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Introduction
Computer tomography (CT) is a technique used to recon-
struct a cross-section image of an object from its
line-integral projections, which are taken at different an-
gular views. The general method of CT continues to be-
come an important tool in many areas of application,
including medical imaging, acoustic imaging, synthetic-
aperture radar, and nondestructive evaluation. It is well
known that when enough high-quality line-integral pro-
jections, or raysums, are collected over a total viewing
angle of 180°, the cross-section function of the object can
be reconstructed by classical reconstruction methods such
as convolution back-projection (CBP) and the algebraic re-
construction technique (ART).1 Under this circumstance,
the collection of line-integral projections is referred to as
a complete (or full-angle) set of projections, an image of
which is called a sinogram.

In many practical situations, a complete sinogram is not
available. For example, it may not be possible for the x-
ray source to move through the full angular range because
of obstacles around the scanning object.2 In cardiac CT
imaging, the carriage containing the x-ray emitters and
detectors can travel only part of the way through the full

Tomographic reconstruction from limited-angle projection data,
also know as a sinogram, is required in many fields, including
medical imaging, sonar, and radar. We present a sinogram resto-
ration technique that restores a complete sinogram from the avail-
able incomplete sinogram. Using two-dimensional sampling
theory and the result of Rattey and Lindgen, which shows that
the spectral support of a sinogram is bowtie-shaped, a matrix
formulation is developed. Restoration of the complete sinogram
is then posed as a least-squares minimization problem, which is
solved by a novel iterative algorithm. Our technique does not
require any a priori knowledge of the underlying object and can
be applied to any incomplete sinogram. The algorithm can also
be regarded as a variation of the well-known projection-
onto-convex-set method with improved computational efficiency.
Computer simulation results are presented to demonstrate the
efficacy of the proposed technique.
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angular range before significant heart motion occurs. With-
out a restoration technique, the “naive” reconstruction*
of an incomplete sinogram is usually rife with artifacts
and may be unable to provide even coarse structural in-
formation about the object.3 In these cases, by the projec-
tion slice theorem,4 the two-dimensional spectral
information of the underlying object is known for only a
limited angle of cone. This is the well-known limited-angle
or missing-cone problem.5 It is an inverse problem that is
inherently ill conditioned, and the inversion of the radon
transform is severely ill posed.

Techniques for dealing with the limited-angle problem
have been proposed by many researchers. In general, these
techniques can be classified as transform methods that
incorporate little a priori information about the underly-
ing image and as finite series expansion techniques that
may incorporate a priori information as constraints. Ex-
amples of these methods are the Clark-Palmer-Lawrence
interpolation (CPL) method,6 which performs a coordinate-
scaling transformation on the available samples; the af-
fine transformation method of Reeds and Shepp,7 which
uses an affine scale change of the image to expand the
available angular span; and the method of projections onto
convex sets (POCS).8-11 Oskoui and Stark12 compared the
performance of the above methods and found that the
POCS algorithm performed better than the other two
methods.

The success of POCS can be attributed to the fact that
a priori information of the object, such as amplitude lim-
its, bounded spatial support, and maximum distance from
a reference object, is used to compensate for the lack of
the full sinogram. Because this knowledge can be associ-
ated with convex sets, the iterative method of POCS can
make full use of it to produce reconstruction with im-
proved quality.

Whereas the performance of POCS is superior to that
of other existing methods, it is computationally inten-
sive. This is because most of the available a priori infor-
mation is associated with the object itself, and the
available data comprise the incomplete sinogram. The
POCS method therefore requires iterations between the
object and its sinogram. The computation required for
each iteration is therefore that needed for image recon-
struction (e.g., by CBP), projection onto the convex sets,
and numerical tomography projection of the reconstructed
image to go back to the sinogram domain.† Because



‡ It is well known that a spatially limited signal cannot be bandlimited. A
spatially limited function is essentially bandlimited to S if there exists a
spectral support S in the frequency domain such that most of the signal
energy (say 99%) is concentrated in S.
numerical and systematic errors are invariably intro-
duced in each reconstruction and numerical tomography
projection, convergence of the POCS method may not be
achieved in practice, and in some cases the reconstruc-
tion quality may even deteriorate with more iterations.8

The iterative sinogram restoration algorithm (ISRA) pro-
posed in this article can be regarded as a variation of the
POCS method. The constraints used in our method be-
long to a subset of those used by POCS. We require the
reconstructed image (1) to conform with the available in-
complete sinogram and (2) to have a bounded spatial sup-
port. The second requirement poses no limitation in
practice because all objects to be reconstructed must be of
finite size and the spatial support of the cross section can
be obtained by direct measurement. Thus it is fair to say
that ISRA is a general restoration method without any a
priori assumption about the underlying object. Although
not implemented in this study, other a priori information,
such as a reference image, can easily be incorporated in
the proposed method as well, but this will require addi-
tional a priori assumptions on the underlying object.

Unlike the POCS method, which uses the information
on bounded spatial support of an object directly, in ISRA
we translate this information to the sinogram domain.
More specifically, given the knowledge that an object is of
bounded spatial support, Rattey and Lindgren13 show that
the spectral support of its sinogram is bowtie-shaped. Us-
ing this result, information on the spatial support of the
object is translated to information on its sinogram.

