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Introduction
The explosion of inexpensive computer technology is mak-
ing color imaging widely available. This is particularly true
on the desktop, where color printers, mostly ink jet, are
replacing the black and white impact dot matrix variet-
ies. This rapid expansion of color printing has not been
without problems. Color printing has, historically, been
controlled by experienced people who are knowledgeable
about printing technology and who have developed sub-
stantial expertise on how to manipulate the technology.
On the desktop, either in the home or office environment,
most users have goals other than becoming experts in the
technology used by their color devices. A major step to-
ward making “good color” a reality for experts and
nonexperts alike has been the incorporation of so-called
color management systems (CMS) into new computer op-
erating systems. To “manage the color,” the CMS needs
some information about the color printing device. This
usually takes the form of a device profile, which trans-

Color printing using halftoning techniques is becoming ubiqui-
tous on the desktop. Accuracy and consistency of the color printed
by these devices depends on, among other things, the optical prop-
erties of the paper. The general influence of light scattering within
the paper has been known for half a century, but calculation of
the effect on the color gamut is complex and depends on the de-
tails of the paper optical spread function and of the halftone pat-
tern. Two limiting cases are analyzed, no-paper-scattering and
complete-paper-scattering (optical paper spread function is much
larger than the halftone cell size). Simple models are presented
for the limiting cases of halftone printed color images, and the
predictions are compared with measurements of single-colorant
samples from a wax thermal printer. Results show that the simple
models bound the single-colorant colors produced by the wax ther-
mal printer. The simple model predicts that the major effect of
the paper scatter on single-colorant images is the shifting of col-
ors along the CIE L*a*b* locus. This can result in color differ-
ences for the two scattering extremes of 20 CIE L*a*b* units for
the same fractional dot area. Two different CIE L*a*b* loci are
computed for the same colorant, under the no-light-scattering
versus complete-light-scattering conditions, but this is a much
smaller effect.

Journal of Imaging Science and Technology 40:3 239–244 (1996)
lates some specification of color using CIE colorimetry into
the colorant amounts required to render the color on the
device.

The most successful type of device profile for color print-
ers is some form of multidimensional look-up table (LUT).
Generation of such a table can be accomplished primarily
in two ways: (1) Print an array of colors with known
amounts of colorants and measure the resultant color and
(2) use a color imaging model. Printing and measuring an
array of colors is time-consuming and prone to the ran-
dom variations of the printer unless the measurements
from some number of samples, both from printers and rep-
licates from the same printer, are averaged. The imaging
performance of most color imaging technologies varies with
substrate, environment, past printing history, etc. For
high-quality color imaging, device profiles that cover these
variable factors must be available to the color matching
system. A simpler, and possibly more accurate, approach
would be model-based, provided that unbiased estimates
of low variance can be made of the model parameters. The
major impediment to the model-based approach to LUT
generation is the lack of a good color imaging model for
halftone printing.

The most popular and least expensive color printers
place various colored dots of fixed or varying size on a
substrate in a grid pattern of from 300 to 720 dots per
inch. Color formation by these devices uses halftone print-
ing, wherein the fractional area covered by the three or
four colorants varies. For conventional color halftone
printing that uses rotated halftone screen angles or the
various forms of error diffusion or stochastic screening,
the model first proposed by Neugebauer1 in 1937 provides
a starting point for the model-based approach. These
equations describe the CIE tristimulus values of the half-
tone, given the fractional areas of cyan, magenta and
yellow colorants and the tristimulus values of the eight
“Neugebauer primaries”: “white” (paper), cyan, magenta,
yellow, red, green, blue, and three-color black. The basic
tristimulus equations, where T is used for CIE X, Y, or Z,
are:

T =
  

f iTi
i=1

8

∑ ,

f1 = (1 – c)(1 – m)(1 – y),
f2 = (1 – m)(1 – y),
f3 = (1 – c)(1 – y),
f4 = y(1 – c)(1 – m), (1)
f5 = my(1 – c),
f6 = cy (1 – m),
f7 = cm (1 – y),
f8 = cmy.
    239



In Eq. 1 values of Ti are the tristimulus values for “white,”
cyan, magenta, yellow, red, green, blue, and black, respec-
tively. These primaries could be measured from a transmit-
tance image or a reflectance image. Although these equations
are much maligned, they are quite robust for a wide array
of image microstructures. Neugebauer’s1 original derivation
was probabilistic in approach. However, the same set of equa-
tions can be derived assuming that the cyan, magenta, and
yellow halftone layers are superimposed, or as trilinear in-
terpolation, and, as shown in the Appendix, assuming com-
plete randomness of the eight primaries.

