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Abstract. Accurate segmentation and recognition of retinal vessels
is a very important medical image analysis technique, which enables
clinicians to precisely locate and identify vessels and other tissues in
fundus images. However, there are two problems with most existing
U-net-based vessel segmentation models. The first is that retinal
vessels have very low contrast with the image background, resulting
in the loss of much detailed information. The second is that the
complex curvature patterns of capillaries result in models that cannot
accurately capture the continuity and coherence of the vessels. To
solve these two problems, we propose a joint Transformer–Residual
network based on a multiscale attention feature (MSAF) mechanism
to effectively segment retinal vessels (MATR-Net). In MATR-Net, the
convolutional layer in U-net is replaced with a Residual module and a
dual encoder branch composed with Transformer to effectively cap-
ture the local information and global contextual information of retinal
vessels. In addition, an MSAF module is proposed in the encoder
part of this paper. By combining features of different scales to obtain
more detailed pixels lost due to the pooling layer, the segmentation
model effectively improves the feature extraction ability for capillaries
with complex curvature patterns and accurately captures the conti-
nuity of vessels. To validate the effectiveness of MATR-Net, this study
conducts comprehensive experiments on the DRIVE and STARE
datasets and compares it with state-of-the-art deep learning models.
The results show that MATR-Net exhibits excellent segmentation
performance with Dice similarity coefficient and Precision of 84.57%,
80.78%, 84.18%, and 80.99% on DRIVE and STARE, respectively.
Keywords: retinal vessels, fundus images, segmentation,
Transformer–Residual, multiscale attention feature mechanism
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1. INTRODUCTIONS
The retina is one of the most important tissues in the eye
with a rich vessel network that can reflect early pathological
changes caused by many diseases (e.g., diabetes retinopathy,
macular degeneration) [1–3]. If these diseases cannot be de-
tected and treated in a timelymanner, it will bring about great
health hazards to patients. Therefore, the analysis of vessel
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characteristics plays a crucial role in the early diagnosis of
ophthalmic diseases. At present, in clinical diagnosis, doctors
use artificial visual recognition of retinal vessels in fundus
images to detect and diagnose various ophthalmic diseases.
However, this manual tracking method for individual retinal
vessels is relatively subjective and time-consuming, and fun-
damentally cannot guarantee the accuracy of segmentation.
Therefore, developing a fast and accurate algorithm for
segmenting retinal vessels is crucial to achieving precise
extraction of vessel features from fundus images. However,
the fundus images of retinal vessels have limitations. On the
one hand, the contrast difference between the retinal vessel
area and background noise is small, especially for capillaries,
which increases the difficulty of segmentation [4, 5]. On
the other hand, due to the complex curvature of retinal
vessels, it is prone to discontinuous segmentation, which
makes it impossible to completely segment retinal vessels. To
address these limitations, many studies have been conducted
so far. For example, Memari et al. proposed an automatic
retinal vessel segmentation method that combines matching
filtering technology with the AdaBoost classifier [6]. Jiang
et al. used a morphology-based global thresholding method
to map the structure of retinal vessels and performed
centerline detection on the capillaries [7]. Although these
methods have greatly improved the task of fundus image
segmentation, the limitations of fundus images have not been
fundamentally resolved.

