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The Yule–Nielsen effect, also called optical dot gain, is a nonlin-
ear relationship between the reflectance of a halftone image and
the fractional dot area of the halftone dots. Two models of the
Yule–Nielsen effect are examined. The first is an empirical model
previously described in the literature, and the second is an a priori
model derived for an idealized halftone line system in one spa-
tial dimension. Both are shown to model halftone behavior well.
By combining the two models we derive a semiempirical function
that establishes a simple connection between the magnitude of
the Yule–Nielsen effect and independently measurable scatter-
ing characteristics of the paper. The potential utility of this
semiempirical model for characterizing the impact of other fac-
tors, such as the shape of halftone dots and depth of ink penetra-
tion, is discussed.
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Introduction
Dot gain, a concept long associated with halftone imag-
ing, refers to the generally observed phenomenon that a
printed dot pattern appears darker than one would ex-
pect on the basis of the nominal size of the dot intended
by the printing process. Physical reasons for dot gain are
many, including the lateral spread of ink during transfer
from a lithographic plate and the lateral diffusion of ink-
jet drops as they strike the paper. Once the image has
been printed, the actual dot area may be measured. Con-
servation of photon energy suggests the Murray–Davies
equation,1

R(Fi) = FiRi + (1 – Fi)Rp. (1)

In this equation the macroscopic reflectance, R(Fi), is
linearly scaled between the reflectance of the paper, Rp,
and the reflectance of the ink, Ri , with the fractional dot
area 0 ≤ Fi ≤ 1. For example, if one were to print a halftone
dot of area fraction Fi = 0.5, and if the respective paper
and ink reflectances were 1.00 and 0.00, then one would
expect a macroscopic reflectance of R = 0.50. However, an
experimental measurement almost always results in a
reflectance significantly less than that predicted by the
Murray–Davies equation. This effect, which is different
from physical dot gain, is called the Yule–Nielsen effect, or
optical dot gain.2

During the past several decades the nonlinear relation-
ship observed between R and Fi ,

R(Fi ) = [Fi Ri
1/n + (1− Fi )Rp

1/n ]n , (2)

has been modeled empirically and quite successfully with
Eq. 2, the Yule–Nielsen equation.3,4 Experimentally one
may adjust the value of n to achieve the best fit between
Eq. 2 and measured values of R and Fi. The Yule–Nielsen
equation generally provides an excellent fit to experimen-
tal data with values of n typically falling in the range 1 ≤
n ≤ 2.5 However, it would also be useful to be able to pre-
dict the n value based on underlying paper and ink opti-
cal parameters. Both theoretical and empirical attempts
have been made to relate the Yule–Nielsen n value to the
fundamental physical and optical parameters of ink and
paper,6–12 but these have largely fallen short of providing
practical solutions to the problem.13 Part of the difficulty
in relating n to fundamental parameters may be a reflec-
tion of the fact that the Yule–Nielsen equation, though a
useful and often accurate model of tone reproduction, is
intrinsically incorrect. Photon flux, and thus reflectance,
should add linearly, as suggested by the Murray–Davies
(Eq. 1), rather than by the power factor of 1/n in Eq. 2.
The objective of the current project has been to replace
the Yule–Nielsen model with models that can more easily
be related to fundamental physical and optical parameters
of the system. As will be shown, the magnitude of the Yule–
Nielsen effect can be predicted quantitatively from the
measured scattering characteristics of papers.

An Empirical Alternative to Yule–Nielsen
The underlying cause of the nonlinearity between R and

Fi, as suggested by Yule and Nielsen in their original
work,3,11 is that light that strikes the paper between half-
tone dots does not always reflect back from the point at
which it entered the paper. Rather, light scatters and of-
ten emerges under a halftone dot and is thus absorbed.
Thus the overall reflectance of the image is lower than
would be expected in the absence of lateral scattering. In
addition, recent reports of microdensitometric analysis of
halftones has shown that both the reflectance of the pa-
per between the dots, Rp, and the reflectance of the half-
tone dot, Ri, decrease as the dot area fraction, Fi,
increases.7,14,15 The data in Fig. 1 illustrate a typical case
for the mean reflectance values of ink dots and of paper
between the dots, measured by microdensitometry as de-
scribed in the Appendix.
    233
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As shown before,15 the changes in Ri and Rp with Fi ob-
served in experiments such as that shown in Fig. 1 can
be modeled empirically by Eqs. 3 and 4.