It is well known, however, that Neugebauer’s equations
often do not predict the measured tristimulus values of
colored halftones on paper.2–6 The primary reason, first
proposed by Yule and Nielsen in 1951,7 is the scattering of
light within the bulk of the paper, a phenomenon that is
now known as the paper optical spread function. Their
“fix” was to propose a factor, the “n-factor,” that modifies
the tristimulus values of the eight primaries by raising
them to a power of 1/n and then taking the n-th root of the
result. (Actually the modified form of the Neugebauer
equations was first described by Pobboravsky and
Pearson.3 Yule and Nielsen7 gave the result for a single-
color halftone.) Although the incorporation of the n-factor
often works in accounting for the effect of light scattering,
this formalism does not accurately portray the optical
physics of the problem. Various approaches have been put
forth to increase the accuracy of the equations, usually
incorporating some form of n-factor.8–l0

In 1974 Lehmbeck11 described a model for images on
paper that explicitly included the paper spread function
and colorant layer spatial characteristics. Later,
Ruckdeshel and Howser12 conducted a complete explora-
tion of a one-dimensional version of Lehmbeck’s model and
showed that the n-factor is theoretically bounded by one
and two. Recent work13–15 has shown that both the paper
and the dot reflectance change with fractional dot area.
This is contrary to the Yule–Nielsen single n-factor ap-
proach, which assumes the paper and the dot reflectance
(tristimulus values) are constant for a fixed set of print-
ing conditions. As Pearson16 has noted, the optimum
n-factor is a function of fractional area, colorant level, and
the uniformity (“formation”) of the sheet of paper.

A direct approach would be to calculate the spectral re-
flectance factor as a function of x-y position on the paper,
but, unfortunately, with the current models this is a com-
plex undertaking. Of more immediate practical value
would be the determination of the colorimetric bounds on
the halftone colors for two cases of light scattering by the
paper: (1) the Neugebauer equations apply (an infinitely
narrow paper optical spread function or no lateral scat-
tering within the paper), or n-factor = 1.0, and (2) the pa-
per spread function is much larger than the halftone screen
spatial frequency, or n-factor = 2.0. Experimental data for
the reflectance or color of the paper between the dots, and
the dot color, have shown various relationships with frac-
tional dot area.13–15 With any scattering, or finite-sized
paper spread function, reflectance limits of the paper be-
tween the dots are bounded by the paper reflectance, at 0
fractional dot area, and the paper reflectance and colorant
layer transmittance product at fractional dot area = l.0.13

Dot reflectance is bounded by the same paper reflectance–
colorant layer transmittance product, but at dot area =
0.0, and by the dot reflectance at fractional dot area = 1.0.
The upper bound of the paper reflectance in the absence
of any paper spread function is, as assumed in the simple
Neugebauer model, constant for all dot areas. But what is
the lower bound on the paper reflectance–dot area func-
tion for the complete scattering case? Also what is the
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upper bound of dot reflectance versus area for the same
conditions?

This report describes the relationships for these two lim-
its and provides a comparison of the predictions of
single-colorant halftone scales with experimental results
from a wax thermal transfer printer.

