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Resolution and tone reproduction characteristics of all hardcopy
images on paper are significantly influenced by the way light
scatters in the paper. However, little has been published on ex-
perimental techniques for measuring light scattering and reso-
lution characteristics of paper. Three experimental techniques
are discussed in the current work. The first is a direct measure
of paper MTF by microdensitometric scans of illuminated edges
projected onto the paper. This technique is tedious and of intrin-
sically low precision. The second technique is based on Kubelka-
Munk theory and derives MTF behavior from the Kubelka-Munk
equations and experimental measurements of paper reflectance.
This technique has the advantage of relating paper MTF to the
fundamental metrics of light scattering and light absorption.
However, the accuracy of the technique is questionable due to
the assumptions intrinsic to Kubelka-Munk theory. The third
technique involves modeling the Yule-Nielsen effect of optical dot
gain and fitting the model to experimental data. The data are
generated by image analysis of idealized halftone patterns formed
by placing high-resolution halftone line screens in close mechani-
cal contact with the paper under analysis. This technique is shown
to provide estimates of paper MTF with significantly higher pre-
cision than traditional microdensitometry scans of illuminated
edges. Experimental data are collected for a wide variety of
hardcopy substrates, and the results are used to examine some
of the assumptions inherent in applying Kubelka-Munk theory
to papers.
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Introduction
Scattering of light in paper plays a significant role in the
resolution and tone reproduction characteristics of images
printed on paper. In halftone images, for example, light
scattering is responsible for the so called Yule–Nielsen, or
optical dot gain, effect.1,2 Light that enters a printed pa-
per between halftone dots may scatter under a dot and be
absorbed, thus causing the halftone gray scale to appear
darker than intended. Electrophotographic toner particles
behave somewhat like halftone dots, and the lateral scat-
ter of light in paper has also been shown to have a major
impact on electrophotographic tone reproduction.3 Al-
though the magnitude of the Yule–Nielsen effect is reported
to depend primarily on the frequency of the halftone pat-
tern and the magnitude of light scatter in the paper,1,4–6

very little has been reported on techniques for measuring
lateral light scattering in paper. The Yule–Nielsen n fac-
tor, an empirical constant used to model the magnitude of
the Yule–Nielsen effect,4,6 is generally considered to be an
index of lateral scatter in paper. However, the n factor
depends strongly on the spatial frequency of the halftone
pattern and other factors.1,7,8 Thus, while the n factor is a
convenient empirical index for modeling printing pro-
cesses, it is not a useful index for characterizing light scat-
ter in paper. In the current report we would like to describe
three experimental techniques for measuring lateral light
scatter in papers. The relative advantages and disadvan-
tages of these techniques will be discussed in terms of their
theoretical and practical significance and in terms of their
relative experimental precision.

Direct Measurements of Lateral Light Scatter
The most direct experimental technique for measuring

lateral light scattering in paper was demonstrated by Yule
and Nielsen in their original work on printed halftones.4,6 A
high precision “knife edge,” or bar of light, can be projected
onto a paper surface. With a microdensitometer one may
trace the magnitude of the flux of light emerging from the
paper as a function of the distance from the illuminated
edge. The resulting function, LSF(x), is called the line spread
function, and it provides a direct measure of the lateral
distance light scatters from the illuminated edge.

A similar experiment projects a highly focused point of
light onto the paper.9,10 If the diameter of the experimen-
tal point of light is made small relative to the distance
light scatters in the paper, then the decline in light flux
with radial distance, x, from the illuminated point is a
direct measure of the point spread function, PSF(x). The
PSF and LSF are related as follows.

LSF(x) = PSF(x, y)dy
−∞

+∞
∫ . (1)

An additional metric of lateral scatter is the modula-
tion transfer function (MTF), defined as the modulus of
the Fourier transform of the line spread function11:

MTF(ω ) = LSF(x)e−i2πωxdy
−∞

+∞
∫ . (2)

This metric describes light scatter in paper in terms of
spatial frequency, ω, in units of inverse millimeters, rather
than distance in millimeters.