With the above translation, we present an iterative
method that iterates in the sinogram domain only. This
method eliminates the expensive image reconstruction and
numerical tomography projection in iterations of the con-
ventional POCS algorithm, resulting in reduced computa-
tional requirements. Further, because numerical and
systematic errors are eliminated with the removal of in-
termediate reconstruction and numerical tomography pro-
jection, we have observed a slightly improved image quality
in the final reconstruction.

The proposed ISRA is applicable to parallel-beam pro-
jections with a uniform sensor array. If fan-beam data are
collected, they can be transformed into parallel-beam pro-
jections and then the proposed technique may be applied.

This article is organized as follows. We discuss
two-dimensional sampling theory and the special signal
structure of sinograms and their application to formula-
tion of the limited-angle restoration problem. A system of
linear equations that must be solved is established. The
problem is then posed as an optimization problem. In the
next section, an iterative algorithm is presented to solve
the optimization problem. Proof of the convergence of this
algorithm is also presented. Computer simulation results
are presented to demonstrate the efficacy of the proposed
algorithm.

Throughout this discussion, we use the following notations:

I =   −1
δ(•) = Dirac delta function
(•)T = transpose
(•)* = Hermitian transpose
A Θ B = Schur-Hadamard (element-by-element) ma-

trix product
A ⊗ B = Kronecker product14

Aij, (A)ij = the i, j element of A

A F = (Aij )2∑  (Frobenious norm of A)

vec (A) = the ordered stack of columns of A14
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  A = the complex conjugate of A
Re{A} = the real part of A, defined as (A +   A )/2
In×n = n × n identity matrix
1m×n = m × n matrix of ones
φm×n = n × n matrix of zeros

When no confusion will occur, the dimensions of In × n ,
1m × n and φm × n are omitted.

Problem Formulation
The central idea of ISRA is to restore a complete

sinogram, on a different sampling lattice, from the observed
incomplete sinogram. Many of the existing limited-angle
techniques use the available data either to recover the
missing projections or to recalculate a whole sinogram with
the sampling lattice of the available data. In this article,
given a limited-angle sinogram, ISRA restores a complete
sinogram on another sampling lattice, which has a lower
resolution than the incomplete data. We believe this to be
a more reasonable approach, because an incomplete
sinogram inherently provides less information than a com-
plete one. Simulation results show that restoration on a
lower resolution lattice in general provides better overall
reconstruction quality and is more robust to noise.

Consider a cross-section function f (t1, t2) of an object.
Let F(ω t1

,ω t2
)  be its two-dimensional Fourier transform:

 
    
F f t t I t t dt dtt t t t( , ) ( , ) exp[ ( )]ω ω π ω ω

1 2 1 21 2 1 2 1 22= − +
−∞

∞

−∞

∞

∫∫  (1)

Suppose that f(t1, t2) is spatially limited to a disk with ra-
dius Rm in the t1–t2 plane and is essentially bandlimited‡

in the frequency domain to a disk with radius WM, as shown
in Fig. 1. The continuous sinogram, or the radon trans-
form of f (t1,t2), is a continuous two-dimensional signal,
defined as

    
x f t t t t dt dt( , ) ( , ) ( cos sin ) .φ ρ ∂ ρ φ φ= − −

−∞

∞

−∞

∞

∫∫ 1 2 1 2 1 2 (2)
Figure 1. (a) Spatial support of function f (t1, t2); (b) Support of
F(ωt1

, ωt2
)
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Let X(ωφ,ωρ) be the two-dimensional Fourier transform of
x(φ,ρ):

X x I d d( , ) ( , )exp( ( )) ,ω ω φ ρ π φω ρω φ ρφ ρ φ ρ= − +
−∞

∞

−∞

∞

∫∫ 2     (3)

then approximately 99% of the total energy of X(ωφ,ωp) is
within finite-length RmWM bowtie,13 as illustrated in Fig.
2. Hence, X(ωφ,ωρ) is essentially bandlimited to the
finite-length RmWM bowtie.
256
Figure 2. Spectral support of finite-length bowtie.
When a continuous sinogram is sampled with sam-
pling period T = [Tφ , Tρ] satisfying the sampling require-
ments13

    
Tφ < π

K − 1
, Tρ <

2Rm

L − 1
, (4)

K ≥ RmWM + 2, (5)

and

    
L R Wm M≥ +2

1
π

, (6)

the original continuous signal can be reconstructed by the
interpolation formula15:
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(7)

xd(nφ  , nρ ) is the sampled version of the sinogram given by

xd(nφ  , nρ) = x(nφ Tφ ,  nρTρ–Rm) (8)

for – ∞ < nφ  , nρ < ∞, and

    
sin( )

sin( )
.a

a
a

= π
π

(9)

For signal f (t1, t2) with finite support as shown in Fig. 1
(a), its sinogram will also be of finite support; hence,
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where

(Nφ – 1)Tφ = 2p and (Nρ – 1)Tρ = 2Rm. (11)

Suppose that instead of sampling at T = [Tφ, Tρ], the
sinogram x(φ, ρ) is in fact sampled at a lower sampling pe-
riod T̃ = [T̃φ , T̃ρ ]  (i.e., at a higher sampling rate):