Analysis
The functional relationship between the paper and dot

reflectance, or tristimulus value, and the fractional area
covered by colorants depends on the sequence of forming
the halftone dot, the dimensions of the halftone cell, and
the extent of the spread of light within the paper. In the
case where the spread of light is very much smaller than
the halftone cell dimension and the printer does not use
dot-on-dot printing,17 the Neugebauer equations accurately
represent the printed color. Such practical realization
might be, for example, a 65-halftone cells/inch pattern
printed on a cast-coated paper. A halftone transparency
would be another example. Knowing the equations that
define the color when the spatial extent of the spread of
light within the paper is much greater than the halftone
cell size will enable us to define the bounds of the color:
the Neugebauer equations for the very small scattering
case, and the new set of equations for the complete scat-
tering case.

Complete Scattering Limit. Imagine that we have
three separate halftone colorant layers (cyan, magenta,
and yellow) randomly combined in a sandwich. We do not
require, and in fact do not want, the three layers to be
spatially coherent, which is one reason for rotating the
screen angles in commercial printing. The space average
spectral transmittance of the sandwich, t(λ), is given by
Eq. 2, the product of the transmittances of each of the three
halftone layers;

t(λ) = [tb(λ)(1 – c) + ctc(λ)]
•[tb(λ)(1 – m) + mtm(λ)][tb(λ)(1 – y) + yty(λ)], (2)

where c, m, and y are the fractional dot areas of cyan,
magenta, and yellow; tb is the base spectral transmit-
tance; and tc, tm, and ty are the colorant spectral trans-
mittances. It can be readily shown that the expansion of
Eq. 2 yields the spectral transmittance version of the
Neugebauer equations.4,8 Assume that the transmittance
pattern modulates the incident light propagating toward
a paper substrate of spectral reflectance Rp(λ). We as-
sume that the incident light is completely scattered, or
averaged, by the paper before being reflected. When the
light emerges from the paper, the fraction returned at
each wavelength is just the spectral transmittance, given
by Eq. 2, times the spectral reflectance of the paper. Equa-
tion 3 summarizes the reflectance of the paper under the
halftone pattern:

R1 (λ) = t(λ)Rp(λ). (3)

Because the halftone pattern is small compared with
the spatial extent of the light scattering within the paper,
the periodic structure is lost, and the surface of the paper,
under the halftone sandwich, is uniform, with spectral
properties given by Eq. 3. Upon reflection from the paper,
this uniform color light is modulated by the spectral trans-
mittance of the halftone sandwich, t(λ), given by Eq. 2.
Finally, the average reflectance is given by the combina-
tion of Eq. 3 and Eq. 2. Thus,

R(λ) = t(λ)2Rp(λ). (4)
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Note that we have not considered first surface reflection
effects in this formulation.

For a single-colorant halftone, the paper spectral reflec-
tance between the dots is just a linear mixture of the base
transmittance and the transmittance of the colorant
weighted by the fractional area of the colorant.13 Equa-
tion 5 describes the details. Here Rp is the paper reflec-
tance, tb(λ) is the base transmittance, tc(λ) is the colorant
spectral transmittance, and a is the fractional area cov-
ered by the colorant:

Rpaper-dots = Rp (λ)[tb(λ)(1 – a) + atc(λ)]tb(λ). (5)

This equation illustrates that the limiting spectral re-
flectance of the paper between the dots has, as its lower
bound, a line starting at the paper spectral reflectance,
for a = 0, and ending at the spectral reflectance given by
the paper and colorant transmittance, for a = 1.0. The
paper reflectance curve for any combination of halftone
dot pattern and paper spread function can be found in the
triangle bounded by the line, given by Eq, 5, and the con-
stant Rp.

Dot reflectance also has a bounded region. It has been
argued before that Eq. 3 also gives the limiting dot reflec-
tance, as the fractional colorant area, a, approaches zero.13

Thus the bounding relationship for the dot reflectance is
given by Eq. 6.

Rdots = Rp (λ)tc(λ)[tb(λ)(1 – a) + atc(λ)]. (6)

The usual assumption is that the dot has constant re-
flectance independent of the fractional area of the half-
tone and this defines the lower bound of the dot reflectance
region. The upper bound, as a function of fractional area
of the colorant covered, is given by Eq. 6.