If light is assumed to scatter the same way in all lateral
directions5 then the PSF, LSF, and MTF contain equiva-
lent information and are often determined from the same
set of data. The PSF is actually the probability density
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function for a photon emerging a distance, x, from its point
of entry in the paper. The MTF, on the other hand, is a
more practical metric for describing resolution character-
istics of an imaging system, since a system MTF is the
mathematical product of the MTFs of the components of
the system (lens, emulsion, paper, etc.) The LSF is a less
important metric but is more easily measured experimen-
tally, and so MTF and PSF are often inferred from experi-
mental microdensitometric measurements of the LSF.
Figure 1 illustrates an MTF calculated point by point from
an edge trace experiment reported previously12 for a typi-
cal noncoated copy paper. The noise typical of edge trace
experiments makes it difficult to determine empirically
the type of function that best describes lateral light scat-
tering in paper. As an example, three functions commonly
used to model MTF curves11 are shown as solid lines in
Fig. 1, and it is clear the data do not really fit one function
significantly better than another.
Figure 1. MTF reported by Engeldrum and Pridham12. Dots are
calculated from an edge trace measurement, and the lines are typi-
cal MTF models, e-kx and [1 + (kω)m]-1 with m = 1 and 2.
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Yule and Nielsen suggested that the LSF characteristic
of paper is Gaussian.4 The corresponding MTF is also a
Gaussian function.11 However, other reports suggest  that
the PSF is an exponential function,10 which would make
the LSF a Bessell function and the MTF a complex in-
verse power function.11 Still others have reported experi-
mental edge traces that suggest that the paper LSF is a
simple exponential13:

LSF(x) = e
−2πx

k , (3)

which corresponds to the MTF of Eq. 4 with m = 2.11

MTF(ω ) = 1

1+ (kω )m . (4)

If we adopt Eqs. 3 and 4 as models of paper scattering,
then we can use the constant k to compare different types
of paper. Consideration of a number of reports3,4,14 sug-
gests that most common papers fall in the range 0.063 <
k < 0.63 mm.

Kubelka–Munk Theory
Kubelka–Munk (KM) theory is often used to describe

reflectance, R, and transmittance, T, characteristics of
scattering materials commonly used in hardcopy imaging.15

KM theory expresses R and T as functions of four param-
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eters: an absorption coefficient, K, in mm-1; a scattering
coefficient, S, in mm-1; the thickness of the material, Z, in
mm; and the reflectance, Rg, of the background on which
the material is laid:

R =
1− Rg (a − b ⋅coth(bSZ ))

a − Rg + b ⋅coth(bSZ )
, (5a)

T = b

a ⋅sinh(bSZ ) + b ⋅cosh(bSZ )
, (5b)

a + S + K

S
, (5c)

b = a2 −1 , (5d)

R∞ = a − b . (5e)

Jorgensen16 reported a correlation between measured
values of S and the resolution characteristics of printed
halftone images. More recently Oittinen14 and Engeldrum
and Pridham12 suggested that KM theory may provide a
basis for an a priori derivation of the PSF, LSF, and MTF
of paper, provided one assumes that light scatters homo-
geneously in all directions in the paper. The MTF derived
from KM theory is as follows12:

MTF(ω ) = A f (i,ω )
i=1

∞

∑ , (6a)

A = ln
1

1− R∞
2









 , (6b)

    
f (i,ω ) = R∞

2i

i
1 = (2π ω

2bSi
)2





− 3
2

. (6c)

Values of K and S can be obtained from measurements
of reflectance, R, made over a black background (Rg = 0 in
Eq. 5a) and reflectance, R = R∞, made at infinite thickness
(approximated by a thick stack of papers). Equations 5a
and 5e can then be solved simultaneously to obtain K and
S, as shown by Judd and Wyszecki.17 Table I shows data
for a series of paper types included in this study. Included
in the table are traditional coated papers (C); noncoated
papers, (N); three noncoated, but highly calendered sheets
(NCal); two translucent papers manufactured with index-
matching resin in the paper furnish (T); and two non-fi-
ber, polymer films (P) manufactured for use in ink-jet
printers. The polymer films contain white scattering pig-
ments in the polymer matrix.