˜ ˜ .T Tφ φ ρ ρ< andT T< (12)

The sampled sinogram at sampling period T̃  is then

xl(mφ , mρ) = x(mφ T̃ φ , mρ T̃ ρ –Rm) (13)

for mφ = 0, 1, ... Mφ – 1, and mρ = 0, 1, ..., Mρ – 1. Note that (Mφ

– 1) T̃ φ , = (Nφ  –  l)Tφ = 2π and (Mρ – l) T̃ ρ = (Nρ –  l)Tρ = 2Rm. As
shown in Fig. 3, the available samples of sinograms have a h
resolution or spatial frequency content than xd(nφ , nρ). Combining
Eqs. 10 and 13, we have
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for mφ = 0, 1, ..., Mφ – 1, and mρ = 0, 1,..., Mρ – 1.
Define matrices X R X R
N

l
M∈ ∈× ×φ ρ φ ρN M

and ˜ such that

(X)ij = xd(i – 1, j – 1) (15)

(  X̃ l)ij = xl(i – 1, j – 1), (16)

and interpolation matrices S R S R
M M

1 2∈ ∈× ×φ φ ρ ρN N
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then Eq. 14 can be written more compactly as

S1XS2
* = X̃l . (19)

However, as shown in Fig. 4, the sinogram x(φ, ρ) is
sampled only at viewing angles 0 ≤ φ ≤ Θ, where 0 < Θ < π.
Thus, when sampled at period T̃ , xl(mφ  , mρ) is measured for

mφ  = 0,1, ... , P – 1, and mρ = 0,1, ... , Mρ – 1, where P <
Mφ

2
. In

addition, because x(φ + π, ρ) = x(φ, –ρ), we can get xl(mφ mρ)

for mφ = 
M Mφ φ

2 2
, ... ,  + P – 1 and mρ = 0,1, ... , Mρ – 1 by
Yau and Yu
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igure 3. Sampling lattices of finite support sinogram: • repre-
ents the samples xl(mφ ,mρ ) and ∆ represents samples xd(nφ ,nρ ).

(Nφ  – 1) Tφ = (Mφ  – 1) T̃φ
symmetry. Despite this, we cannot have all equations in
Eq. 14 for all mφ and mρ . Thus, the available equations in
the limited-data case should be written as

( )S XS Z X1 2 = l , (20)

where Xl is the data maxtrix defined as
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and Z R∈ ×M Mφ ρ is an indicator matrix such that
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is available. Because the spectral support of the original
sinogram x(φ, ρ) is bowtie-shaped, it is straightforward to
translate this information into additional constraint. Let
Xd(kφ , kρ) be the two-dimensional discrete Fourier trans-
form of xd(nφ ,nρ); then

=
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for appropriate values of kφ and kρ . Defining the

discrete Fourier transformation matrices F R1 ∈ ×N Nφ φ and

    F R2 ∈ ×N Nρ ρ  as
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and an indicator matrix U ∈ ×
R

N Nρ ρ  such that

    

( )
( , )

,U i j

dX i j
=

=



 0 otherwise  

if1 0
(26)

then Eq. 23 can be written more compactly as

( ) .F XF U1 2 0T O =⋅ (27)

The indicator matrix U in Eq. 26 depends on the spa-
tial extent of the function. In practice, we can set 2Rm

equal to the maximum extent of the sampling window
and specify U accordingly.

Equations 20 and 27 form a set of simultaneous linear
equations. Because F1, F2, S1, and S2 are all full-rank ma-
trices, it can be shown that if the number of active equa-
tions is greater than the number of unknowns, i.e.,

2PMρ + U
F

2 > Nφ Nρ , (28)

then the system is overdetermined. Because the signal
under consideration is actually only essentially bandlimited,

Θ•
Figure 4. Regions of available and missing data.
From the above discussion, we understand the follow-
ing:

1. If a complete sampled sinogram X with sampling
period T is available, high-quality reconstruction of
f (tl,t2) can be obtained.

2. We have access to incomplete data Xl, which is re-
lated to X through Eq. 20.

The limited-angle problem can therefore be solved if we
can compute the complete sampled sinogram X from Xl

alone. This computation, however, is not possible in prac-
tice, because there are Nφ Nρ unknowns in X, which are
usually more than the 2PMρ nontrivial equations avail-
able in Eq. 20. Thus, additional information is needed to
compensate this situation. Besides, even if we have enough
equations, the system of equations in Eq. 20 is still ill-
conditioned and needs to be regularized.

Fortunately, inspection of the spectral support of X(ωφ,
ωρ) in Fig. 2 reveals that supplementary information on X
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Eqs. 20 and 27 hold only approximately. The problem of
determining X can therefore be posed as the following least-
squares optimization problem.

Problem Formulation for Sinogram Restoration.
The restored complete sinogram is given by X̂ , which is
defined as

X̂ = argmin
X

J(X ), (29)

where J(X) is the cost function given by

J l l F l
T

F
( ) ( ) )*X S XS X (F XF U= − + − ⋅λ λ1 2

2

1 2

2
1 O   (30)

and the parameter 0 < λl < 1 is a regularization parameter
between Eqs. 20 and 27.