Ri (Fi ) = Rg [1− (1− Ti )Fi
w ]⋅[1− (1− Ti )Fi

v ]. (3)

   Rp (Fp ) = Rg [1− (1− Ti )(1− Fp
w )]⋅[1− (1− Ti )(1− Fp

v )]. (4)

In these equations Fp = 1 – Fi, and Rg is the reflectance
of the unprinted paper; Ti is the transmittance of the ink
at 100% dot. Assuming Beer–Lambert transmission, Ti =
(Rink /Rg)1/2, where Rink is the reflectance of the ink image at
100% dot. The power factors, w and v, are identical in both
equations and are adjusted empirically to achieve a good fit
between the equations and the measured values of paper
and ink reflectances at each value of Fi. The resulting re-
flectance values are then used in the Murray–Davies equa-
tion [Eq. 1 with Rp = Rp(Fp) and Ri = Ri(Fi)] to calculate the
overall R versus Fi. This empirical model has been shown
to model the Yule–Nielsen effect as well as the Yule–
Nielsen equation.15 The solid lines drawn thorough the
data in Fig. 1 were modeled in this way.

The empirical w,v model was observed to fit as well as,
but not better than, the much simpler Yule–Nielsen model
when applied to a variety of halftone types produced with
a variety of impact and non-impact printing technologies.15

However, it was suggested that the w,v model may offer a
better connection with the fundamental physical and op-
tical parameters of the system. In particular, the w factor
may be related to the lateral scattering power of the pa-
per and the v factor to the lateral distribution of ink at
the edge of the dot. As described below, these relationships
can be established theoretically, and combining the theo-
retical analysis with the empirical w,v model leads to deri-
vation of a semiempirical relationship that directly and
simply relates the magnitude of the Yule–Nielsen effect to
independently measurable parameters of the system.
Moreover, the results suggest an experimental means for
quantitatively characterizing the impact of other factors,
such as the shapes of halftone dots or the extent of pen-
etration of ink-jet ink, on the Yule–Nielsen effect.

Figure 1. Reflectance values for a 65 lpi (2.6 cycles/mm) halfto
gray scale printed with a wax thermal transfer printer. Values R, R

i
,

and R
p
 are, respective reflectance values for the overall image

halftone dots, and the paper between the dots, measured as des
in the Appendix. Solid lines are modeled with empirical constanw
= 0.35 and v = 0.05.
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An a priori Model of an Ideal Halftone
A simple, one-dimensional halftone system is one with

lines rather than dots, and we assume ink having Beer–
Lambert transmittance. The ink is also assumed to rest
on top of the paper substrate with no penetration into the
paper. The Fourier series of Eq. 5 provides the basis for a
description of this idealized halftone system:

       
  
f i (x) = Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) cos(2πnωox). (5)

The paper fraction is Fp = 1 – Fi, and ωo is the line fre-
quency of the halftone. These and other terms are described
in Fig. 2. We can scale this function to describe the trans-
mittance pattern of the halftone lines:

Ti (x) = f i (x)(1− Ti ) + Ti . (6)

If the edge of the halftone line is not perfectly sharp, we
can modify the Fourier series as shown in Eq. 7. The MTFi

function in this equation,

    
f x F

n
n F n x MTF ni p

n

n
p o i o( ) sin( ) cos( ) ( ),= + −

=

∞
∑2 1

2
1π

π π ω ω (7)

is a Fourier description of the lateral distribution of
colorant at the edge of the dot. If the dot has a perfectly
sharp edge, then MTFi = 1 and Eq. 7 is the same as Eq. 5.

Applying Eq. 7 to Eq. 6 not only describes the transmit-
tance pattern of the halftone dots; it also describes the
irradiance of light entering the paper after passing the
halftone dots. After this pattern of light enters the paper
it is scattered and some is absorbed. Scattering is described
with an MTFp function as shown in Eq. 8.

  
f p (x) = Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) cos(2πnωox)

• MTFi (nωo )MTFp(nωo ). (8)

Absorption of light is governed by the reflectance factor
of the paper, Rg. With Rg and the series expression of Eq.
8 one can model the overall irradiance pattern reflected
from the paper with Eq. 9:

Ir (x) = Rg [ f p (x)(1− Ti ) + Ti ]. (9)

This pattern of light then encounters the transmittance
pattern of the halftone dots to produce a final reflected
pattern, R(x), given by Eq. 10.