In recent years, with the emergence and continuous
development of deep learning (DL), it can learn the inherent
rules and representation hierarchy of image data, effectively
extracting representative features from the retinal vessel area
and background of an image [8, 9]. Ronneberger et al. pro-
posed a U-net network based on FCN [10] in the 2015 ISBI
Cell Tracking Challenge, which applied end-to-end training
to medical image segmentation and attracted widespread
attention [11]. However, directly applying U-net to retinal
vessel segmentation poses certain challenges, mainly due to
(1) the low contrast between the vessel region and the back-
ground as indicated by the yellow arrow in Figure 1A, which
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can easily increase segmentation errors and reduce segmen-
tation accuracy in fundus images; (2) the complexity of vessel
curvature in fundus images (as shown in Fig. 1B). In response
to these two problems, Qu et al. first proposed a global
feature selectionmechanism, which can autonomously select
the most important features for segmentation tasks from
the features of each layer of the network, thereby enhancing
the segmentation ability for low contrast vessels [12]. Liu
et al. proposed a feature enhancement cascade module based
on Deformable Convolution v3, which can flexibly adapt to
and capture the intricate and constantly changing connec-
tions of retinal vessel morphology, ensuring the continuity
of vessel segmentation [13]. Although these methods have
somewhat improved the accuracy of vessel segmentation,
they are all centered on examining the variations in local
vessel features while ignoring the significance of global
features of retinal vessels, which makes it difficult to handle
situations with extremely low contrast. To address this
problem, the introduction of the Vision Transformer model
not only provides powerful global contextual information
but also demonstrates extraordinary adaptability when
extensively pretrained downstream tasks [14]. However,
these models frequently lose efficacy when working with
small datasets like medical image datasets because of the
abundance of factors and find it difficult to understand the
positional information of retinal vessels. Therefore, how to
capture both local and global features of vessels during the
segmentation process will be the key to improving accurate
segmentation of retinal vessels. Second, in response to the
complex curvature of vessels, Sun et al. applied lightweight
attentionmodules and dual attentionmodules in the decoder
section, effectively improving the feature extraction ability
of U-net for complex shaped small vessels and retinal
lesion images [15]. Although the attention mechanism can
effectively focus on spatial differences in images, it ignores
the key differences between channels in the feature map,
thereby preventing deep networks from effectively focusing
on the complex features of retinal vessels.

Driven by the above challenges, we propose a combined
Transformer–Residual network based on the multiscale
attention feature (MSAF) mechanism, namely MATR-Net,
to address the challenges of retinal vessel segmentation in
fundus images. Unlike previous vessel segmentation models,
the proposed MATR-Net implements a dual encoder branch
that combines Residual and Transformer to simultaneously
capture local and global feature information. The purpose
is to use MATR-Net to learn foreground and background
region features separately during the training process and
then increase the weight of foreground features by suppress-
ing the background feature response in order to segment
the complete retinal vessel region from the fundus image
and improve the accuracy of segmentation. We propose an
MSAF module to address the complex curvature of vessels.
By fusing features extracted by different convolution kernels,
we capture different details and structural information of
fundus images and combine attentionmechanisms to explore
deeper feature information and compensate for lost detail

Figure 1. Examples of retinal vessel fundus image segmentation: (A)
examples of low contrast between vessels and background noise in fundus
images (black box marked area); (B) examples of complex vessel curvature
in fundus images (black box marked area).

pixels. In addition, the joint loss function used in this study is
composed of Dice loss and cross-entropy loss, and Dice loss
can solve the problem of imbalanced positive and negative
samples in fundus images. The main contributions of this
work include the following:

1. In order to improve the feature extraction ability of
the model when the contrast between vessels and
background is low, we adopt a dual encodermodule con-
sisting of Transformer andResidual layers inMATR-Net.
This module can combine local features of retinal vessels
with global features to enhance the model’s feature
extraction ability in low contrast situations. Relative to
the traditional convolutional neural network (CNN), the
model can minimize gradient dispersion and explosion
issues during training by utilizing Residual layers.

2. We propose an MSAF module based on different
convolutional kernels to address the complex curvature
of vessels. The MSAF module can capture features of
vessels and capillaries with various complex curvature
shapes, thereby improving segmentation accuracy.

3. The experimental results on two publicly available
datasets show that MATR-Net achieves better segmen-
tation performance and generalization ability with fewer
model parameters compared to the most advanced
retinal vessel segmentation methods currently available.