Experimental Test of Theory
Experimental verification of Eq. 4 was undertaken, us-

ing a wax thermal transfer printer. Measurements were
made of the spectral reflectance of eleven patches of
single-colorant (cyan, magenta, and yellow) constant frac-
tional area. The patches included three cases of colorant
Color Gamut Limits of Halftone Printing with and without the Pap
coverage: no colorant, the paper, and complete or 100%
coverage. From the 100% patch, the spectral transmittance
was determined by solving Eq. 4 for t(λ), using the mea-
sured paper and 100% area spectral reflectance data for
cyan, magenta, and yellow. In this sense the spectral trans-
mittance of the colorant is defined using Eqs. 2, 4, and
actual measurements [note that tb(λ) for this case = 1.0; i.
e., no base]. With the spectral transmittance for cyan, ma-
genta, and yellow determined in this manner and using
Eqs. 1, 2, and 4, the CIE tristimulus values and CIE L*a*b*
coordinates can be calculated for arbitrary amounts of frac-
tional area covered.18 For single-colorant fractional areas,
we can plot two loci. Both loci are plotted as projections;
one projection is in the a*-b* plane and the other is a pro-
jection in the lightness (L*)-metric chroma (C*) plane. One
locus is for the no-scattering, or Neugebauer case, using
measured spectral reflectances of the 100% coverage
patches. The second locus is for complete light scattering,
given by Eq. 4. These limiting loci can be compared with
measured loci of single-color halftones. This locus approach
was chosen to avoid the difficulty of estimating the frac-
tional areas covered by the halftones. If the measured lo-
cus of a single-colorant lies between the two limiting loci,
in the two CIE L*a*b* projections, we can reasonably con-
clude that Eqs. 1, 3, and 4 describe the limiting cases.

Results and Discussion
Wax thermal printer technology uses heat to melt a rib-

bon coated with a wax in which a colorant is dispersed.
Within the heated area, all of the colorant layer is trans-
ferred to a paper receiver sheet, thus assuring a constant
colorant layer thickness. The wax thermal printer results
are shown in Figs. 1 through 4. The a*–b* plots are the
projections of the loci onto the a*–b* plane (Fig. 1), and
the L*–C* plots are projections of the loci onto an approxi-
mately constant hue plane, (Figs. 2 through 4). In the CIE
L*a*b* system, C* is the distance from the L* axis, termed
metric chroma.
Figure 1. Cyan (lower left), magenta (right) and yellow (top)
single-colorant loci. The solid lines are total scattering; dotted
lines are nonscattering, and dash-dot lines are measured data.

a*

b*
Figure 2. L*–C* diagrams for cyan colorant. The solid line with
+’s is the total scattering limit. The dotted line with +’s is the
nonscattering limit, and the dashed line with squares is mea-
sured data. The + marks are computed L*a*b* values using in-
crements of 0.05 fractional area.

C*

L*
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Figure 3. L*–C* diagrams for magenta colorant. The solid line
with +’s is the total scattering limit.; The dotted line with +’s is
the nonscattering limit; and the dashed line with squares is mea-
sured data. The + marks are computed L*a*b* values using in-
crements of 0.05 fractional area.

C*

L*
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Figure 4. L*–C* diagrams for yellow colorant. The solid line with
+’s is the total scattering limit; the dotted line with +’s is the
nonscattering limit, and the dashed line with squares is mea-
sured data. The + marks are computed L*a*b* values using in-
crements of 0.05 fractional area.

C*

L*
For two of the three single colorants, the measured loci
shown in Figs. 1 through 4 are found to lie within the two
boundary loci. An exception was the L*–C* representa-
tion for the yellow colorant (Fig. 4), where the space be-
tween the loci is so small that an L* variation of less than
about 0.25 causes points to fall outside the boundaries.
The a*–b* projection for the yellow colorant fits between
the two limiting loci.

Figures 2 through 4 illustrate that for all single-colorant
halftones, the complete scattering limit has higher L* for
a given C* than with the Neugebauer equations (no scat-
tering). This confirms the observations made more than
40 years ago by Yule and Nielsen;7 papers with large spread
functions gave lighter colors. Additional model calculations
lead us to expect that this observation also holds for dark
colors.