Using the values of S and K shown in Table I, MTF func-
tions for each paper were modeled with Eq. 6. Figure 2
shows a plot of Eq. 6 for the K and S values of paper type
G. For comparison the empirical model of Eq. 4 is also
shown in Fig. 2. A value of k was selected to provide an
exact match with Eq. 6 at MTF = 0.5, and a value of m =
1.7 was found to provide an excellent fit between the two
MTF functions. It should be noted that the value of k that
exactly matches the two functions at MTF = 0.5 is inde-
pendent of the value of m in Eq. 4.
Arney et al.



Figure 2. (____) MTF function for paper G derived from Kubelka–
Munk theory . (     x    ) MTF modeled with Eq. 4, k = 0.99 mm and
m = 1.7.
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Figure 3. Repeatability test for values of the MTF constant, k,
calculated from Kubelka–Munk theory and reflectance measure-
ments. The values of k Numbers 1 and 2 were determined by two
different experimentalists.
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Values of k corresponding to each combination of K and
S in Table I were determined by matching the MTF func-
tions as described above. These values of k are shown in
Table I and labeled kR to distinguish them from other meth-
ods of measuring k. The repeatability of this analysis was
demonstrated by two sets of measurements of kR performed
independently by two of our authors. Figure 3 shows kR

from one experimenter versus kR from a second experi-
menter. Inspection of the data shows that the values of kR

range from about 0.2 to 2.0 mm with an uncertainty on
the order of ± 0.15 mm. The values of kR shown in Table I
are the averages of these two determinations.

It is evident from these data that the value of the spread
function of paper, k, is governed not only by the scattering
coefficient, S, but also by the absorption coefficient, K, of
the paper. Intuitively, one would also expect the thickness,
Z, and the reflectance of the background, Rg, to impact the
lateral spread of light. For example, if the paper were infi-
nitely thin and  Rg were black, then light would be absorbed
in the background material before it had an opportunity to
scatter laterally. Then MTF would be unity with k = 0. Be-
cause  Rg and Z do not appear in Eq. 6, this is a model for
lateral light scatter when the paper is stacked to infinite
thickness.

As discussed above, direct measurement of k from mi-
crodensitometry line traces of edges is difficult and noisy.
Measurement of K and S, on the other hand, is easy and
simple to accomplish with readily available reflection spec-
trophotometers.17 Thus, it is of considerable interest to ex-
amine the utility of KM theory as a method of measuring
the lateral scattering characteristics of paper. To do this,
independent experimental values of k were extracted from
direct measurements of the Yule–Nielsen effect.

Measuring k from the Yule–Nielsen Effect
The significance of lateral light scattering is manifested

clearly in the Yule –Nielsen effect. Thus, if the Yule –Nielsen
Table I. Summary of Paper Types and Data*

R p m

A NCal 0.084 52.5 0.298 0.46 0.64 0.75 2.00
B NCal 0.106 43.3 0.237 0.53 0.53 0.63 1.65
C T 0.076 14.6 0.165 1.11 0.99 1.14 2.00
D N 0.097 35.4 0.421 0.50 0.53 0.63 1.84
E P 0.122 5.5 0.238 1.67 1.28 1.68 1.64
F P 0.089 5.4 0.230 1.43 1.20 1.35 2.00
G NCal 0.073 7.9 0.227 0.91 0.76 0.71 2.00
H C 0.056 26.8 0.130 0.25 0.34 0.48 1.16
I C 0.089 80.9 1.317 0.14 0.25 0.27 1.00
J N 0.130 79.4 0.597 0.96 0.60 0.59 1.67
K N 0.124 40.8 0.069 0.65 0.44 0.49 1.42
L N 0.093 45.1 0.242 0.49 0.60 0.69 1.80
M N 0.122 47.9 0.675 0.81 0.44 0.46 1.56
N N 0.092 57.4 0.090 0.89 0.53 0.60 1.74
O T 0.104 47.2 0.683 2.00 1.86 2.13 2.00

*NCal, noncoated, highly calendered sheet; T, sheet rendered translucent by addition of index-matching resin; N, noncoated sheet; C,
coated sheet; Z, thickness of the sheet in mm; S and K, Kubelka–Munk scattering and absorption coefficients. The k values are MTF
constants for Eq. 4 determined from Kubelka–Munk theory (R), the line screen technique with m = 1.7 (p), and the line screen technique with
m adjusted for the closest fit (m).