The selection of an optimal regularization parameter λl

is a difficult task. Generally speaking, the best choice is
not known a priori for a given ill-posed problem. Reeves
and Merserau16 presented a method for obtaining an opti-
mal estimate of the regularization parameter by using gen-
eralized cross-validation. However, the generation of the
estimate requires the computation of the system eigenval-
ues. This is difficult in our application because of the large
size of the problem. The parameter λl is assigned to achieve
a compromise between two constraints that hold only ap-
proximately. Because the errors in these equations are not
known, the best assignment is not provided at this moment.
Heuristic approaches are therefore used in choosing these
parameters. For example, if the given sinogram is noisy, a
smaller λl will give a better result.

An Iterative Algorithm
As discussed in the previous section, the limited-angle

restoration of a sinogram can be considered as the solu-
tion of X̂  defined by Eq. 29. Equivalently, J(X) as defined
by Eq. 30 needs be minimized. Although different meth-
ods exist to solve this multidimensional minimization prob-
lem, most of them require reorganizing the matrix X into
a column vector. To be more specific, we can rewrite Eqs.
29 and 30 into vector form:

x̂ = argmin
x

Hx − y
F

2
, (31)

where x = vec(X).14 Matrix H and data vector y are formed
by rearranging the matrices in concert. The optimal solu-
tion is then given by

ˆ .x H H) H y* *= ( −1 (32)

Unfortunately, there is a major difficulty to this ap-
proach. Due to the irregular structure of the indicator
matrices Z and U in Eq. 30, formation of H and y is diffi-
cult. Moreover, the matrix H involved in solving Eq. 29
is of dimension (2PMρ + U 2

F )× NφNρ. For example, in Ex-
periment 1 in the following section, a 56 × 56-pixel
sinogram is to be restored from a sinogram with 23 avail-
able views and 64 raysums per view. Because approxi-
mately half of the DFT samples of a complete sinogram
are outside its bowtie-shaped spectral support, the total
number of nontrivial equations (i.e., number of rows in H)
is approximately 2 × 23 × 64 + 56 × 56/2 = 4512. The num-
ber of columns of H is 56 × 56 = 3136. Note further that H is
not a sparse matrix—it has about 14 million entries. Such
a large matrix is difficult to store in digital computers, and
computation of its pseudoinverse is even more difficult.
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An iterative method proposed by Kaczmarz17 is the row
action projection (RAP) algorithm, which involves itera-
tive orthogonal projections onto the hyperplanes specified
by each active equation in Eq. 32. The update equation in
this method is given by

x x
H x

H
Hk k k

i i
T

k

i
F

i
T

y
k k

k

k+ = +
−

1 2γ
( )

( )
( ) ,,:

,:

,: (33)

where γk is the relaxation factor, yi is the i-th element of
y and (H)i,: is the i-th row of H. The variable ik is the
cyclic control parameter defined by ik = k(mod L), where
L is the number of rows in H. The RAP algorithm was
shown to converge to the least-squares solution18 and is
more computationally attractive than other methods.19

The RAP algorithm is the basis for ART1 and has been
applied to resolution enhancement in CT.20 Inspection of
Eq. 33 indicates that although the RAP algorithm makes
it possible to solve the minimization problem in Eq. 31,
it is still computationally intensive. Besides, RAP as-
sumes no special structure in matrix H, which may be
invaluable in devising more computationally efficient
algorithms.

In this section, we utilize the special structure of the
cost function J(X) to derive an iterative algorithm that is
based on the method of alternating projection. We will show
that, independent of initialization, the algorithm will con-
verge to the desired solution. In addition, the algorithm
does not require formation of matrix H, matrix-to-vector
conversion, and matrix inversion for each iteration. Fast
implementation of the proposed algorithm will also be dis-
cussed. To our best knowledge, we have not been able to
find a similar algorithm in the literature.

We first note that the cost function J(X) is a quadratic
(and hence convex) function in X. Hence, any descending
algorithm on J(X) will lead to the correct unique solution
of the problem of Eq. 29.21,22 Next, we prove the following
theorem.

Theorem 1. Let A ∈ CP×Q and B ∈ CR×S be full-rank ma-
trices such that PR ≥ QS and Y ∈ CP×R are given. Let X̂ ∈
RQ×S be defined as

X̂ = argmin
X

AXB* − Y
F

2
; (34)

then

ˆ {( ) ( ) }.– –X = A A A YB B B* * *Re 1 1

(35)

Proof: See Appendix A.
We can state the optimization problem of Eq. 29 in a

form similar to Eq. 34. Define the matrices
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(36)

and a combined indicator matrix

    
W

Z
U=

−
−









1

1
1

1
, (37)

Then J(X) as defined in Eq. 30 can be rewritten as

      
J(X) = (AXB Y W* − −) ( ) .1

F

2
(38)Θ•
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Because Eq. 38 is of similar form to Eq. 34, one might
expect Theorem 1 to be helpful for finding X̂ . However,
Theorem 1 cannot be directly applied to minimize Eq. 38
because there is an element-by-element matrix multipli-
cation in the cost function. The following theorem intro-
duces a dummy matrix in another optimization problem
that has the same unique solution as Eq. 29.