The crosses on the loci in Figs. 2 through 4 represent
the computed L*a*b* values for every 5% fractional dot
area from 0 to 100%. Comparison of the points on the two
loci shows that the distributions are markedly different.
The no-scattering condition results in small differences
between the colors at the highlight (lighter) end of the
scale compared with the dark, or higher chroma, end of
the scale. With complete scattering the colors are more
uniformly spaced along the loci.

Points are defined along these loci according to the
amount of fractional area covered by the colorant. Rear-
rangement of the areas via an LUT in the printer process-
ing stream can alter the spacing of the points with respect
to some input. However, physically, any given fractional area
printed on a specific paper will yield a specific color, and no
LUT can change this. Here is where the paper spread func-
tion and the specifics of the halftone pattern interact. A
good strategy would be to space the colors uniformly. To
achieve uniform spacing, these results suggest that large
paper spread functions (high scattering) are preferred. This
seems to be against the current practice of using specially
coated paper or plastic substrates, which often have rela-
tively narrow spread functions.

Maximum distance (color difference) between colors gen-
erated by the same amount of colorant (fractional area),
under the two diffusion conditions, can be as high as 20
L*a*b* units. The loci are in fact closer in space than this
number suggests; the maximum is actually around 3 to 5
unit color differences. By adjustment of the printed areas
in the halftone pattern, the large color difference can be
reduced to the maximum distance between the loci. This
is the primary colorimetric function of so-called “dot gain
curves.” However, these results suggest that there is a limit
to the reduction in the color difference using this dot-gain
or 1-D LUT color correction strategy, that limit being the
distance between the curves.

Figures 5 through 7 show calculated L* versus frac-
tional area covered for the two cases. Note the difference
in the L* for the complete-scattering and no-scattering
conditions. For the complete-scattering case the relation-
ship between L* and fractional area is almost linear for
all three colorants. We have often observed this relation-
ship for a variety of printers, both monochrome and color.
It now appears that this is a consequence of the ratio of
paper spread function to halftone cell size, or imaging
element size, being such that nearly complete scattering
is observed. The no-scattering case produces lighter im-
ages for the same amount of colorant.
Figure 5. L* versus fractional area covered for yellow colorant.
Dotted curve is without scattering and the solid curve is with
complete scattering.

Fractional Area

L*
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Figure 6. L* versus fractional area covered for magenta colorant.
Dotted curve is no scattering and the solid curve is with com-
plete scattering.

Fractional Area

L*
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Figure 7. L* versus fractional area covered for cyan colorant.
Dotted curve is no scattering and the solid curve is with com-
plete scattering.

Fractional Area

L*
The curves of Figs. 5 through 7 also suggest the magni-
tude of dot area changes needed for constant L*, the
so-called dot gain curves. The dot area is usually assumed
to be equal to the nonscattering curve in these figures,
but the measurements are made from scattering images
that follow the complete scattering curve. Because there
is a decrease in L* for the same colorant, it is assumed to
come from an increase in fractional dot area. Hence a “gain”
in the dot area. An upper bound to the dot gain curves, at
least on a lightness basis, can be computed directly from
these curves by computing the difference in fractional dot
area for constant L* between the nonscattering and com-
plete scattering cases.

The difference in the L*a*b* loci implies that there is a
difference in the color gamut. Using the Neugebauer equa-
tions as a model, which is equivalent to assuming no scat-
tering, can result in “out of gamut” colors. This can occur
when one inverts the equations to determine the amounts
of c, m, and y, colorants needed for a colorimetric match.
This problem is due to the paper scattering, which alters
the dot and paper-between-the-dot reflectance that is not
considered by the equations.

Conclusions
A proposed spectral model can be used in the deter-

mination of the colorimetric limits of Neugebauer half-
tone imaging for two cases. The first case, which follows
the well-known Neugebauer equations, is for the no-
paper-scattering case. Complete scattering defines the
second case.

Single-colorant halftone patches from a wax thermal
transfer printer showed that these theoretical limits bound
the measured data.