R(x) = Ir (x) ⋅Ti (x). (10)
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Figure 2. Diagram of the Fourier series of Eq. 5.
Arney et al.



nc

orr
Relating Theory to Data
If we set x = λ/2 in Fig. 2 and in Eq. 10, then we have the

reflectance R(λ/2) for the paper at the point equidistant
between two halftone lines. Similarly, if we set x = 0 in
Eq. 10 we have the reflectance R(0) for the center of the
halftone line. These quantities can be measured experi-
mentally with the image microdensitometer described in
the Appendix. However, it is easier experimentally and
more precise statistically to examine the histogram of re-
flectance values captured over a 4-mm field of view of a
halftone dot pattern. Figure 3 shows such a histogram for
a halftone pattern printed at a nominal 50% dot area by
offset lithography. The average reflectance of the paper
between the halftone lines is located at the right-hand peak
of the histogram. Similarly, the average reflectance of the
halftone line is indicated by the peak on the left side of
the histogram. These mean value reflectances can be mod-
eled by integrating Eq. 10 from x = (a/2) to x = λ – (a/2).
Similarly, the mean value of the reflectance of the ink dot
can be modeled by integrating from x = – a/2 to x = +a/2.
With some algebraic manipulation this leads to the fol-
lowing expressions for Rp and Ri:

Rp (Fp ) = Rg [Gp (Fp )(1− Ti )] + Ti ]⋅[Gi (Fp )(1− Ti )] + Ti ], (11)

Ri (Fi ) = Rg [Hp (Fi )(1− Ti )] + Ti ]⋅[Hi (Fi )(1− Ti )] + Ti ], (12)

where we have the following series expressions resulting
from the integration:

G F F nF n np p p

n

p i o p o( ) ( ) ( ) ( ),=
=−∞

∞

∑ sinc MTF2 MTF ω ω  (13)

G F F
n

nF ni p p

n

n

p i o( ) ( ) ( ),= −

=−∞

∞

∑ 1 2sinc MTF ω (14)

H F F nF n np i i

n

i i o p o( ) ( ) ( ) ( ),= −
=−∞

∞

∑1 2sinc MTF MTFω ω  (15)

         H F F nF ni i i

n

i i o( ) ( ) ( ).= −
=−∞

∞

∑1 2sinc MTF ω (16)
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Figure 3. Histogram showing the relative frequency of occurre
of reflectance values in halftone images captured at 40× magnifica-
tion. R

i
 and R

p
 are reflectance values at the peaks respectively c

sponding to ink dots and to paper between the dots.
Modeling the Yule–Nielsen Halftone Effect
The model represented by Eqs. 11 through 16 contains
three independently measurable constants: Rg = reflec-
tance of the unprinted paper; Ti = transmittance of the
ink at Fi = 1; and ωo = frequency of the halftone lines. Only
two other items are required to calculate Ri(Fi) and Rp(Fi),
and with Eq. 1 to calculate the overall, macroscopic re-
flectance of the halftone image. These two items are the
MTF functions for the scatter of light in paper and the
lateral spread of the ink edges.

In a recent MTF analysis of paper, it was shown that
the lateral scattering of light in paper could be modeled
closely with the following MTF function16:

MTF
k

p
p

( )
( )

..ω
ω

=
+

1

1 1 7 (17)

Values of the MTF constant, kp, can be measured ex-
perimentally, either by analysis of Kubelka–Munk scat-
tering and absorption coefficients16–18 or by image analysis
of various patterns of light projected onto the surface of
the paper.3,11,16,19,20 Because no MTF function that describes
the softness of printed dot edges has been explored or re-
ported in the literature, the following function was cho-
sen arbitrarily:

MTF
k

i
i

( )
( )

..ω
ω

=
+

1

1 1 7 (18)

Although the a priori model appears complex, it is eas-
ily applied. Starting with four independently measurable
constants, Rg, Ti, ωo, and kp, and one arbitrary constant,
ki, one can use sequentially Eqs. 18 back through 11 to
calculate paper and ink reflectances as a function of Fi.
Then Eq. 1 can be used to calculate the overall macro-
scopic reflectance.