2. METHODS
This section provides a detailed introduction to the pro-
posed MATR-Net for retinal vessel segmentation. First, we
describe the overall structure of MATR-Net. Then, the key
components of the network are described in detail, namely
the Transformer encoder branch and the MSAF module.
By using a dual encoder branch consisting of Residual and
Transformer, not only can rich local feature information
and important global feature information be captured but
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Figure 2. Segmentation network architecture of MATR-Net.

also vessel regions can be identified from low contrast
images. In addition, we have developed an MSAF module
and embedded it into the encoder branch to obtain deep
feature information of vessels. The proposed segmentation
framework is shown in Figure 2.

2.1 Network Architecture
Inspired by the powerful representation capabilities of the
CNN and Transformer, this study proposes an end-to-end
retinal vessel segmentation framework, namely MATR-Net,
to accurately and reliably segment retinal vessel fundus im-
ages. The overall architecture is shown in Fig. 2. MATR-Net
mainly consists of three parts: a dual encoder for enhancing
feature encoding, an MSAFmodule for effectively extracting
deep features, and a background noise suppression attention
module. Specifically, by merging efficient Residual and
Transformer branches into MATR-Net, rich local features
and important global contextual information for retinal
vessel segmentation can be extracted. Second, MSAF can
effectively capture the features of vessels and capillaries with
various complex curvature shapes, compensating for the loss
of deep vessel feature information during down-sampling.
Finally, we enhance the feature response of vessels by adopt-
ing an attention mechanism while reducing the impact of
background noise on segmentation results. In the following
section, we discuss in detail the proposed Transformer
encoder branch and the MSAF module.

2.2 Residual and Transformer Dual Encoder Branches
2.2.1 Transformer Encoder Branch
Solving the low contrast problem of fundus images is crucial
to improving the accuracy of vessel segmentation. Low
contrast is a common issue in fundus image processing,
which can affect the clarity of vessels and other important
features, thereby affecting the accuracy of subsequent
automatic segmentation and diagnosis. Therefore, we have
implemented a dual encoder consisting of Residual and
Transformer, which captures both local features of vessels
and global contextual information. The red border in Fig. 2
shows the structure of the Transformer encoder branch,
where the multihead self-attention (MSA) mechanism is

the core component of the Transformer, consisting of 16
heads. First, three sequence vectors (query vector, key vector,
and value vector) are calculated from the output of the
previous Transformer layer. Then, the attention score is
obtained by dot-multiplying the query vector with the key
vector. The generated vector is normalized using a softmax
activation function to ensure that all values are positive.
Finally, each value vector is multiplied with the normalized
vector value and the weighted value vectors are added to
obtain the output vector. The MSA projects the same query
vector, key vector, and value vector into different subspaces
of the original high-dimensional space for self-attention
calculation, and concatenates multihead with self-attention
scores. The workflow of the Transformer encoder branch
is as follows. We first split the fundus image with a size of
H ×W into multiple patches for input, where each patch
has a size of P × P and the number of patches in a sequence
is N = (HW/P2). Then, the vectorized patches are mapped
onto a D-dimensional embedding space through trainable
linear projection, and the spatial information of the patches
is encoded. Finally, the encoder features are decoded using
a progressive up-sampling method. To preserve its location
information, the learned location information is embedded
into the patch using the following formula:

y = [Z1
PE, . . . ,ZN

P E] +Epos, (1)

where E represents the position information of each patch,
ZP represents a patch, and Epos represents the position
embedding information.

2.2.2 Residual Encoder Branch
In order to capture contextual features and preserve certain
spatial details through convolutional neural networks, this
study uses Residual as the backbone network of the CNN
encoder. The Residual encoder branch consists of two
3× 3 convolutional layers and a 1 × 1 convolutional layer,
which are processed using batch normalization (BN) and
rectified linear unit (ReLU) activation functions before
the convolution operation. The Residual encoder passes
gradients freely to lower layers through skip connections to
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prevent gradients from vanishing or exploding. A kernel size
of 3 × 3 reduces parameters and speeds up computation,
which is beneficial for extracting local features. The BN
operation is used to maintain the same distribution of
network inputs, improve network training speed, and prevent
gradient vanishing problems. Replacing traditional CNN
layers with Residual layers increases the model’s depth to
improve segmentation accuracy while alleviating problems
such as gradient vanishing and exploding caused by depth
increase, ensuring good performance of the model.

