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Abstract. We propose a new convolutional neural network called
Physics-guided Encoder—Decoder Network (PEDNet) designed for
end-to-end single image dehazing. The network uses a reformulated
atmospheric scattering model, which is embedded into the network
for end-to-end learning. The overall structure is in the form of
an encoder—decoder, which fully extracts and fuses contextual
information from four different scales through skip connections. In
addition, in view of the uneven spread of haze in the real world, we
design a Res2FA module based on Res2Net, which introduces a
Feature Attention block that is able to focus on important information
at a finer granularity. The PEDNet is more adaptable when
handling various hazy image types since it employs a physically
driven dehazing model. The efficacy of every network module
is demonstrated by ablation experiment results. Our suggested
solution is superior to current state-of-the-art methods according to
experimental results from both synthetic and real-world datasets.
Keywords: dehazing, deep-learning-based, encoder—decoder net-
work, atmospheric scattering model
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1. INTRODUCTION

Haze is a phenomenon of reduced visibility due to tiny
particles and gases suspended in the atmosphere. The
existence of haze blurs the detailed information of an image
and reduces contrast. This creates difficulties in tasks such
as image processing and computer vision.

Although dehazing algorithms can improve image
quality, completely restoring the true details and colors of an
image remains difficult because of the complex differences
between hazy and clear images. These differences are in-
fluenced by factors such as atmospheric light, transmission,
and varying scenes and lighting conditions. Moreover, in
different environments, the imaging process of hazy images is
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affected by various physical factors, making it challenging to
fully restore a visual effect that aligns with the real haze-free
image.

1.1 Physical Models

The atmospheric scattering model [1] is the most classical
physical model in image dehazing algorithms. It explains how
hazy images are imaged. It is modeled as follows:

I(x) =] ()T (x) + [l = T(x)], (1)

where I(x) is the input haze image and J(x) is the output
dehazed image; the atmospheric light o and transmission
map T (x) are unknown parameters. Therefore, according to
this physical scattering model, the dehazing of a single image
can be transformed into an estimate of the parameters T'(x)
and « of the haze image.

Since the estimation of atmospheric light and the trans-
mission map of haze images directly impacts the final out-
come, accurate parameter estimation is a key factor in the de-
hazing effect. Some methods [2, 3] estimate the transmission
map and atmospheric light separately using priors. However,
these prior-based assumptions are often unsuitable, espe-
cially in white scenes or with unevenly distributed haze, and
incorrect parameter estimation can result in artifacts in the
output image. Additionally, separately estimating these pa-
rameters using convolutional neural network (CNN) based
methods [4, 5] can lead to significant deviations in the results.
Meanwhile, deep learning dehazing methods that do not rely
on atmospheric scattering models [6, 7] depend solely on
synthetic datasets for training, often producing low-quality
results when faced with complex, real-world haze images.

To overcome these issues, we propose a new CNN
model called Physics-guided Encoder-Decoder Network
(PEDNet). This model combines an encoder-decoder
architecture [8] with an atmospheric scattering model for
end-to-end [9] mapping from hazy to ground-truth images.
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The encoder and the decoder use skip connections, and the
Rest2FA module extracts and fuses features at four scales. A
reformulated atmospheric scattering model [10] is integrated
into the network, addressing the limitations of prior-based
methods and ensuring stable dehazing in complex scenarios.
Extensive experiments show significant improvements in
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) along with better visual quality.
Our work mainly makes the following contributions:

1. We propose an efficient end-to-end trainable CNN
called the PEDNet for image dehazing, which over-
comes the challenges of parameter estimation in
traditional dehazing methods [2, 11].

2. Unlike the usual U-Net [8] architecture, the skip
connections between the encoder and the decoder
in the PEDNet allow for better extraction and fusion
of both shallow and deep contextual information,
preserving image details more effectively.