Paper Type Z(mm) S(mm-1) K(mm-1) kR(mm) kp(mm) km(mm) m
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effect can be modeled, it should be possible to extract MTF
constants, k, from experimental measurements of the Yule–
Nielsen effect. To do this, an idealized halftone system is
needed. The ideal halftone in this case is a one-dimensional
halftone consisting of linear bar lines rather than dots. High-
resolution photographic transparent line screens of this kind
are readily available from Beta Screen Corporation (Carl-
stadt, NJ). Six such screens, each at F = 0.75 (75% dot and
25% clear film) and ranging from ω0 = 0.984 to 5.24 cycles/
mm (25 to 133 LPI) were obtained. Each was clamped me-
chanically in close contact with the paper sample under study,
emulsion side down. The paper samples were stacked to ap-
proximate an infinite thickness of paper as shown in Fig. 4.
The stack was illuminated at 45 degrees, with detection at 0
degrees. Illumination was in line with the direction of the
halftone bar lines to minimize any effects of shadow casting
from the small, but finite, thickness of the bar lines. Images
of the illuminated stack were captured through a microscope
with a field of view of 4.0 mm using a COHU Model 4810
CCD camera, PC frame grabber, and software described pre-
viously.18 Pixel values for this system are linear with respect
to irradiance at the image plane of the camera and thus are
linear with respect to reflectance of the material being im-
aged. Pixel values in the image were referenced, pixel by
pixel, to a known white standard, and the resulting image,
in reflectance units, was analyzed to generate the reflectance
histogram. Figure 5 shows a typical histogram. From histo-
grams at each value of ω0 mean values of the reflectance of
the paper between the halftone lines, Rp, were obtained. These
values were plotted, as shown in Fig. 6 for paper sample G,
as a function of ω0. As shown previously,19,20 the reflectance of
the paper between the dots decreases as F increases and as
the screen frequency increases. From this behavior it should
be possible to extract a value of k by fitting the data on Rp

versus ω0 to a model containing k. First, however, the impact
of the MTF of the instrument must be considered.
Figure 4. Arrangement of line screen film with stack of paper
under analysis.
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Figure 5. Example of histogram of reflectance values for an im-
age of a line screen on paper. Paper sample G, F = 0.75, and ω0 =
1.58 cycles/mm (40 lPI).
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Figure 6. Peak histogram reflectance, Rp, for paper sample G as
a function of line screen frequency.
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To determine the significance of the instrument contri-
bution to the data, the MTF of the camera was measured
independently by capturing an image of the edge of an
industrial razor blade illuminated from the back. The im-
age of the edge was scanned in software to obtain the LSF
characteristic of the instrument. From the LSF the MTF
was calculated. The result was an MTF = 0.97 ± 0.03 from
0 to 6 cycles/mm, and MTF = 0.5 at 40 cycles/mm. This
corresponds to an instrumental k = 0.025 mm, which is an
order of magnitude smaller than k values typical of pa-
pers. Thus the instrument MTF was assumed to be unity
over the range 0 < ω0 < 5.24 cycles/mm over which the
experimental line screen data were measured.

To extract a k value from the data shown in Fig. 6 we
first derive a model of Rp versus ω0. We begin with the Fou-
rier series shown in Eq. 7. This function describes the one-
Figure 7. Diagram of periodic square wave pattern described
by the Fourier series of Eq. 7. F = 1 – Fp , and ω = 1/λ. The
paper between the dots is width a, and the dot is width b. The
edge of the paper begins at x = a/2 and ends at x = λ – a/2.
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I(x)

a

bpaper
dot

λ0
/2 λ-a/2 λa/2 λ—a/2 λ
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dimensional square wave function, I(x), of spatial frequency
ω0 shown in Fig. 7.
I(x) = Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) ⋅cos(n2πω 0 x) . (7)

This function describes the flux pattern of light that en-
ters the paper after passing the screen lines, since the screen
lines have essentially a zero transmittance. Lateral scat-
tering of light within the paper can be modeled by multi-
plying the cosine function of the Fourier series by the MTF
function for the paper. The MTF was modeled with m = 1.7
in Eq. 4. The reflectance of the unprinted paper, R0, is in-
cluded in the model to account for light absorbed by the
paper, and the result is a description of the reflectance of
the light from the system.