Theorem 2. Let X̂ be defined as in Eq. 29 and X+, R+ be
defined as

{ } = arg minX , R
X, R

AXB Y W R+ + * − − ⋅O
F

2
, (39)

where A, B, Y and W are as defined in Eqs. 36 and 37.
Assume that X̂ as defined in Eq. 29 is unique; then X+

as defined in Eq. 39 is unique and further

X̂ =X+. (40)

Proof: See Appendix B.
Using Theorems 1 and 2, the following iterative algo-

rithm based on the principle of alternating projection can
be used to solve the optimization problem (Eq. 29).

Theorem 3. Let PA, PB be pseudoinverses of A and B
defined as

PA=(A*A)–1A*, (41)

PB=(B*B)–1B*, (42)

respectively. Let a sequence of matrices Xk and Rk be de-
fined by the iterative equations

Xk+1 = Re{PA(Y + WΟRk)PB* } (43)

and

Rk = (AXkB* – Y) QW, (44)

where X R0 ∈ ×N Nφ ρ is arbitrary. Assume that X̂ as defined
in Eq. 29 is unique, then

X̂ = lim
k→∞

Xk . (45)

Proof: See Appendix C.
Independent of initialization, Theorem 3 provides an it-

erative method to locate the global minimum of the optimi-
zation problem of Eq. 29. Although Theorem 3 shows that
the sequence of matrix Xk always converges to the optimal
solution, the convergence rate is sometimes slow. Because
the feasible region of solution and the cost function are both
convex, the convergence rate of the algorithm can be in-
creased by introducing a relaxation parameter. We state
the modified algorithm in the following corollary.

Corollary 1 (Iterative Sinogram Restoration Algo-
rithm). Let β be a relaxation parameter with 0 < β < 2. Let
a sequence of matrices Xk and Rk be defined by the itera-
tive equations

Xk+1 = β Re{PA(Y + W Q Rk)PB*} + (1 – β)Xk (46)

and

Rk = (AXk B* – Y) Θ W, (47)

where X R0 ∈ ×N Nφ ρ is arbitrary. Assume that X̂ as defined in
Eq. 29 is unique, then

X̂ = lim
k→∞

Xk . (48)

Θ•

Θ•

Θ•

Θ•

Θ•
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Proof: Let the iteration process of Eqs. 43 and 44 in
Theorem 3 be written as Xk+1 = Ρ Xk. Then, by Theorem 3,

    
ˆ lim .X Xk=

→∞k
Ρ 0  (49)

On the other hand, the operation in Eq. 46 can be stated
as Xk+1 = {βΡ + (1—β)I}Xk.

Because the solution space and the cost function are
both convex, by the result in Ref. 23, Theorem 2.4-1, for
0 < β < 2,

    
ˆ lim ˆ lim{ ( ) } .X X X I X= ⇒ = + −

→∞ →∞k

k
k

k

kΡ Ρβ β1 0 (50)

With a suitable choice of β, the rate of convergence of
ISRA can be accelerated. When β = 1, the iterative equa-
tions, Eqs. 46 and 47, are equivalent to Eqs. 43 and 44. In
this situation, ISRA is said to be unirelaxed.

In actual implementation of the proposed iterative algo-
rithm, an effective stopping mechanism is required. Because
the cost function J(X) is convex and is descending in every
iteration, we define the following cost function ratio for the
k-th iteration:

g k
J

J
k( )

( )

( )
%,= ×

X

X0
100 (51)

which is always positive and less than 100%. Using this
ratio, a stopping criterion is proposed as

    g k g k( ) ( )− − <1 δ (52)

for 0 < δ < 100%. To ensure the convergence of the iterative
algorithm, a very small value of δ should be used.

Substituting Eq. 47 and the corresponding matrices in
J(X) into Eq. 46, the ISRA for the limited-angle problem
is summarized in Table I. In Table I, we have replaced
matrix multiplications involving F1 and F2 by fast Fourier
transform (FFT). This operation significantly reduces the
computation time in each iteration. In Eq. 56, we have
used F1{•} to denote the one-dimensional FFT operator on
column vectors of a matrix and F2{•} to denote the two-
dimensional FFT operator. It is also worth noting that in
actual implementation PA and PB need to be calculated
only once. The sizes of matrices PA and PB are also more
manageable: PA is Nφ × (Mφ + Nφ) and PB is Nρ × (Mρ + Nρ).
Thus, the dimensions of PA and PB in Experiment 1 in the
next section are both 56 × 120.