2.3 MSAFModule
The original U-net generates multilayer feature maps
through the encoder, which are transmitted to the corre-
sponding decoder layers through skip connections, allowing
the decoder to obtainmore high-resolution information dur-
ing up-sampling and thus more accurately restore the details
in the original image. However, due to the complex curvature
of retinal vessels, especially for capillaries, a large amount
of detail information will be lost during down-sampling,
resulting in discontinuous vessel segmentation. Therefore,
we propose an MSAF module, where each layer consists of a
multiscale feature fusion module and attention. The MSAF
utilizes three types of convolutions—1× 1, 3× 3, and 5× 5—
to extract feature information at different scales and captures
different details and structural information of fundus images
through fusion operations. However, although multiscale
processing can improve the model’s ability to understand
images, in actual processing of large amounts of image in-
formation, the model may be disturbed by too many details,
leading to the loss or misunderstanding of key information.
To address this issue, we introduce an attention mechanism
in the multiscale fusion module. The specific workflow is as
follows. First, the multiscale fusion features are convolved by
1× 1 and ReLU to obtain FeatureMapA. Then, FeatureMap
A is normalized using 1 × 1 convolution and the sigmoid
function with the aim of outputting attention coefficient
values in the range [0,1]. Finally, the attention coefficient is
multiplied with the multiscale fusion features to enable the
model to focus more on the vessel regions in fundus images,
thereby improving its ability to recognize and locate vessels.
The detailed structure of MSAF is shown in Figure 3.

2.4 Loss Function
In this study, due to the use of the overlap method for
cropping fundus images, the number of negative samples in
some images is much larger than that of positive samples.
This problem of sample imbalance may make the training
process difficult, resulting in the model’s overprediction of
non-vessel areas. To solve this problem, we adopt a combined
loss function consisting of cross-entropy loss and Dice loss.
Dice loss makes the model more inclined to explore the
foreground region by taking the intersection and union of
the segmentation results with the ground truth, reducing the
influence of most negative pixels. The formula for the joint
loss function is as follows:

Loss= Losscross+LossDice (2)

Figure 3. Structure of the MSAF module.

Lossc =−yt log(ypred)− (1− yt ) log(1− yp) (3)

LossDice = 1−
2 |X ∩Y |
|X | + |Y |

. (4)

Among them, Loss represents the joint loss function,
Lossc represents the cross-entropy loss, yt is the target value,
yp is the predicted value, LossDice represents Dice loss, X is
the ground truth, and Y is the segmentation result.

3. EXPERIMENTS
3.1 Dataset
3.1.1 DRIVE Dataset [16]
This dataset contains 40 retinal fundus images with a
resolution of 584× 565, and each image has a corresponding
ground truth, of which 20 are used for model training and
20 are used for model testing. Ground truth is the baseline in
the process of model training and evaluation.

3.1.2 STARE dataset [17]
This dataset contains 20 retinal fundus images with a resolu-
tion of 700 × 605 and 20 ground truth images, of which 16
are used for model training and 4 are used for model testing.

Considering the limited number of images in these two
datasets, overfitting may occur during network training.
To address this issue, we employed data augmentation
techniques (Figure 4). Specifically, the overlap clipping
method has an overlap rate of 102 pixels for the DRIVE
dataset and 82 pixels for the STARE dataset; (1) random
rotationwithin the range of [−10,10]; (2) horizontal flipping;
(3) vertical flipping; (4) histogram equalization CLAHE.
Table I provides detailed information on the number of
images, training set, testing set, and resolution before and
after cropping for each dataset.

3.2 Training Parameters
The MATR-Net segmentation model was developed on
GeForce GTX 3090 and Intel Core i9-10900K, using PyTorch
1.8.0 as the DL framework. The optimizer uses Adam and
employs a poly learning decay strategy. The initial learning
rate is set to 0.004, and the batch size and epoch are set to 20
and 100, respectively. Table II provides detailed information
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Figure 4. Examples of data amplification.