R(x) = R0 Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) ⋅ MTF (nω 0 ) ⋅cos(n2πω 0 x)








  (8)

If we note that λ = 1/ω0 , we can set x = λ/2 in Eq. 8 and
predict the peak reflectance of the paper centered between
halftone bar lines. Experimentally, however, it is easier to
measure the mean reflectance of the paper, Rp, between the
bar lines as the reflectance at the peak of the image histo-
gram. This mean reflectance value averages over all of the
paper between all of the halftone lines in the captured im-
age and thus can be measured with good precision. We can
model this mean reflectance by integrating Eq. 8 from one
edge of a halftone line (x = a/2) across the paper to the next
edge (x = λ – (a/2)). The result is Eq. 9.

Rp(ω0) = R0Fp     
sinc2 (nFp ) ⋅ MTF (nω 0 )

n = − ∞

∞
∑




. (9)

Note that Rp is a function of both the line screen fre-
quency,   ω0 , and the line screen fractional area, F = 1 – Fp.
It is easy to show that the limiting reflectance of Rp is
R0 at ω0 = 0.0 cycles/mm and  Fp R0 at ω0= ∞ cycles/mm. It
is convenient to define a relative contrast function, Eq.
10, and to plot the data as shown in Fig. 8.

Figure 8. Data ( ) are CTF(ω) measured for the noncoated pa-
per G. CTF is Eq. 10 fit to the data. The line marked MTF (4) is
Eq. 4 with m = 1.7 and the best fit value of k. The line marked
MTF (6) is the Kubelka–Munk MTF drawn with experimental
values of S and K.

CTF

MTF (6)

MTF (4)

0 2 4 6
0

0.5

1

ω, cycles/mm

C
T

F,
 M

T
F

MTF (6)

MTF (4)

CTF
An MTF Analysis of Papers
CTF(ω 0 ) =
R(ω 0 ) − R∞

R0 − R∞
(10)

We can model the CTF(ω0) function by starting with an
assumed value of k in Eq. 4 and then calculating the Rp (ω0)
function with Eq. 9, followed by CTF(ω0) with Eq. 10. The
reflectance of the unprinted paper, R0, is measured inde-
pendently, and the value of k for the model is selected to
provide the minimum rms deviation between the model and
the experimental data. The line marked CFT in Fig. 8 is
the best fit of the model to the data for paper G. Also shown
is the MTF curve of Eq. 4 corresponding to the best fit value
of k. For comparison, the MTF from KM theory, Eq. 6, is
also shown for the S and K values of paper G in Table I.
Values of k determined from line screen data for each pa-
per are listed as kp in Table I.

The repeatability of the line screen analysis for kp was
demonstrated by two independent sets of measurements of
the papers in Table I performed by two of our authors. Fig-
ure 9 shows kp from one experimenter versus kp from the
other experimenter. Inspection of the data shows that the
values of kp range from between 0.2 and 2.0 mm with an
uncertainty on the order of ±0.10 mm. All of the kp values in
Table I are the averages of at least two determinations.
Figure 9. Repeatability test for values of the MTF constant, k,
determined by the line screen experiment. The values of k Num-
bers 1 and 2 were determined by two different experimentalists.
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A common approximation used in the literature is that
the MTF of paper is the same in both the machine and the
cross direction of paper. The simplification achieved by
this approximation is useful, but common experience with
most paper properties suggests that paper is highly direc-
tional. To examine the significance of paper directionality
with regard to lateral scattering, values of kp were deter-
mined by the line screen method with the lines oriented
Table II. Comparison of Cross Direction (XD) and Machine Di-
rection (MD) Measurements of the MTF Constant, k, in Eq. 4
with m = 1.7