Experimental Results
In this section we present some simulation results to dem-

onstrate the performance of ISRA in solving the
limited-angle problem. Before applying the ISRA, we must
decide several parameters. The first one is the extent of the
bowtie-shaped spectral support of the sinogram. This re-
gion not only specifies the positions where the discrete Fou-
rier transforms of a sinogram are known to be zeros but
also determines the validity of Eq. 28 in the application of
ISRA. For all experiments in this study, we assume that the
largest spatial extent of the object equals the width of the
sampling window. Thus, we set the edges of the bowtie (see
Fig. 2) to have a slope of unity. Consequently, this region occu-
pies approximately 50% of the whole spectrum and the num-
ber of zeros in the discrete Fourier transform is U

F

2 ≈ Nφ Nρ / 2
in Eq. 28. In fact, for the head phantom used, the designed
spectral support contains more than 99.99% of the spectral
energy of its sinogram.
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TABLE I. Iterative Sinogram Restoration Algorithm (ISRA)

1. Let S1, S2, F1, F2, Xl, Z and U be as defined in Eqs. 17, 18, 24, 25, 16, 22, and 26, respectively. Let k = 0, X0 =      
0N Nφ ρ× ,

    P S S I S FA l l l lN= + − −−( ( ) ) [ ],* * *λ λ λ λφ1 1
1

1 11 1 (53)

(54)

    
W =

−

−










1

1 Z

1 U

1
. (55)

2. At iteration k + 1,

    

X X P
X S

X S X U
Pk k A

T k
T T

l k l k

B

F X

F F
+ = − +

− − −


























1

1 1 1

1 2 2

1
1 1 1

( ) Re
( { })

{ } ( { }) ( )*

*β β
λ

λ λ
(56)

where

    
X X S X S1T l l kZ Z= + −λ [ ( ) ( )].*

2 1 (57)

3. If the stopping criterion of Eq. 52 is true, then stop; otherwise k = k + 1 and go to Step 2.

Θ•

Θ• Θ•
Although the optimal choice of regularization param-
eter λl is a difficult task, we have been able to find a
proper value for satisfactory results. Generally speak-
ing, results obtained from different regularization pa-
rameters within a small range are visually alike. In
Experiments 1, 2, and 4, we have used λl = 0.75. In Ex-
periment 3, because there is noise, a smaller value, λl =
0.6, is used. In all simulations we set the initial sinogram
matrix X0 = 0N Nφ ρ× . As mentioned in the previous sec-
tion, the solution provided by ISRA is unique to the prob-
lem formulation and is independent of the relaxation
parameter β. However, our experience shows that in
most cases a large value of β can reduce the number of
iterations needed to meet the convergence requirement.
The relaxation parameter β was set to 1.9 in all the ex-
periments.

To evaluate the performance of the proposed sinogram
restoration technique, visual evaluation is, of course,
the most straightforward method. To this end, we dis-
play the original sinograms, available incomplete
sinograms, and sinograms restored by ISRA. Corre-
sponding reconstructions from these sinograms are dis-
played as well.

To evaluate the performance of the proposed method
quantitatively, we define the relative error of a complete
sinogram as

RES =
X o − X̂

F

X o

F

×100%, (58)

where Xo is the original sinogram and X̂ = Xk  is the
sinogram restored by ISRA at the k-th iteration. Simi-
larly the relative error of an estimated image in object
space is defined as

REO =
f − f̂

F

f
F

×100%, (59)

where f  is the original image and f̂  is the CBP recon-
struction from the restored sinogram X̂ .
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(e) (f)

Figure 5. Experiment 1. A limited-angle problem of 129°: (a) origi-
nal sinogram; (b) original image; (c) available sinogram; (d) “na-
ive” reconstruction from (c); (e) sinogram restored by ISRA; and
(f) image reconstructed from restored sinogram.

(a) (b)

(c) (d)
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Experiment 1. Limited-Angle Reconstruction of
Head Phantom. The object used in this simulation is the
Shepp–Logan head phantom. Figure 5(b) shows a 56 × 56-
pixel square image of the head phantom, which is recon-
structed by CBP from the complete sinogram in Fig. 5(a),
which has  Nφ /2 = 28 views (from 0 to π radian) and Nρ =
56 raysums per view. Suppose the sinogram is actually
sampled with  Mφ /2 = 32 views (from 0 to π radian) and Mρ
= 64 raysums per view but only P = 23 views (i.e., (Θ =
129° angular view) are available. Figure 5(c) shows the
available sinogram and Figure 5(d) shows the “naive” CBP
reconstruction assuming zero entries in the missing part.
Whereas the boundary of the object suffers distortion, the
ellipse on the right-hand side of the phantom is severely
blurred and the gray level of the whole picture is obvi-
ously not accurate. To enhance the observed image, ISRA
is applied to restore a 56 × 56-pixel complete sinogram
from the limited-angle data. The restored complete
sinogram is shown in Fig. 5(e), where it can be seen that
the projections in the missing region are recovered. Fig-
ure 5(f) displays a reconstruction of the head phantom from
the restored sinogram. Visual examination shows that the
right ellipse is recovered with better quality than that of
the limited-angle data.

Experiment 2. Different Angular Range of Miss-
ing Region. This experiment demonstrates the perfor-
mance of the ISRA in solving the limited-angle problem
with different angular missing range. Here the simula-
tion setting is the same as in Experiment 1, with the ex-
ception that different values of P, which indicates the
available region of projection data, are used. We repeated
Experiment 1 with P = 29, 26, 23, 21, 18, 16 and 14, which
are equivalent to available angular views of Θ = 163°, 146°,
129°, 118°, 101°, 90°, and 78°. Figure 6 shows the relative
error curves of the restored sinogram and reconstructed
image in this experiment. It is found that the relative er-
ror curves behave linearly for 90° < Θ < 180° but increase
rapidly for Θ < 90°. Figure 7 shows the results of two se-
lected runs, Θ = 146° and 90°. Whereas in both cases the
right ellipses are successfully recovered, the restored im-
age for Θ = 146° is of superior quality.
Figure 6. Experiment 2. Relative error curves of the restored
sinogram (solid line) and of the reconstructed image (dashed line)
for different available angular ranges.