Table I. Details of the two datasets.

Datasets DRIVE STARE

Total number 40 20
Train set number 20 16
Test set number 20 4
Resolution (pixel) 565× 584 605× 700
Resized (pixel) 256× 256 256× 256

Table II. Hyperparameters of the proposed MATR-Net model.

Items Value

Input size 256× 256× 3
Epochs 100

Initial learning rate 0.004
Batch size 20
Optimizer Adam
Loss function Cross-entropy loss + Dice loss

on image input size, total epochs, initial learning rate, batch
size, optimizer, and loss function.

3.3 Evaluation Metrics
In order to comprehensively evaluate the segmentation
performance of the MATR-Net proposed in this paper, we

quantitatively analyzed the experimental results using four
commonly used medical image segmentation evaluation
metrics: Dice similarity coefficient (DSC), Intersection over
Union (IoU), Precision, and Recall. The four formulas are as
follows:

DSC=
2 ∗ (X ∩Y )

|X | + |Y |
(5)

IoU=
X ∩Y
X ∪Y

(6)

Precision=
X ∩Y
X

(7)

Recall=
X ∩Y
Y

, (8)

where X represents the ground truth and Y represents the
segmentation result.

4. RESULTS
4.1 Comparisons with Other State-of-the-Art Methods
To compare the segmentation performance of our proposed
MATR-Net with other state-of-the-art network models, we
trained nine segmentation models on two datasets and
manually adjusted all hyperparameters for optimal perfor-
mance, including TransU-net [18], U-net [11], UNeXt [19],
ResU-net [20], MCDAU-Net [21], Attention U-net [22],
IMFF-Net [23], DCNet [24], andMATR-Net. Then, we tested
the test dataset and evaluated the segmentation performance
of the model using four metrics: DSC, IoU, Precision, and
Recall. Due to the lack of code provided in the original text
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for Curv-Net and MCSE-U-Net models, we only referred to
data from the relevant literature and used the symbol ‘-’ to
indicate that there was no available experimental data in the
original literature. The specific results of the experimental
comparison between the two datasets are shown in Tables III
and IV.

On theDRIVEdataset, as shown inTable III,MATR-Net
achieved excellent results with DSC and Precision metrics of
84.57% and 80.78%, respectively, surpassing the compared
methods. Of note, our method outperforms MCSE-U-Net,
Curv-Net, and DCNet in DSC metrics by 0.27%, 1.05%,
and 2.58%, respectively. This indicates that our method has
good recognition ability, which helps to more accurately
distinguish between vessel and non-vessel areas. In addition,
Precision metrics can effectively measure the accuracy of
the model. From Table III, it can be seen that only MATR-
Net achieved over 80%, indicating that the MATR-Net
segmentation model can better distinguish between positive
and negative samples.

On the STARE dataset, as shown in Table IV,MATR-Net
achieved excellent results of 84.18% in DSC, which is
3.1% higher than MCSE-U-Net. This indicates that our
proposed segmentation model can more accurately segment
retinal vessels from fundus images and display the integrity
of retinal vessels than the most advanced segmentation
models currently available. In terms of Precision metrics,
MATR-Net outperforms nine state-of-the-art segmentation
models, achieving 80.99%. For example, compared toDCNet,
MATR-Net has improved its DSC metrics by 3.66% but
decreased its recall metrics by 5.17%. This indicates that
improving the segmentation ability of positive sample vessel
pixels is feasible while ignoring some positive sample
background pixels is also necessary.