3. Our Res2FA module introduces a Feature Attention
(FA) block consisting of channel and pixel attention,
which assigns greater importance to key features
and adds flexibility in processing different types of
information.

4. The network integrates the atmospheric scattering
model, enhancing its generalization capability across
various haze images and ensuring more stable
dehazing performance.

2. RELATED WORK

Up until now, there have been nearly 30 years of research
on single image dehazing methods, and the main methods
can be roughly divided into two categories: prior-based
methods [3, 4] and deep-learning-based methods [9, 10].

2.1 Prior-based Image Dehazing Methods

The biggest challenge in physical model dehazing methods
lies in the estimation of parameters while prior-based
image dehazing methods estimate the parameters through
assumptions summarized from practical observations.

He et al. [4] proposed the Dark Channel Prior (DCP)
based on the assumption that “most natural images contain
some pixels with very low color intensity.” Zhu et al. [12]
introduced the Color Attenuation Prior (CAP), assuming
that “the brightness and chromaticity of pixels in haze images
vary significantly with haze concentration.” Berman et al. [2]
presented the Non-local Prior, suggesting that “colors in
haze-free images can be effectively represented by numerous
distinct colors grouped closely in RGB space.”

Although prior-based methods have yielded numerous
achievements in the area of image dehazing, they have certain
limitations. For example, the algorithm accuracy depends on
the accuracy of the prior knowledge, leading to the fact that
it is not applicable to all cases.

2.2 Deep-Learning-based Image Dehazing Methods
Recently, deep-learning-based dehazing methods, with their
strong learning ability and adaptive capacity, have shown
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excellent performance when encountering intricate situa-
tions and large-scale data, and show a broader space for
development.

Zhanget al. [5] developed DCPDN, which uses a densely
connected edge pyramid U-Net to estimate the transmission
map and atmospheric light separately. They employed a
joint discriminator from the generative adversarial network
framework to merge the transmission map with structural
information from dehazing results. Qin et al. [7] introduced
FFA-Net, which optimizes feature fusion across different
levels by using an FA block to give more weight to important
features, allowing for adaptive learning of feature weights.
Cai et al. [9] created DehazeNet, an end-to-end dehazing
system that estimates the transmission map, incorporating a
BReLU nonlinear activation function to enhance the clarity
of haze-free images.

Different from these methods, we propose a new
PEDNet that uses a skip-connected encoder-decoder
architecture to fuse multi-scale features of images. Moreover,
our dehazing network embedded with a reformulated
atmospheric scattering model can better combine physical
laws and data-driven learning to provide more stable and
accurate dehazing results.

3. PEDNet

In this section, we first reformulate the atmospheric scatter-
ing model. Then, we describe PEDNet, which is designed
based on this model. As illustrated in Figure 1, the
PEDNet establishes the mapping between hazy images and
ground-truth images. The network uses an encoder-decoder
structure to combine multi-scale contextual information,
introduces an FA block to weight and extract important fea-
tures, and integrates the reformulated atmospheric scattering
model for training.

3.1 Model Reformulation
The description of the atmospheric scattering model accord-
ing to Eq. (1) can also be expressed as

B 1 I o
](x)—m (X)—m—i-ot

Inspired by AOD-Net [10], transforming Eq. (2) can
optimize the end-to-end pipeline from hazy images to
ground-truth images, which is described as

)

J(x) = G(x)I(x) = G(x) +c, (€)

where

_ ﬁ(l(x)—a)Jr(a—C)

G(x) (4)

Ix)—1
In this way, from the original need to calculate
atmospheric light o and transmission map T (x) separately,
after reformulation, only one parameter G(x) needs to be
calculated; ¢ takes the default value of 1 as a constant
deviation. The reformulated model not only reduces the
difficulty of calculation but also avoids the superposition of
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Figure 1. The architecture of our proposed PEDNEet.
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Figure 2. Res2FA module.

errors caused by separate calculations. Since G(x) depends
on the input I(x), our goal is to create a deep model that
can adapt to different inputs and then train the model by
minimizing the loss function between its output and the
ground-truth image.

