. An algebraic
distribution of nearest-neighbor hopping rates R,
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is obtained by integrating over Eq. 8. In Eq. 9, we have
introduced a disorder parameter, a = MkT/σ (We will make
a connection between a and the disorder parameter α of
Eqs. 6 and 7 in the following section.) By averaging R exp
(–Rt) over η(R), we obtain a distribution of pausing times
with an algebraic tail,
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where Γ denotes the gamma function. For a < 1, it can be
shown that, asymptotically (in n), the distribution of time
to make n hops is a universal function of the scaled vari-
able x = t/n1/a. It follows that the typical time to make n
hops,

tn ~ n1/a, (11)

is proportional to n1/a for large n. The number of hops to
cross a sample of thickness L,

      
n L E

L
e E

= ≅/ ( )
( / )

,l1 2 12ρ β
(12)

is calculated by dividing the sample thickness by the av-
erage progress made in the field direction in a single hop,
l1 (E). If we consider the rate for hopping to a variety of
locations distributed uniformly on a sphere of radius ρ,
we find that l1 (E) = ρ [coth(βeEρ/2) – (2/βeEρ)]. Assuming
that l1 is linear in E in a disordered medium, we have re-
placed l1 (E) in Eq. 12 by its Taylor expansion to first order
in E, (ρ2βe/12)E. Combining Eqs. 11 and 12, we find the
transit time,

    
τ ≅ 1

v0

(12L / ρ 2βeE)1/a . (13)

Inserting Eq. 13 in Eq. 3, we obtain a field-dependent
mobility such that

    
ln µ = 1

a
− 1





ln(ρ 2βeE / 12L) + ln(ρ 2βev0 / 12). (14)

To compare this with a Poole–Frenkel law at small elec-
tric fields (104 V/cm < E < 105 V/cm), we expand the field-
dependent term in Eq. 14 to first order in powers of

  E about E = E0.
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]

Substituting MkT/σ for a, we obtain

    

ln µ ≅ 2σ
M E0

1
kT

− M
σ







E −
(σ / M)[ln(12L / ρ 2βeE0 ) + 2

kT

+ ln(v0 L / 12E0 ) + 2. (16)

For a disorder parameter a = 0.6 at T = 300 K, we re-
quire σ/M = 0.042 eV. Let us select E 0 = 200(V/cm)1/2 to
be the origin of the Taylor expansion in Eq. 15 and choose
L = 1 µm, ρ = 10 Å, and v0 = 1012s–1. Equation 16 should be
compared with Gill’s function,

    
ln µ = B

1
kT

− 1
kT0







E − ∆
kT

+ const, (17)

to identify, by inspection, the parameters

    
B

M E
e= = × −2

4 10
0

4 2 1 2σ
( ) ,/Vcm (18)

    T0 = σ / kM = 500 K, (19)

    ∆T =300K = (σ / M)[ln(12L / ρ 2βeE0 ) + 2]T =300K = 0.55eV,

(20)

 and an extrapolated (E → 0) mobility at T = 300 K of

  
µE→ =

−= ×0 300
4 26 8 10, . /T K cm V s. (21)

The Gill coefficients B, T0, and ∆ evaluated in Eqs. 18,
19, and 20, respectively, are typical of those found in ex-
periments.

We will now extend our analysis of the field-dependent
mobility to the range E > 105 V/cm, for which βeEρ > 1.
Let us first consider the possibility that l1 (E) should be
modified. In an ordered system at high fields, the aver-
age distance hopped in the direction of an applied field
saturates, so that in each hop a carrier moves one lattice
constant in the direction of the field; l1 = ρ [coth(βeEρ/2) –
(2/βeEρ)| ~ ρ. On the other hand, in a disordered system, it
should be more difficult to find a favorable site in the direc-
tion of the field. We argue, therefore, that at high fields l1
is less likely to saturate and should retain its linearity
with E. Let us also consider the field modification of the
distribution of dwell times. As long as the field energy βeEρ
<< σ, the slowest hopping rates will be enhanced by the
exponential factor exp(βeE•ρ). Neglecting the anisotropy
caused by the net drift, integration over the unit sphere
gives an average field-enhancement factor sinh(βeEρ)/
βeEρ. This means that the long-time tails of the pausing-
time distribution can be corrected for high fields by sim-
ply multiplying v0 by sinh(βeEρ)/βeEρ. With this
modification, we find that

ln ln[ / ]

ln[sinh( ) / ].