Available Angular Range of Projections (Degrees)
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We now consider a more difficult situation in CT. When
a limited-angle sinogram corrupted by noise is available,
the “naive” CBP reconstruction is degraded and features
are difficult to identify. Experiment 3 demonstrates the
performance of ISRA in this situation.
Sinogram Restoration Technique for the Limited-Angle Problem
To simulate a noisy limited-angle sinogram, we first
add independent zero-mean Gaussian noise with vari-
ance σ  2 to each element of the true sinogram. The result-
ing observed sinogram has a signal-to-noise ratio (SNR)
defined as

SNR =
−∑

10 10

1 2

2
log

( ( , ) )
,

,N p
i j x i j η

σ
(60)
Figure 7. Experiment 2. Images in different available angular
ranges: (a) “naive” reconstruction and (b) reconstruction using
sinogram restored by ISRA for Θ = 146°; (c) “naive” reconstruction
and (d) reconstruction using sinogram restored by ISRA for Θ =90°.

Figure 8. Experiment 3. Limited-angle restoration with SNR =
20 dB: (a) available sinogram; (b) “naive” reconstruction; (c)
sinogram restored by ISRA; and (d) reconstruction from restored
sinogram.

(c) (d)

(a) (b)

(c) (d)

(a) (b)
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where x(i,j) is the noise-free sinogram, η is its mean value,
and Nρ = 2PMρ is the number of samples available.

Experiment 3. Noisy Limited-Angle Sinogram.
This experiment simulates the case when the sinogram
 in Fig. 5(c) of Experiment 1 is corrupted by noise. Figure
8(a) displays the noise-corrupted limited-angle sinogram
with SNR = 20 dB, and Fig. 8(b) shows the “naive” recon-
struction, which suffers from severe artifacts. After ISRA
is applied to the observation, a smooth sinogram is re-
stored and the missing part is recovered, as shown in Fig.
8(c). The image reconstructed from the restored sinogram
is shown in Fig. 8(d), in which all features are obviously
better than in the “naive” reconstruction in Fig. 8(b). As a
quantitative measure, the example has relative errors RES

= 6.07% and REO = 16.97%.

In the presence of noise, there exists an optimal value

of the regularization parameter λl (see, for example, Ref.
24), to achieve best results. Alternatively, if a suboptimal
value of λl is used, there exists an optimal number of it-
erations for best result. Note however, that the minimum
of the cost function is not achieved at this optimal num-
ber of iterations. Unfortunately, as discussed in the previ-
ous section, we are not aware of any systematic method to
determine the optimal value of λl. The value of λl (=0.6)
used in this experiment has been determined by trial and
error to achieve the best result.
262     Journal of Imaging Science and Technology
Experiment 4. Comparison with Other Methods.
Oskoui and Stark12 made a comparative study of CPL,
ATM, and POCS reconstruction methods for the limited-
angle CT problem. Simulation was performed to recon-
struct a head phantom image from a set of limited-angle
projections spanning a 160° angular range using the dif-
ferent techniques. To compare the performance of ISRA
with these techniques, ISRA was applied to the same
limited-angle problem as that used by Oskoui and Stark.

In Ref. 12, Oskoui and Stark used a 129 × 129-pixel
Shepp–Logan phantom as the testing object [Figs. 9(a) and
(b)]. Figure 9(c) shows a sinogram with 99 view angles
available over the 160° range, with 129 raysums per view.
The “naive” reconstruction is shown in Fig. 9(d). From the
available sinogram in Fig. 9(c), we restored a complete
sinogram, as shown in Fig. 9(e), which has 116 view angles
over a 180° range at 100 raysums per view. On this sam-
pling pattern, the CBP reconstruction is shown in Fig. 9(f).
The improvement in image quality is not visually signifi-
cant, but the sinogram is evidently recovered in the miss-
ing region. Because ISRA obtains an image with a smaller
number of pixels than the other three methods, our result
is compared with a full-angle image of the same pixel size.
Table II shows the relative errors of the image by using
CLP, ATM, POCS, and ISRA methods. It can be seen that
ISRA performs better than CLP and ATM, and it is com-
parable to POCS. Because POCS utilized additional in-
formation on the object (which included an amplitude limit
constraint and an energy constraint), its performance is
expected to be better than that of the ISRA.
Figure 9. Experiment 4. Result obtained by using ISRA: (a) origi-
nal sinogram; (b) original image; (c) available sinogram; (d) “na-
ive” reconstruction; (e) sinogram restored by ISRA; and (f) image
reconstructed from restored sinogram.