3.2 Res2FA Module

Considering that features at different scales may have
different levels of importance, in search of an efficient feature
extraction module, we designed a Res2FA module inspired
by [7, 13]. The Res2FA module, shown in Figure 2, isa CNN
that adds the FA block to the Res2Net module.
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Figure 3. Feature Attention block.

The FA block is made up of channel attention and pixel
attention. As depicted in Figure 3, the channel attention is
utilized to attend to the input x. weighted information at
different channel features, which is described as

CA; = 0 (Conv(§(Conv(Avgpool(x,))))), (5)

where Avgpool denotes global average pooling, Conv denotes
the convolutional layer, § denotes the BReLU function, and o
is the sigmoid function.

Then, the input x, and the channel CA. are multiplied
element-wise to obtain the output F. after the channel
attention:

F.=CA. ® x,. (6)

Given the uneven distribution of haze across various
image types, incorporating pixel attention can help the
network prioritize features such as densely hazy pixels
and high-frequency image regions. This module operates
similarly to CA.. It takes F. as the input and then passes
through a network composed of two convolutional layers, the
BReLU function and the sigmoid function:

PA = o (Conv(5(Conv(F,)))). (7)

Subsequently, the input F. and the output PA undergo
an element-wise multiplication operation to obtain the final
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output FA of the FA block:
FA=F, QPA. (8)

The introduced FA block is able to adaptively learn the
weights of the feature channels. Increasing the flexibility in
handling various types of information enables the network
to prioritize essential features in the dehazing task.

In summary, the Res2FA module incorporates the multi-
scale feature representation of Res2Net and the weight ad-
justment capability of the FA block. In this way, the network
can better capture features at different levels and scales, sig-
nificantly improving the ability to express important features.

3.3 Encoder-Decoder Network

Inspired by [14], our PEDNet uses an encoder-decoder
network, which has proven effective in tasks like semantic
segmentation and object detection. We specifically design
this network to enhance dehazing by training on various
levels of detail in the image. The encoder captures global
and local features while the decoder applies these features
to improve image dehazing. Skip connections between the
encoder and the decoder facilitate information transfer and
accelerate convergence, allowing for efficient combination of
multi-scale contextual information and improved dehazing
quality and accuracy.

As shown in Fig. 1, the PEDNet consists of an encoder-
decoder network and an atmospheric scattering model. The
encoder-decoder network facilitates the mapping of the
hazy image to G(x), and the dehazing process is ultimately
achieved by the reformulated atmospheric scattering model.

This encoder-decoder network can extract features
from four different scales. The encoder first uses a 3 x 3
convolutional layer to capture shallow information and then
employs two linked Res2FA modules for finer detail at the
current scale. PixelUnShuffle is used for downsampling in
the next three encoder blocks without losing the total feature
information, followed by a 3 x 3 convolutional layer and
Res2FA module for feature extraction. After each encoder
module, the feature map resolution is reduced by a factor of
1, and the channel count doubles.

The decoder network mirrors the encoder network but
witha D-1 decoder block usinga 1 x 1 convolutional layer for
improved deep features while the last two decoder modules
use a 3 x 3 convolutional layer connected to a Res2FA
module and PixelShuffle. The resolution of feature maps
doubles with each decoder pass. Finally, the haze image is
mapped to G(x) using two 3 x 3 convolutional layers.

Notably, skip connections between the encoder and the
decoder reduce information loss and provide more detailed
information, enhancing the quality of the dehazing results.