An Experimental Test of the a priori Model
One-dimensional halftone gray scales were printed with

offset lithography as described in the Appendix. The half-
tones ranged from 0 to 100% dot (Fi from 0 to 1) and were
printed at 60 lpi (ωo = 2.4 cycles/mm) on three different
papers, called A, B, and C, with MTFp constants kp = 0.263,
0.455, and 2.00 mm, respectively, measured as described
previously.16 Paper A was a coated sheet, B was noncoated,
and C was a resin-filled translucent sheet manufactured
as a tracing paper. Paper B was also printed at 195 lpi (ωo =
7.7 cycles/mm). The MTF constant of each paper had been
characterized previously.16 Mean values of paper and ink
reflectance in the halftones were measured from reflectance
histograms, as described in the Appendix. The print densi-
ties varied somewhat from paper to paper and from print
run to print run. Thus, in order to compare results, relative
reflectance values were calculated by linearly scaling re-
flectance over the range between 0 and 1 corresponding to
relative reflectance of the ink at Fi = 1.0 and of the paper at
Fi = 0. Figures 4 and 5 show the results.21

To model the lines in Figs. 4 and 5, values of Rg, Ti,
and the MTFp constants for Papers A, B, and C were
used as measured and were not adjusted to minimize the
difference between the data and the model. A value of ki =
0.05 mm was chosen to provide the best fit to the data for
Paper B at 7.7 cycles/mm. The same value then was used
in all of the other models in Figs. 4 and 5.

Print quality in the lithographic print series was not
very good, and there is much experimental noise in the
microreflectance data. However, the significance of the
model can still be seen in the trends. Figure 4 shows the
experimental effect of changing the frequency, ωo, of the
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halftone pattern. Figure 5 shows the effect of changing
paper type, kp. In both cases the experimental trends are
closely modeled, as shown by the solid lines in the figures,
by changing only the corresponding parameters, ωo and kp

of the model, leaving the other parameters unchanged.
Figure 4. Reflectance range versus Fi for Paper B printed at ω0=
2.4 cycles/mm (x) and at ω0 = 7.7 cycles/mm ( ■■ ). Both ink reflec-
tance, Ri, and reflectance of the paper are between the dots, Ri,
shown. Solid lines are modeled as described in the text.
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Figure 5. Reflectance range versus Fi for Papers A, B, and C (    ,
x, and ■■ ) with kp = 0.263, 0.455, and 2.00 mm, respectively. The
halftones are printed at 2.4 cycles/mm. Solid lines are modeled
as described in the text.
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Combining the Empirical and a priori Models
The a priori model represented by Eqs. 11 through 18

relate the tone reproduction characteristics of halftone im-
ages and independently measurable parameters of the sys-
tem. However, the model strictly applies only to an ideal,
one-dimensional halftone with ink perfectly on top of the
paper. The empirical model of Eqs. 3 and 4, on the other
hand, has been shown to be generally applicable to a wide
variety of halftone types produced by a wide variety of
printing technologies.15 If the empirical model is a close
approximation of the behavior of real halftones, then we
should be able to relate the w and v parameters of the
empirical model to the independently measurable param-
eters of the a priori model. We can do this by equating
Eqs. 3 and 11:

[1− (1− Ti )Fi
w ]⋅[1− (1− Ti )Fi

v ] =
[Gp (Fp )(1− Ti )] + Ti ]⋅[Gi (Fp )(1− Ti )] + Ti ]. (19)

Because the left side of Eq. 19 is empirically derived, we
are free to relate the terms in brackets as follows:

[1− (1− Ti )Fi
w ] = [Gp (Fp )(1− Ti ) + Ti ], (20)

[1− (1− Ti )Fi
v ] = [Gi (Fp )(1− Ti ) + Ti ]. (21)

With algebraic manipulation we have the following:

w =
ln(Gp (Fp ))

ln(Fp )
, (22)

v =
ln(Gi (Fp ))

ln(Fp )
. (23)

The right side of Eq. 23 is a function only of Fp, ki, and
ωo. Thus, as suggested originally, the power factor v de-
pends on the edge sharpness, ki, of the halftone dot. The
right side of Eq. 22 contains the product MTFi • MTFp and
thus is a function of both the edge sharpness, ki, and the
lateral scatter of light, kp. However, in most cases observed
in this laboratory the mean scattering distance of light is
much greater than the dimensions of dot edges so that kp

> > ki. When this is true, we can approximate the MTF of
paper as MTFi • MTFp ≈ MTFp. In this case the w power
factor depends on the paper MTF constant, kp, as sug-
gested previously.15