Paper Type MD XD
I C 0.21 0.25
A NCal 0.51 0.54
J N 0.37 0.37
L N 0.36 0.31

Value of kp
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parallel to the machine direction of the paper. The analy-
sis was repeated with the line screens running perpen-
dicular to the machine direction. The results, summarized
in Table II, suggest that the differences in kp between types
of paper is much more significant than differences in kp

due to paper directionality. Indeed, directionality differ-
ences are less than the estimated uncertainty for the mea-
sure of kp.
Kubelka–Munk versus Line Screen Data
Paper sample G in Fig. 8 is a noncoated but highly cal-

endered sheet and is reasonably well modeled both by Eq.
4 with m = 1.7 and by Eq. 6. In contrast the coated sheets,
H and I, did not fit well with Eq. 4 and m = 1.7. A good fit
was achieved with Eq. 4 by varying both m and k for a
minimum rms deviation. Figure 10 shows the fit for Pa-
per I with m = 1.0. For comparison the KM model of Eq. 6,
with S and K values from Table I, is also shown in Fig. 10,
and it is evident that the curve shape predicted by KM
theory is not in good agreement with the line screen ex-
periment. Engeldrum and Pridham12 have suggested that
the stratified structure of coated papers is at odds with
the assumption of homogeneity in the KM model. Thus it
is possible that a value of m < 1.7 may be an indication of
this inhomogeneity.
Figure 10. Data ( ) are CTF(ω) measured for the coated paper
I. CTF is Eq. 10 fit to the data. The line marked MTF (4) is Eq. 4
with m = 1.0 and the best fit value of k. The line marked MTF (6)
is the Kubelka–Munk MTF drawn with experimental values of S
and K.
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All of the paper samples in Table I were modeled using
Eq. 4, adjusting both k and the power m. These best fit
values of k are listed as km in Table I along with the best
fit values of m. Inspection of the kp and km values indi-
cates little significant difference between the two, even
for the coated sheets, H and I .

The assumption of homogeneous light scattering implied
by KM theory was also examined by correlating kR from
KM theory with km values determined by the line screen
technique, as shown in Fig. 11. Visual inspection of these
data suggests that the overall correlation is good for all
but the noncoated sheets (J, K, L, M, and N). This would
seem to suggest the noncoated sheets may also vary sig-
nificantly from homogeneous scattering assumed by
Kubelka–Munk theory. In contrast, the coated sheets (H
and I), which have m values near 1.0, appear to fall rea-
sonably close to the ideal line of slope 1.0 in Fig. 11. How-
24     Journal of Imaging Science and Technology
ever, this is somewhat misleading. The k values for the
coated papers are close to the origin, and in fact the nu-
merical values of kn are almost twice the values of kR. It
would appear, therefore, that the coated sheets are the
least homogenous, followed by the noncoated sheets. The
behavior of the translucent and polymeric sheets appears
to be quite adequately described by the MTF function de-
rived from Kubelka–Munk theory.
Figure 11. Comparison of MTF k constants determined by Kubelka-
Munk theory and reflectance measurements with k constants de-
termined by the line screeen method. The range bar shows the range
of k values corresponding to the mottled formation of noncoated
paper J. The dotted line shows all of the noncoated and noncoated
but calendered sheets.
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Spatial Inhomogeneity
The term paper formation is commonly used to refer to

the spatial inhomogeneity easily observed in transmitted
light as a random mottle pattern. Visual inspection of the
papers in Table I on a light table indicated that the great-
est degree of mottle was in the noncoated sheets. To esti-
mate the practical impact of paper formation on the
Yule–Nielsen effect, paper sample J was examined quan-
titatively on the light table. With a macroscopic lens and
extension tubes on the CCD camera, an image of the pa-
per was captured. The image covered a 2 × 2-cm field of
view and clearly displayed the characteristic mottle of pa-
per formation. A reference image of the illuminated, trans-
lucent surface of the light table was also captured. The
pixels of the paper image were then ratioed, pixel by pixel,
with the pixel values of the reference image to obtain trans-
mittance factors, T(x,y). Mean and standard deviations of
T = 0.25, σ = 0.028 were determined from these data.