3.4 Loss Function

The mean squared error (MSE) is a simple and widely
used loss function in image dehazing tasks. Since there is
often a large difference in pixel details between dehazed
images and ground-truth images, the loss function MSE can
amplify this difference and speed up the training process of
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network parameters. Although many dehazing algorithms
also employ perceptual loss functions, we choose the MSE
to optimize the network model. The loss function Lyge is
defined as follows:

N
1 k ko2
Lmse = ; 1 Te = TE 112, )

where Jhaze is the image after dehazing with the network, Jg
is the clear image, and k is the pixel coordinates on the image.

4. EXPERIMENTAL RESULTS

4.1 Datasets

Since it is difficult to obtain a substantial quantity of haze
images and corresponding ground-truth images in the real
world, synthetic haze datasets are often used to train models.
RESIDE [15] is a large-scale synthetic dataset that is widely
used in the field of image dehazing due to its diversity in
evaluation criteria [7, 16]. We use subsets from RESIDE: ITS
and OTS for training and SOTS, containing both indoor and
outdoor images, for testing.

Moreover, in order to demonstrate the robustness
and diversity of PEDNet, we also selected a real-world
dataset [11] for testing. Since this dataset does not have
corresponding ground-truth images, only a qualitative
evaluation of the dehazing effect is performed.

4.2 Implementation Details

In the course of our experiment, we verified the feasibility
and efficiency of PEDNet in the image dehazing task. The
PEDNet parameters were optimized in the training process
using the Adam optimizer. The attenuation factors 81 and 2
took the default values 0.9 and 0.999 respectively. The initial
learning rate and weight falloff were both set at 1 x 1074,
Due to the large dataset, the network was trained for 50
rounds by default and the results were found to be stable. All
experiments were trained with PyTorch and an NVIDIA RTX
4090 GPU with a default batch size of 4.

4.3 Evaluation of Dehazing Results
4.3.1 Evaluation Standard and Competitors
To evaluate image dehazing methods, we use the PSNR
and the SSIM as objective evaluation criteria. The PSNR
primarily quantifies the pixel-level differences between
the restored and ground-truth images, with higher PSNR
values indicating a smaller pixel-level discrepancy, thereby
reflecting the accuracy of the dehazing process. The SSIM,
on the other hand, assesses the luminance, contrast, and
structural similarity between images, offering a more com-
prehensive evaluation of visual quality and detail restoration,
particularly in terms of preserving image structure and
texture. The combination of PSNR and SSIM effectively
captures the degree of distortion and similarity between
images, and these metrics have been widely used in image
dehazing quality assessment.

We evaluate the proposed PEDNet against six
state-of-the-art dehazing methods on two datasets, which
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Table I. Quantitative comparison on SOTS dataset.

Table II. Comparison in different configurations on the SOTS dataset.

Methods Indoor Outdoor
PSNR SSIM PSNR SSIM

DCP [4] 16.62 0.8179 19.13 0.8148
(P12 19.05 0.8364 21.09 0.8685
AOD-Net [10] 19.06 0.8504 20.29 0.8765
DehazeNet [9] 21.14 0.8472 22.46 0.8514
GFN [16] 22.30 0.8800 21.55 0.8444
4kDehazing [17] 23.35 0.9280 27.55 0.9500
Ours 27.55 0.9415 29.23 0.9633

are DCP [4], CAP [12], AOD-Net [10], DehazeNet [9],
GFN [16], and 4kDehazing [17]. The DCP and CAP are
prior-based methods. The AOD-Net is a deep-learning-
based method embedded in the atmospheric scattering
model. The DehazeNet outputs transmission maps through
a CNN. The GFN and 4kDehazing are direct mapping
deep-learning-based methods.