In the empirical model the w and v factors are used as
constants. However, Eqs. 22 and 23 imply that w and v
are functions of the dot area fraction, Fi. To examine the
severity of this deficiency in the w,v model, one can com-
pare Rp versus Fi calculated with both Eqs. 4 and 11. This is
done by selecting values of Rg, Ti, Fi, kp, ki, and ωo and apply-
ing Eq. 11 to calculate Rp versus Fi. Then corresponding
values of w and v are calculated from Eqs. 22 and 23 with
Fi = Fp = 0.5, and these w and v values are used in Eq. 4 to
calculate Rp versus Fi. Figure 6 is a typical example, and
it is evident that, whereas the w,v model is not in exact
agreement with the a priori model, the differences are very
small.
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Figure 6. Reflectance of paper between halftone dots modeled
(O) with Eq. 11 with kp = 0.25 mm and ki = 0.05 mm, and mod-
eled (x) empirically with Eq. 4 using w = 0.332 and v = 0.056,
as calculated from Eqs. 22 and 23 at Fi = 0.5.
Arney et al.



If we select Fi = Fp = 0.5 in Eq. 22 we can calculate the
relationship between w and kp as shown in Fig. 7. The
points in Fig. 7 were calculated with Eq. 22. However, the
solid line is an empirical function fit to these calculated
points with

w e
k p= − −

1
A ω

, (24)

a simple exponential equation containing an empirical con-
stant, A = 0.66. This empirical function is easier to use
than Eq. 22 with the cumbersome series expression Gp(Fp).
To check the validity of Eq. 24 experimentally, a set of
one-dimensional halftone patterns was printed by offset
lithography at a series of line frequencies, ωo, ranging from
2.4 to 7.7 cycles/mm on a series of papers measured previ-
ously, having values of kp ranging from 0.09 to 1.60 mm.15

Each paper was printed with a halftone gray scale with a

W

Figure 7. Points ( ■■ ) are the empirical power factor, w, as a
function of the product kpωo calculated using Eq. 22 with Fi = 0.5.
The line is Eq. 24 with A = 0.66.
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Modeling the Yule–Nielsen Halftone Effect
dot fraction ranging 0.0 ≤ Fi ≤ 1.0. For each paper at each
frequency the product, kpωo, was noted. Then the emp-
irical halftone model was fit to each gray scale, and the
best fit value of the power constant, w, was plotted versus
the product, kpωo. The results shown in Fig. 8 confirm that
Eq. 24 adequately represents the behavior of one-dimen-
sional halftones.
kpωo

W

Figure 8. Power factor w as a function of the product kpωo meas-
ured experimentally and modeled with Eq. 24. Points ( ■■ ) are for
a coated paper at kp = 0.09 mm and ωo from 2.4 to 7.7 cycles/mm.
Points (x) are for a coated paper at kp = 0.253 mm and ωo from 2.4
to 7.7 cycles/mm. Points (O) are for a single halftone frequency of
ωo = 2.4 cycles/mm and a series of papers ranging from kp = 0.253
to 1.6 mm.
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Conclusions
Ever since the Yule–Nielsen effect has been observed and

described experimentally it has been recognized qualita-
tively that the magnitude of the effect is governed by the
distance light scatters laterally in paper relative to the size
of halftone dots. Excellent theoretical studies, such as those
by Ruckdeschel and Hauser6 and more recently by Kruse
and Wedin,7 have described two- and three-dimensional
derivations of the Yule–Nielsen effect. Numerical simula-
tions based on such theoretical models illustrate the sig-
nificance of light scattering in halftone systems. However,
they do not provide an easily used tool for estimating the
magnitude of the Yule–Nielsen effect from direct measure-
ments of the paper MTF constant, kp. By combining theo-
retical with empirical models, practical relationships may
be developed. Equation 24 is an example that suggests a
simple but useful link between the halftone frequency, ωo,
lateral scattering, kp, and the magnitude of the Yule–Nielsen
effect. To achieve this link, we define the magnitude of the
Yule–Nielsen effect, ∆R, as the difference between the re-
flectance predicted by the Murray–Davies model (Eq. 1 with
Ri = Rink and Rp = Rg) and the reflectance observed exper-
imentally for a halftone at Fi = 0.5:

∆R = (Murray–Davies reflectance)
– (experimental reflectance). (25)

The maximum value of ∆R is predicted to be the differ-
ence between the Murray–Davies reflectance and the Yule–
Nielsen reflectance at n = 2:

∆Rmax = (Murray–Davies reflectance)
– (Yule–Nielsen at n = 2). (26)

Then the Yule–Nielsen effect may be defined as follows:

Yule–Nielsen effect = ∆R / ∆Rmax. (27)

The relationship between the Yule–Nielsen effect defined
by Eq. 27 and the value of the MTFp constant, kp, may be
modeled easily and quickly by applying, in sequence, Eqs.
24, 4, 3, and then Eq. 1 with Ri = Ri(Fi) and Rp = Rp(Fp). If
we assume that the dot edge effect is negligible (ki = 0, or
v = 0), then the Yule-Nielsen effect varies with the prod-
uct kpωo as shown in Fig. 9.