4.2 Visual Comparisons with Other State-of-the-Art
Methods
In order to demonstrate the segmentation performance of
the proposed MATR-Net model, this study presents five
segmentationmodels for visual comparisonwithMATR-Net.
We have selected the five most representative segmentation
models, namely DCNet, TransU-net, UNeXt, U-net, and
MCDAU-Net. Among them, TransU-net is a segmentation
model based on Transformer, MCDAU-Net and DCNet
are the best performing models in the field of retinal
vessel segmentation for the past two years, and UNeXt and
U-net are typical medical image segmentation methods.
In these two datasets, we use red borders to mark the
local segmentation results of vessels and enlarge the local
images for display. In Figures 5 and 6, the five segmentation
models exhibit issues such as incompleteness, discontinuity,
and omission in capillaries while MATR-Net can accurately
segment the capillary region. In addition, when dealing
with densely distributed areas of vessels, other methods
may encounter problems of missing elements or overseg-
mentation, such as TransU-net missing many vessel regions
on the DRIVE dataset and U-net identifying background
regions as vessel regions on the STARE dataset, both of

Table III. Performance comparison with the most state-of-the-art segmentation
methods on the DRIVE dataset.

Method Year DSC (%) IoU (%) Precision (%) Recall (%)

UNeXt [19] 2022 72.35 57.17 63.23 85.93
TransU-net [18] 2021 73.36 58.43 61.50 92.36
U-net [11] 2015 76.93 62.90 67.84 89.86

ResU-net [20] 2018 79.72 66.56 75.11 85.72
MCDAU-Net [21] 2023 80.43 67.53 74.98 87.34

Attention U-net [22] 2019 81.22 68.63 76.87 86.68
IMFF-Net [23] 2024 81.24 68.67 77.55 85.87
DCNet [24] 2024 81.99 69.72 79.96 84.88
Curv-Net [25] 2022 83.52 — — —
MCSE-U-Net [26] 2023 84.30 84.73 — —

MATR-Net 84.57 73.63 80.78 89.19

Table IV. Performance comparison with the most state-of-the-art segmentation
methods on the STARE dataset.

Method Year DSC (%) IoU (%) Precision (%) Recall (%)

U-net [11] 2015 75.36 60.91 70.40 82.07
UNeXt [19] 2022 76.29 62.14 71.44 82.59

TransU-net [18] 2021 77.36 63.44 68.01 90.60
Attention U-net [22] 2019 78.33 64.73 71.70 87.19
MCDAU-Net [21] 2023 79.04 65.61 75,63 83.40
ResU-net [20] 2018 79.73 66.60 75.44 85.41
DCNet [24] 2024 80.52 67.82 71.52 93.16
IMFF-Net [23] 2024 80.73 67.95 76.39 86.27
MCSE-U-Net [26] 2023 81.08 80,81 — —

MATR-Net 84.18 73.19 80.99 87.99

which are erroneous segmentation. However, compared to
these five segmentation models, MATR-Net focuses more
on the feature response of vessel regions and suppresses the
influence of backgroundnoise on segmentation results. From
the last column of Figs. 5 and 6, it can be seen that the
proposed method exhibits significant advantages in terms
of vessel segmentation performance. It not only has high
accuracy but also can capture the details of small vessels
more comprehensively, providing us with more accurate and
reliable vessel segmentation results. Overall, compared to
comparative methods, MATR-Net demonstrates excellent
segmentation performance for capillaries and large vessels.

4.3 Ablation Experiments
To demonstrate the effectiveness of each module in the
MATR-Net network, this study conducted experiments
using different combinations of MATR-Net. All ablation
experiments were conducted on the DRIVE dataset and
STARE dataset. Tables V and VI show the results of
comparing our proposed method with models containing
different components.
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Figure 5. Visual comparison of segmentation results with different state-of-the-art segmentation methods on DRIVE dataset.

Figure 6. Visual comparison of segmentation results with different state-of-the-art segmentation methods on STARE dataset.
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Table V. Quantitative results of different components on the DRIVE dataset.

Method DSC (%) IoU (%) Precision (%) Recall (%)

Our w/o Attention 82.88 71.39 78.17 88.72
Our w/o Transformer 83.24 71.71 79.52 87.79
Our w/o MSAF module 83.53 72.12 79.72 88.26

MATR-Net 84.57 73.63 80.78 89.19

Table VI. Quantitative results of different components on the STARE dataset.