4.3.2 Evaluation on Synthetic Dataset

Comparative experiments were conducted on the SOTS
dataset [15], which contains 500 indoor and 500 outdoor
haze images. For convenience, the metrics of other methods
are quoted from [18, 19]. The results in Table I show that
our method outperforms six other methods in both PSNR
and SSIM. Furthermore, Figure 4 provides a qualitative
comparison with six state-of-the-art methods. The first three
rows display indoor results, and the last three rows show
outdoor results. A comparative analysis reveals that due to
the prior assumptions in DCP and CAP, the dehazed images
appear darker, lacking detail and showing color distortion.
Although AOD-Net and DehazeNet improve brightness,
haze residues remain. The GFN and 4kDehazing produce
results closer to the ground truth, but our method performs
better in edge texture and color fidelity. For instance, our
method accurately renders the desktop color in the first
image and better preserves the blind texture in the second
image. Additionally, our method restores the true sky color
more effectively.

4.3.3 Evaluation on Real-world Dataset

We further compared the proposed method using a real-
world dataset [11]. Since this dataset does not have
a corresponding ground-truth image, we only conduct
qualitative analysis on this dataset. As shown in Figure 5, our
proposed network demonstrates outstanding performance
in image dehazing. First, in terms of edge processing, the
network is able to achieve smooth and coherent results
without obvious artifacts or distortions. For example, our
network is able to accurately preserve details and present
a natural and smooth effect in the hair part in the initial
image and the eaves articulation in the second image. Second,
the network also excels in color reproduction. It is able to
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Model AS PSNR SSIM

R=1 X 2353 0.8449
R=12 X 2542 0.8813
R=3 X 26.51 0.9047
k=4 X 27.35 0.9354
PEDNet v 28.39 0.9524

accurately restore the colors distorted by the haze, making the
colors of the image more in line with a real haze-free scene.
In summary, our proposed network demonstrates ex-
cellent performance in both quantitative and qualitative
evaluation of image dehazing methods. It exhibits smoother
and more coherent results in edge processing and is able to
accurately reproduce colors in haze-free situations.

4.4 Ablation Study

To validate the effectiveness of our proposed PEDNet for
single image dehazing, we conducted ablation experiments
with different configurations of its backbone module. Since
PEDNet focuses on feature extraction at four different scales
and owing to the importance of combining atmospheric
scattering models, S represents the number of different
scales to be fused and AS indicates whether the atmospheric
scattering model is embedded. When § = 1, it means the
basic network, including three convolutional layers and
two Res2FA modules. When S =2, 3, and 4, it means the
addition of 1, 2, and 3 groups of encoder-decoder blocks to
the basic network respectively. Note that none of the above
four networks incorporate the atmospheric scattering model.
Only the fifth PEDNet embeds it in the model.

The SOTS dataset of RESIDE was selected for the
testing. The experimental details are the same as previously
described. The ultimate experimental outcomes are derived
from the mean of the measurements obtained on the SOTS
indoor and outdoor haze images. As shown in Table II,
each additional scale increases the PSNR by 1.4 db on
average and the SSIM by nearly 3%. The PEDNet, which
incorporates the atmospheric scattering model, increases
the PSNR by 1.04 db compared with the fourth method.
Obviously, the encoder-decoder block and the atmospheric
scattering model have a significant impact on the PSNR and
the SSIM.

5. CONCLUSION

In this paper, we propose a new single image dehazing
method called the PEDNet, which is a combination of an
encoder-decoder network and an atmospheric scattering
model. Image features are extracted from four different scales
in the network, and then the features of different scales
are fully integrated through skip connections. In addition,
multiple Res2FA backbone modules have been introduced to
focus on important haze information at a more fine-grained
level. Finally, the reformulated atmospheric scattering model
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(a) Hazy inputs (b) DCP {c) CAP (d) AOD-Net

(e) DehazeNet (f) GFN

(h) Ours (1) Ground truths

(g) 4kDehazing

Figure 4. Quadlitative comparison on SOTS dataset from RESIDE.
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Figure 5. Qualitative comparison on realworld dataset.

is integrated to complete the end-to-end mapping. We
evaluate the PEDNet against six state-of-the-art methods in
multiple aspects on synthetic and real-world datasets, and
the results indicate that our proposed method has a superior
dehazing effect.
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