µ σ ρ β

β ρ ρ

= −





+
MkT

eE L

eE v E

1 12

12

2

0 (22)

Equation 22 predicts that at low fields the mobility obeys
a power law and at high fields it follows an exponential.
Nevertheless, as discussed in Ref. 9, the mobility described
by Eq. 22 closely resembles Gill’s function (Eq. 17) for elec-
tric fields between 4 × 104 and 1.5 × 106 V/cm. It is in this
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manner that the  E -dependent mobility in the molecu-
larly doped polymers appears to be closely related to the
algebraically decaying pausing-time distribution of SM.

Current–Time Curves. The TOF current–time curves
are determined by the distribution of charge as it drifts
across the polymer film. The charge distribution is calcu-
lated under the assumption that after n hops, the spatial
distribution f(z;n) approximates a Gaussian,

      
f z n

n
z n

n
( ; ) ~

( )
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,/

1
2 22 1 2

1
2
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l
(23)

for n >> 1. The time-dependent spatial distribution g(z;t)
may be calculated by multiplying f (z;n) by the probability
pn(t) that at time t carrier has hopped n times and sum-
ming over all possible numbers of hops. The Laplace trans-
form of  pn (t) is a product;     p̃n (s) = Ψ̃n (1 − Ψ̃) / s.The
Laplace transform of the spatial distribution function
g̃ (z;s) is therefore
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The sum in Eq. 24 can be carried out in the Fourier and
Laplace domains. For long wavelengths,
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When dispersion is anomalous, the contribution of the
term quadratic in k to the width of the carrier packet is
asymptotically small compared with the dispersion that
arises from the drift. Therefore, in writing the second
equality in Eq. 25, we have retained only the term linear
in k. To simplify notation, we have introduced the memory
function ˜ ˜ /( ˜ ).φ = −sΨ Ψ1 21 The Fourier inversion of Eq. 25
gives an exponential,

      
˜ ( ; ) ˜ exp( / ˜ ).g z s sz= −1

1
1φ

φ
l

l (26)

An integration over z relates Eq. 26 to the Laplace trans-
form of the TOF current,
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where N is the number of photoinjected charges. The time
dependence of the current may be determined asymptoti-
cally by inverting the leading term in an expansion of Eq.
27 for small Laplace variable s. To leading order in s, ex-
pressions for   Ψ̃  and   φ̃  are as follows:

    
˜ ( ) ~ ( / ) ,Ψ s

R
R s

b s v a=
+

− ′1 0 (28a)

    
˜( ) ~ ( / ) / .φ s v s v ba

0 0
1− ′ (28b)

In Eqs. 28a and 28b, b′ = πa csc(πa). To obtain an asymp-
totic expression for the current before the transit time, we
consider the limit of Eq. 27 in which L is large, so that

      exp( / ˜ ) .− <<sL φ l1 1 In this case,
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and therefore the current,
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decreases algebraically in time with an exponent (1 – a).
To obtain an asymptotic expression for the current after
the transit time, we expand the exponential in Eq. 27 to
second order in       Ls / ˜ .φ l1 We find

      

˜( ) ~ ˜
( / )

,I s
NeLs NeLb s v a

− = −
2 21

0

1φ l l
(31)

and therefore the current,
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decreases algebraically with the exponent (1 + a). In sum-
mary, the disorder parameter a plays an important role
both in the field dependence of the mobility (see Eq. 14)
and in the decay of the current with time, as observed at
low temperatures for some TOF current–time curves. This
clarifies the extent to which an algebraic pausing–time
distribution links the field dependence of the mobility to
anomalously dispersive current–time curves.

Modified Pausing-Time Distribution
In the Background, the spatial carrier distribution

    g̃(z; s)  was determined from the distribution f(z;n) and
the Laplace transform of the probability for making n
hops     p̃n (s) . Taking     p̃n (s)  to be the product     Ψ̃

n (1 − Ψ̃) / s
implies that successive dwell times are to be chosen in-
dependently from the pausing-time distribution Ψ. Thus
the temporal behavior of the random walk is calculated
in the same manner as it would be for bond-directed hop-
ping along a 1-D chain. This sequence is illustrated in
Fig. 1. Describing Ψ by Eq. 10 is asymptotically equiva-
lent to selecting the rates R connecting sites in the chain
at random from the distribution η(R) of Eq. 9.9, 22