Among researchers and graphic arts professionals known
to the authors it is popularly believed and observed that
the shape of the halftone dot will have an effect on the Yule–
Nielson effect. Figure 9 and Eq. 24 apply strictly only to
one-dimensional halftone lines. If one were to develop an a
priori model to describe halftone dots of other shapes, then
a much more involved two-dimensional Fourier analysis,
such as that described by Ruckdeschel and Hauser6 and
more recently by Kruse and Wedin,7 would be required.
However, one might expect, empirically, that Eq. 24 would
apply as a reasonably close approximation to the behavior
of other types of halftone systems provided appropriate
values for the exponential constant, A, are chosen. If this is
the case, then one might be able to make direct measure-
ments of the empirical w constant, as described previously,15
Vol. 40, No. 3, May/June 1996     237



and plot the results against the known values of the prod-
uct, kpωo. Then by fitting the data to Eq. 24 a value of the
constant A would perhaps provide a direct experimental
characterization of the magnitude of the effect of dot shape,
the effect of ink penetration, or other effects on the magni-
tude of the Yule–Nielsen phenomenon. The thrust of work
currently under way in the authors’ laboratories is focused
on examining the utility of these semiempirical models for
characterizing such effects.
Figure 9. The magnitude of the Yule-Nielsen effect, ∆R /∆Rmax, as
a function of the product kpωo.
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Appendix: Printing and Measuring Halftones
To compare theory with printed halftones, a set of

straight-line halftone gray scales, ranging 0 ≤ Fi ≤ 1, were
prepared at line frequencies, ωo, ranging from 2.4 to 7.7
line pairs per millimeter (60 to 195 lpi). These patterns
were printed with an offset lithographic press, using a con-
ventional aluminum printing plate prepared by the School
of Printing at Rochester Institute of Technology. The plate
was prepared from a photographic film, using conventional
techniques. Once the halftone gray scales were printed, they
were examined under a microscope with a field of view of
4.0 mm. The microscope image was captured with a CCD
camera and frame grabber, which digitized the image at
464 by 512 pixels as described previously.15 Pixel values
captured in this way were corrected for a background “dark
signal” by subtracting the pixel value obtained by captur-
ing an image with the lens cap in place. The resulting pixel
values in the image were then ratioed, pixel by pixel, against
a similarly corrected reference white, and the result was
multiplied by the known reflectance of the reference. The
result was a 464 by 512 array of reflectance values repre-
senting the image observed through the microscope. From
this reflectance matrix, a histogram of reflectance values
was determined. Figure 3 illustrates such a histogram for
a 60-lpi halftone nominally printed at Fi = 0.50. The reflec-
238     Journal of Imaging Science and Technology
tance values at the peaks corresponding to the ink, Ri, and
the paper, Rp, are easily measured from the histogram. In
addition, an experimental value of Fi can be measured as
the relative areas under the histogram curves with the
threshold reflectance between dot and paper defined as the
saddle point between the peaks in the histogram.

Nomenclature
Fi = dot area fraction
Fp = paper area fraction, Fp = 1 – Fi

Ri = reflectance of the halftone ink dot, assumed to
be a constant in Eqs. 1 and 2

Rp = reflectance of the paper between the dots, as-
sumed to be a constant in Eqs. 1 and 2

Rg = intrinsic reflectance of the paper at Fi = 0
Rink = reflectance of the ink on paper at Fi = 1.00
Ti = transmittance of the ink layer of the dot at Fi =

1, equal to (Rink/Rg)1/2

Rp(Fp) = mean value of reflectance of paper between
halftone dots, measured experimentally from
a peak in the histogram distribution of
reflectance, and observed to be a function of the
dot area fraction, Fi

Ri(Fi) = mean value of halftone ink dot, measured ex-
perimentally from a peak in the histogram dis-
tribution of reflectance and observed to be a
function of the dot area fraction, Fi

H(R) = relative frequency of occurrence of a given R
in a histogram

Rt = reflectance  at   the  boundary between ink dot
and paper, and used to  threshold  between ink
and paper
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