The standard deviation of T indicates a variation in
the MTF constant, k, of the paper. To estimate the mag-
nitude of the effect we again use Kubelka–Munk theory.
In this case the two equations required to provide values
of S and K are Eqs. 5a and 5b for R and T.17 A mean re-
flectance R = 0.88 of paper sample J backed by a black
surface was measured. Almost no spatial variability in
reflectance was observed. With T = 0.25 and R = 0.88 one
can solve Eqs. 5a and 5b to obtain mean scattering and
absorption coefficients of S = 22.0 mm-1 and K = 0.160
mm-1. These in turn lead to an estimate of the mean MTF
constant in Eq. 4 of k = 0.909 mm, in reasonable agreement
Arney et al.



with the value shown in Table I. If we use the standard
deviation of T as an estimator for the range of T values
across the sheet, then (0.25 - 0.028) < T < (0.25 + 0.028).
Again using KM theory and the mean value of R = 0.88
we obtain the range 0.833 mm < k < 1.111 mm for the
MTF constant of Eq. 4. This range is illustrated by the
range bar shown in Fig. 11.

Discussion
In choosing an experimental method for estimating the

MTF characteristics of paper and similar substrates, the
edge trace technique (involving a microdensitometry scan
of an illuminated knife edge) is the most difficult and least
precise. The line screen method, on the other hand, is much
easier to perform and can be done with reasonably high
precision. Moreover, it provides a measure of the MTF char-
acteristic of paper in a way that is clearly relevant to prac-
tical resolution and optical dot gain characteristics of the
paper. Reflectance measurements, coupled to Kubelka–
Munk theory, are generally easier to perform than the line
screen measurements, and instrumentation for reflection
measurements is readily available in many laboratories.
The Kubelka–Munk description of MTF has the additional
advantage of showing the relationship between MTF and
the more fundamental metrics of scattering probability,
S, and absorption probability, K. However, KM theory ap-
pears not to provide as exact an estimate of lateral spread
and thus of optical dot gain as can be achieved by the line
screen technique.

The papers and substrates used in this study were all
manufactured for imaging applications. The two coated
sheets are typical sheets for offset lithographic printing,
and the noncoated sheets are typical of electrophotographic
copy papers and letterhead bond papers. The highly cal-
endered sheets, the translucent sheets, and the polymer
films were all manufactured for desktop ink-jet applica-
tions. Taken as a group, these papers represent an extreme
range of lateral scattering characteristics (0.2 mm < k <
2.0 mm). Over this extreme range, the correlation between
kR from Kubelka–Munk theory and km from the line screen
experiment appears moderately good. However, this is
misleading due to the extreme range of k values involved
in the study. Most commonly encountered imaging appli-
cations employ papers and substrates over only a fraction
of this range. For example, over the commonly encountered
range of printing and office copy papers (0.2 < k < 0.7 mm)
the correlation between KM theory and the line screen ex-
periment is poor.

The reason for the poor showing of Kubelka–Munk
theory in this application is not entirely clear. Repeatabil-
ity experiments shown in Figs. 3 and 9 suggest that the
low correlation is not entirely a result of random experi-
mental error. Spatial variability as a result of paper for-
mation might be of a magnitude sufficient to cause the
poor correlation shown in Fig. 11. However, reflectance
measurements were made over a circular area 2 cm in
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diameter, which should average the paper formation ef-
fect. Whereas the field of view for the line screen mea-
surements was much smaller (4 mm × 4 mm), significant
variability due to paper formation would have been ex-
pected in Fig. 9. Again, the high correlations seen in Figs.
3 and 9 relative to that seen in Fig. 11 seem to rule out a
significant effect due to paper formation.

Another possibility for the poor correlation between KM
theory and the line screen experiment is the assumption of
homogeneity in light scatter inherent in the KM model. Al-
though direct evidence for inhomogeneous light scatter was
not observed when machine and cross-direction line screen
measurements were compared, differences between lateral
and z direction scattering cannot be ruled out. It is also pos-
sible the fundamental scattering process in many papers may
not be in accord with Kubelka–Munk theory. KM theory as-
sumes that the rates of change in light flux (dI/dx) from down-
moving to up-moving in a sheet, and from up-moving to
down-moving (dJ/dx), are both first order with respect to the
flux magnitudes, I and J, with an identical proportionality
constant, S.15 None of the data presented in this paper ad-
dress this assumption, and additional work appears to be
warranted to elucidate further scattering mechanisms in the
various types of papers used as image substrates.
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