A carrier will take about m ≈ L/l 1 hops in traversing a
length L. The time for this process, tL ~ m1/a/v0, is calcu-
lated by adding together m times chosen at random from
the pausing-time distribution Ψ(t). When Ψ decays al-
gebraically according to Eq. 10 with a < 1, the sum of m
times is proportional to the dwell time corresponding to
the slowest hop in the sequence. Specifically, it can be
shown for large m that the distribution of times for the
slowest of the m hops is a universal function of the same
scaled time variable x = t/m1/a that characterizes the dis-
tribution of the sum of all m dwell times. This means
that the time for the slowest hop is a macroscopic frac-
tion of the sum of the times for all m hops, even as m →
∞; the slowest hop is the rate-limiting step in the se-
quence, no matter how long the sequence. For our pur-
poses here, we note that this limit indicates that in a
sequence of m hops, there is a high probability for en-
countering a slow hop with a rate of the order of RL

≈ v0m–1/a.
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may proceed (rather than just one). Suppose, for example,
that in one direction the rate is RL, while in the other
direction the rate is R′L. We will choose these two rates
independently from the distribution η(R), just as we chose
the other m rates in the sequence, but with the restric-
tion that RL and R′L are both smaller than v0m–1/a. In the
Laplace domain, the distribution of dwell times for this
difficult hop,
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can be expressed as an integral over both RL and R′L. The
upper limits of the integrals have been reduced from v0 to
v0m–1/a, so that the hop from this junction remains the rate-
limiting step in the sequence of m hops. The factors of m in
the numerator are for normalization of the distributions of
RL and R′L  on the reduced interval. Changing variables of
integration in Eq. 33 to       R R m R R ma a= =L L

1 1/ /' ' ,and we
find
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Figure 1. In the theory of SM, the transit time is calculated by
the addition of dwell times t, which are drawn independently
from a pausing-time distribution function with an algebraic tail,
Ψ(t) ~ t–(1+α). This process can be modeled as a bond-directed ran-
dom walk on a chain in one dimension with hopping rates R that
are drawn at random from an algebraic distribution η(R) ~ Rα–1.
The bonds have been drawn pointing in a variety of directions to
reinforce the idea that the spatial distribution corresponding to
this sequence of hops is a Gaussian that drifts in the direction of
the applied field.
      
Faced with a difficult hop, a carrier may choose to fol-
low an alternate path. Let us suppose that there are ex-
actly two difficult paths along which the sequence of hops
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I

where we have introduced the scaled Laplace variable,

    ′ =s m sa1 / . (35)

By scaling the integration variables by m1/a, the limits
of integration in Eq. 33 have been restored to the full range
(0, v0) in Eq. 34. Equation 34 expresses the distribution of
times for the most difficult hop in a sequence of m hops.
Because the hop is a rate-limiting step, however, Eq. 34
also characterizes the distribution of the sum of m times
for crossing the length L. The scaled rate RL = m~1/aR can
therefore be thought of as the rate for crossing a
“mesoscopic bond” of length L for a random walk on a set
of coarse-grained sites. Each node connects onto two
branches, however, so our sequence of hops is now equiva-
lent to bond-directed hopping on a Cayley tree of connec-
tivity 2. This sequence is illustrated in Fig. 2. The
asymptotic expressions in the Background can be brought
to the coarse-grained level by replacing   Ψ̃  by   Ψ̃L  and s by
s′ where the spatial distribution,

      

f z n
z n

nmL

L
( ; ) ~ exp

( )
/

1
21 2

2

2
2 2π ρ ρnm( )

−







 (36)

is now expressed in terms of the number n of hops with
length L.

Integrating Eq. 34 to leading order in the scaled Laplace
variable s′= sm1/a, we find

        
˜ ( ) ( ),ΨL ′ = − ′ − ′ + ′s cs bs sa1 2 2O (37)

Figure 2. At the coarse-grained level, the process of drawing
independent times from the pausing-time distribution function
ΨL can be modeled as a bond-directed random walk with disor-
dered hopping rates RL . At each node, however, we will allow a
carrier the opportunity to choose between two paths. Thus the
process is described by a Cayley tree of connectivity 2.
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where the coefficients in Eq. 37 are functions of a,

    

c
a

a
D

b
a

a

a D

a

a
a

a
a

a

=
−

+

=

≤ −

−










≤

−
−

−
−

∫

∫

∫

2

2 1
2 1

0

2

2

2 1
2 1

0

2

2 2

0

2

2 2 1

2 2

1
2 1

2 1

2

( )

/

( )

/

/

( )
sin ( ) ,

sin( )
sin ( ),

( )

cos ( )

,

d

d

d

θ θ

π
π

θ θ

θ θ

π

π

π

(38)

for 0 < 2a < 2 except 2a = 1. At this point we will define a
coarse-grain memory function,       