(a) (b)

(e) (f)

(c) (d)
Conclusion
We have developed a sinogram space restoration method

for the limited-angle problem. The algorithm uses the spec-
tral consistency of the sinogram and closeness to observed
data to restore a complete sinogram, which is then used to
reconstruct an object via CBP. A computationally efficient
iterative algorithm was developed to solve the optimiza-
tion problem. The proposed method can be regarded as a
variation of the POCS method with all iterations performed
in the sinogram domain. Thus, the algorithm is much more
computationally efficient, because computationally expen-
sive reconstruction and numerical tomography projection
required by conventional POCS are eliminated. Unlike the
conventional POCS method, the proposed method does not
use any unknown a priori information on the underlying
object. We have also proposed the idea of restoring a com-
plete sinogram on a sampling lattice with lower resolution
than the original sampling grid, thereby increasing the ro-
bustness of the ISRA in the presence of noise. Experimen-
tal results show significant improvement in the quality of
the reconstructed images from restored sinograms.

Appendix A. Proof of Theorem 1

Consider a system of equations Hx = y  where
H ∈ ×CM N and y ∈ ×CM 1are given. If M > N, the least-
squares solution for x R∈ ×N 1  is

x = Re{(H*H)-1H*y}. (A1)

Because Eq. 34 can be transformed into vector form,14

vec vec vec( ˆ ) argmin ( ) ( ) ( )X
X

B A X Y= ⊗ −
F

2
   (A2)

and (B ⊗ A)  is a full-rank matrix, the least-squares solu-
tion is
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Table II. Numerical Results for the Four Methods in the 160 °
Limited-Angle Case in Experiment 4

RES (whole image) REO (zeroing background)

CPL 31.1% 22.6%

ATM 35.0% 26.7%

POCS 7.4% 6.0%

ISRA 9.8% 8.6%
vec( X̂ ) = Re{((B ⊗ A)*(B ⊗ A))−1 (B ⊗ A)* vec(Y)}

= Re{((BT B ) ⊗ ( A* A))−1 (BT ⊗ A*)vec(Y)}

= Re{((BT B )−1 BT ) ⊗ (( A* A)−1 A*)vec(Y)}.
(A3)

Then we can rearrange Eq. A3 into matrix form:

( ˆ ) Re{( ) * ) }

Re{( ) * }.

X A* A A Y((B B) B

A* A A YB(B* B)

T=

=

− −

− −

1 1

1 1

T T

(A4)

Appendix B. Proof of Theorem 2
By inspection, it can be seen that for any fixed X, the

corresponding R that minimizes AXB* −Y − WΘR
F

2 is
given by

R = ( AXB* −Y )ΘW. (B1)

Hence,

  R AX B * Y) W+ += −( . (B2)

and

    

min

1

min

X, R
AXB * Y W R

AX B * Y W R

( W) (AX B * Y

X

X
X

+ +

+

− −

= − −

= − −

=
≥

+

F

F

F

J

J

2

2

2

( )

( ),

(B3)

where J(•) is as defined in Eq. 38 and the second equality
is obtained by using Eq. B2. This leads to the result

J( ˆ ) min ( ) min .X
X

X
X, R

AXB* Y W R= ≤ − − ⊗J F
2 (B4)

On the other hand, by letting

R̂ = ( AX̂B* −Y )ΘW, (B5)

we have

    

J(X)

= AXB * Y W R

X, R
AXB * Y W R

ˆ

( ˆ ˆ

min .

− −

≥ − −
F

F

2

2 (B6)

Combining Eqs. B4 and B6, we see that

Θ•

Θ•

Θ•

Θ•

Θ•

Θ•

Θ•

Θ•

Θ•

Θ•
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min ( ˆ )
X, R

AXB * Y W R X− − =
F
2

J
(B7)

and hence   X X, R AXB * Y W+ += = −ˆ ( ˆ ) is a solution to Eq.
39. To prove that X + = X̂  is the unique minimum point for
Eq. 39, suppose that { X̃, R̃}  is another solution such that
X̂ ≠ X̃ . Then it is clear that

AX̂B* −Y − W ⊗ R+

F

2

= AX̃B* −Y − W ⊗ R̃
F

2

, (B8)

and by Eq. B1,

R̃ = ( AX̃B* −Y )ΘW. (B9)

Thus, substituting Eqs. B2 and B9 into Eq. B8, we have

J( X̂ ) = J( X̃ ). (B10)

However, because X is the unique global minimum of
Eq. 30 by assumption, X̃ = X̂.  This is a contradiction.
Hence, X+ is unique.

Appendix C. Proof of Theorem 3
By inspection, Eq. 39 is a quadratic programming prob-

lem in X and R. Hence Eqs. 43 and 44 are merely alter-
nating projection formulas based on the principle of
minimizing the function with respect to one variable while
keeping the other fixed. Let

    
ˆ ( ) .J k k k F

= − −AX B * Y W R
2

(C1)

Then it is easy to see that

    

ˆ ( ) *

*

*

ˆ( ),

J k

J k

k k F

k k F

k k F

= − −

≥ − −

≥ − −

= +

+

+ +

AX B Y W R

AX B Y W R

AX B Y W R

2

1
2

1 1
2

1

(C2)

where the first inequality is obtained by using Theo-
rem 1 and Eq. 43, and the second inequality is obtained
by using Eqs. B1 and 44. Thus, our algorithm is a de-
scending algorithm.

Further, if Xk ≠ X+ and hence, by Eq. 44 Rk ≠ R+, then all
inequalities in Eq. C2 are strict. Thus, by the global con-
vergence theorem22, Xk → X + = X̂.
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