The biggest single effect of scattering is to change the
color for a fixed amount (fractional area) of printed
colorant. Color differences as high as 20 CIE L*a*b* units
have been calculated between single-colorant colors
printed with the same colorant amounts under the two
scattering cases. However, actual maximum distances of
the colorimetric loci are only about 3 to 5 CIE L*a*b* units
apart. The biggest effect of scattering is to alter the posi-
tion of colors along the colorant locus. For no scattering,
the distances between colors for equal colorant amounts
at the low-colorant end of the locus are closer together. At
the higher colorant end of the locus the distances become
greater. Complete scattering tends to even out the distance
between the equal-colorant increment points on the locus.
Dot gain corrections and tone reproduction LUTs in color
management systems are used to adjust the points on the
locus relative to some input value, but these simple cor-
rections cannot change the locus that is defined by a pa-
per spread function and printing conditions to a locus
defined by another set of conditions. Multiple-dimension
LUTs must be used for this purpose.

Also, the color quantization inherent in the small half-
tone cell printing is greater at high colorant levels with
no paper scattering. In other words, there are greater dis-
tances along the colorant loci, at high colorant levels, for
contrast dot area differences. This suggests some advan-
tage for printing on noncoated paper or substrates with
large paper spread function (scattering). One possible pen-
alty with this strategy is a loss of image sharpness.

Appendix
This appendix illustrates how to derive the Neugebauer

equations from set and probabilistic concepts.
Figure Al shows a Venn diagram of the set of all the

possible “events” when overprinting three colors, Ca =
cyan, Ma = magenta, and Ya = yellow. The events are W =
white paper, K = black, R = red, G = green, B = blue, C =
cyan, M = magenta, and Y = yellow, eight in total.

The approach to the derivation is to determine the prob-
abilities of events (colors) W, C, M, Y, R, G, B, and K in
terms of the colorant amounts Ca, Ma, and Ya. We assume
all events to be independent. We therefore have the fol-
lowing probabilities:

Figure Al. Venn diagram of cyan, magenta, and yellow overprints
and the “events” (colors) they generate.
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p[R] = p[Ma ∩Ya] – p[Ca∩Ma∩Ya]
= MaYa – CaMaYa = MaYa(l – Ca), (Al)

p[G] = p[Ca∩Ya] – p[Ca∩Ma∩Ya]
= CaYa – CaMaYa = CaYa(1 – Ma) (A2)

p[B] = p[Ca∩Ma] – p[Ca∩Ma∩Ya]
= CaMa – CaMaYa = CaMa(1 – Ya), (A3)

p[K] = p[Ca∩Ma∩Ya] = CaMaYa, (A4)

p[C] = p[Ca] – p[B]-p[G] – p[K] = Ca –CaMa(l – Ya)
– CaYa(l – Ma) – CaMaYa = Ca(l – Ma)(l – Ya),   (A5)

p[M] = p[Ma] – p[B] – p[R] – p[K] = Ma – CaMa(1 – Ya)
– MaYa(l – Ca) – CaMaYa = Ma(1 – Ya)(1 – Ya),  (A6)

p[Y] = p[Ya] – p[G] – p[R] – p[K] = Ya – CaYa(l – Ma)
      – MaYa(l – Ca) –␣ CaMaYa = Ya(l – Ca)(l – Ma),    (A7)

p[W] = p[Ca'∩Ma'∩Ya'] = (1 – Ca)(l – Ma)(l – Ya).  (A8)

To compute the tristimulus value of the color, we take
the expected value, or average, over all the colors. From
elementary statistics we know that the expected tristim-
ulus value, Tcolor, is just the tristimulus value of the events
(colors) times the probability of occurrence. Thus
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Tcolor = Twp[W]+Tcp[C]+TMp[M]
+ TYp[Y]+TRp[R]+TGp[G]+TBp[B]+TKp[K].   (A9)

Equation A9, when combined with the probabilities
given by Eqs. A1 through A8, yields the familiar
Neugebauer equations. Therefore, the Neugebauer equa-
tions imply that all the colors in a halftone image are
independent of each other. No other assumptions were
made in this derivation.
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