˜ ( ) ˜ /( ˜ )φL L L′ = ′ −s s Ψ Ψ1 , and
substitute    φ̃L for  φ̃  in Eqs. 28 and 29, to obtain asymptotic
expressions for the TOF current before and after the transit
time τ, respectively. For a small Laplace variable,

      
˜ ( ) [ ]( )φL ′ ≅ + ′ − −s c bs a2 1 1 . If the dispersion parameter a < 1/2,

then       
˜ ( ) / .( )φL ′ ≅ ′ −s s ba1 2 This form is identical to Eq. 28b,

with s′ replacing s, b replacing b′, and 2a replacing a. When
a < 1/2, transport is clearly dispersive in the SM sense.
The current–time asymptotes are found by analogy with
Eqs. 29 and 31:
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We see from Eqs. 39a and 39b that, in the dispersive
regime, the parameter 2a plays the role of α in Eq. 7. There-
fore, to maintain contact with traditional analysis of dis-
persive transport, from here on we will replace our disorder
parameter a with α/2;

    α ≡ 2a = 2MkT / σ . (40)

A transition to a less dispersive regime occurs at the
temperature Tc for which α = 1. Comparing Eq. 40 with
Eq. 19, we note that Tc is half of the compensation tem-
perature T0. For the choice of σ/M = 0.042 eV,

Tc = T0 /2 = 250 K. (41)

Above Tc (for 1 < α < 2 ), the Laplace transform of the
current before the shoulder is
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Inverting Eq. 42, we find that the current approaches a
steady state,
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After the shoulder, however, the current decays alge-
braically as in the dispersive regime. In the Laplace do-
main, the current
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Inversion of Eq. 44 demonstrates that the current,
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continues to decay algebraically with an exponent of 1 + α
for t > τ, when 1 < α < 2.

To obtain the field dependence of the mobility, we exam-
ine the current for times t < τ, in which case the current is
proportional to the drift velocity, I(t) = (Ne/L) v(t). From
Eqs. 39a and 43 we obtain
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respectively. The transit times,
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are calculated by integrating Eq. 2 with the substitution of
Eqs. 46a and 46b for the velocity v, and setting z=L. Substi-
tution of Eqs. 47a and 47b in Eq. 3 gives the mobility,
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We see that below Tc the mobility scales with the length
of the sample, as L1–1/α. Above Tc, on the other hand, the
mobility depends only on the intrinsic length L. Both Eqs.
48a and 48b lead to a mobility of the form of Eq. 22, which
closely describes a Poole–Frenkel behavior over a broad
range of field. The connection between the Poole–Frenkel
factor γ and the dispersion parameter α that characterizes
the current–time curves has changed, however; we see that
(2/α – 1) in Eq. 48 is larger than exp (1/α – 1), which one
obtains from the SM theory in the absence of branching.
Thus the mobility will remain a strong function of field
even in the nondispersive (α ∼ 1) regime.

Universality of the current–time curves is preserved
below the transition temperature. Substitution of the
scaled time-variable ξ = t/τ in Eqs. 39a and 39b shows, for
T < Tc, that the normalized current,
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is asymptotically independent of both the sample thick-
ness and the electric field. For T > Tc, substitution of ξ in
Eqs. 43 through 45 gives a normalized current:
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In Eq. 50a we have replaced I(τ)t < τ by I(∞)t < τ, under the
assumption that b/cα (L / L)α – 1<< 1. We see that for T > Tc,
universality of the asymptotes is maintained for different
electric fields, but not for different sample thicknesses; Eq.
50a predicts that the plateau should tend to flatten out in
thicker samples. We do not know if such a dependence of
the plateau on sample thickness has been observed.

An estimate     W̃ of the relative tail width W is the ratio of
the dispersion of the charge packet to its mean position, at
time τ. The mean-square displacement and the mean
displacement can be calculated by taking the appropriate
derivatives of Eq. 25 with respect to k, evaluated at the
limit k → 0. Below Tc this is just the SM result for α < 1,

    W̃T<Tc
~ [2Γ 2 (1 + α ) / Γ(1 + 2α ) − 1]1/2 , (51)

which shows independence of field and sample thickness.
Above Tc (α > 1 ) we find that
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is independent of field, but decreases with increasing
sample length as L-(α-l)/2. This is in contrast to the obser-
vations of Schein et al. for DEH-doped polystyrene,
(DEH:PS); no appreciable thickness dependence of W was
observed for variations in L by a factor of 10.11 On the
other hand, Yuh and Stolka found a decrease of W with
sample thickness in TPD-doped polycarbonate, (TPD:PC),
following L-1/2.23 With respect to Eq. 52, the former obser-
vation suggests that α is close to 1, whereas the latter
suggests that α is nearly 2. Borsenberger and Baessler
find a transition between these two behaviors as a func-
tion of temperature and sample thickness in TAPC-doped
polystyrene, (TAPC:PS).12 As the temperature or the
sample thickness is increased, the dependence of W on L
changes abruptly, from no L dependence to W ∝ L–1/2.

Summary
In the theory of SM, an algebraic pausing-time distri-

bution contributes a field dependence to the TOF mobil-
ity, which resembles the Poole–Frenkel law for a disorder
parameter α < 1, and predicts Ohmic behavior for α > 1.
The same pausing-time distribution predicts nondispersive
transport for which the current–time curves have anoma-
lously broad tails if α > 1, but predicts dispersive trans-
port for α < 1. Transport in molecularly doped polymers
exhibits a transition between these two behaviors. The
current–time curves are nondispersive at high tempera-
tures and dispersive at low temperatures. There is no ac-
companying transition for the field-dependent mobility,
however. Both above and below the dispersive transition,
the mobility follows a Poole–Frenkel law. This behavior is
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clearly inconsistent with the predictions of the SM theory.
In this study we have explored a simple modification of
the pausing-time distribution function, for which a
field-dependent mobility and a nondispersive TOF tran-
sient are predicted to occur for the same value of α.

In modifying the pausing-time distribution, we have fo-
cused on the idea that deviations from dispersive transport
occur as a result of an increased branching to new paths,
which become more attractive to a charge carrier as the tem-
perature is raised. To describe the temporal effects of branch-
ing in a tractable manner, we have expanded the directed
random walk of SM to a Cayley tree of connectivity 2. This
expanded random walk is based on the postulate that sig-
nificant new branches should be encountered only after hop-
ping a length L < L. To study the effect of branching, we
estimated the size of the rare hopping rate RL, which is on
average encountered once in every segment of length L. We
then imposed the condition that whenever a rate RL or smaller
is encountered, a carrier is given the opportunity to select
between two paths, rather than just one. This has the essen-
tial effect of doubling the value of the disorder parameter.

The primary results of this modification scheme are con-
tained in Eqs. 48 through 52. The key is that the current–
time curves are characterized by the exponent α, but the
field-dependence of the mobility is now characterized by
the exponent α/2. The point at which the current–time
curves become nondispersive is at α = 1. The point at which
the theory no longer predicts a field-dependent mobility
(at low fields) is at α = 2. In the overlapping regime, 1 < α
< 2, nondispersive transport and a field-dependent mobil-
ity coexist.

We find a transition from dispersive to nondispersive
transport at a temperature Tc, which is half the compen-
sation temperature T0. On both sides of Tc the asymptotes
of the current–time curves show universality with respect
to the field. Below Tc we have dispersive transport, and µ
depends on sample thickness. Above Tc the current–time
curve develops a plateau, and µ is independent of thick-
ness. An estimate of the relative width W of the current–
time curves predicts W to be thickness dependent above
Tc , but independent of thickness below Tc . Above and be-
low Tc the field dependence of the mobility remains the
same. These predictions are in qualitative agreement with
experiments.

Finally, we make the following observation. In the lit-
erature, attempts have been made to fit the current–time
curves before the shoulder to a power law t–(1–α), even when
they are considered to be nondispersive. Because the cur-
rent always shows a slight decay before the shoulder, in-
variably it is found that the logarithmic slope –(1 – α) is
very close to zero, implying that α is very close to 1.24 In
contrast, Eq. 43 suggests that in the nondispersive re-
gime, the current before the shoulder should decay as
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I(t) ~ I(∞)[1 + At–(α–1) ], asymptotically approaching a con-
stant. If Eq. 43 is displayed on double-log paper, the slope
before the shoulder will be approximately –(α – 1) × Aτ–

(α–1). Consequently, if Eq. 43 is obeyed, a measure of the
logarithmic slope just before the shoulder will not be a
good indicator of the dispersion parameter. It would be
better instead to focus on the tail, where the logarithmic
slope is predicted to be –(1 + α) both above and below Tc

. In the nondispersive regime, this slope should begin at
–2 and decrease to –3 as the temperature is increased.
We note that such a variation of 1 + α from 2 < 1 + α < 3
was found in measurements on DEH by Borsenberger,
Pautmeier, and Bässler.15
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