Method DSC (%) IoU (%) Precision (%) Recall (%)

Our w/o MSAF module 80.78 68.15 73.36 90.54
Our w/o Transformer 82.03 69.84 76.26 89.37
Our w/o Attention 83.82 72.34 80.12 88.19

MATR-Net 84.18 73.19 80.99 87.99

4.3.1 Ablation Experiments for Transformer
To verify the effectiveness of the Transformer branch, we
removed it from MATR-Net. Combining Tables V and VI, it

can be seen that compared toMATR-Net, theDSC and IoUof
the Transformer module on the DRIVE dataset decreased by
1.33% and 1.92%, respectively, while on the STARE dataset,
theDSC and IoUdecreased by 2.15% and 3.35%, respectively.
This indicates that a single Residual encoder branch does
not have the ability to capture global contextual information
while the dual encoder branch composed of Transformer and
Residual modules can simultaneously consider both local
and global features of vessels. By integrating these two types
of feature information, the problem of low contrast in fundus
images can be solved to obtain the best segmentation results.
In order to demonstrate the effectiveness of Transformer
more intuitively, it can be seen from the red boxes in
Figure 7 that segmentation models without Transformer
cannot extract complete vessel regions under low contrast
conditions. However, MATR-Net can effectively solve the
problem of low contrast in fundus images.

4.3.2 Ablation Experiments for Attention
In order to better reduce the impact of non-vessel areas on
segmentation results, a feature attention module is added
to the skip connection of each layer in the MATR-Net

Figure 7. Visual comparison of the impact of segmentation results without and with Transformer modules.
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Figure 8. Visual comparison of the impact of segmentation results without and with attention modules.

Figure 9. Visual comparison of the impact of segmentation results without and with MSAF modules.

model. To further validate its performance, we compared the
impact of using and not using the feature attention module
on segmentation performance on the DRIVE and STARE
datasets separately. Tables V and VI provide quantitative
comparisons of these variables, from which it can be
seen that adding the feature attention module does indeed
improve segmentation performance, with DSC increasing
from 82.88% and 83.82% to 84.57% and 84.18%, respectively.
This indicates that attention can improve the segmentation
performance of vessels by significantly highlighting the
feature response of vessel regions. In order to demonstrate
the effectiveness of the attention module more intuitively,
it can be seen from Figure 8 that not adding the attention
module will lead to incorrect segmentation, for example,
identifying the background area as a blood vessel in the red
box while adding the attention module can better suppress
the feature response of background noise and reduce the false
positive rate of segmentation.

4.3.3 Ablation Experiments for MSAF
As shown in Tables V and VI, we compared the quantitative
results of using and not using the feature MSAF module
on two datasets separately. It can be seen from this that

adding the feature MSAF module has indeed improved
segmentation performance, with DSC increasing from
83.53% and 80.78% to 84.57% and 84.18%, respectively. This
indicates that the MSAF module can effectively compensate
for the lost feature information during the down-sampling
process, thereby solving the problem of discontinuous vessel
segmentation. In addition, in order to more intuitively
demonstrate the ability of the MSAF module in solving
complex vessel curvature problems, it can be seen from the
red arrows in Figure 9 that not using the MSAF module
will result in discontinuous or even missing segmented
vascular regions. Adding the MSAF module can accurately
identify very small vascular feature information, improving
the integrity of vascular segmentation.

5. DISCUSSION
The changes in the retinal vessel system are often closely
related to various diseases. If not detected and treated in
a timely manner, it may develop into more serious lesions
and even lead to blindness. Therefore, accurate analysis of
retinal vessel characteristics is crucial for the early diagnosis
of ophthalmic diseases. In recent years, a large amount of
work has been conducted on the issue of vessel segmentation.
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However, due to the small contrast difference between vessel
regions and background noise and the complex curvature
of vessels in retinal vessel fundus images, current research
methods have certain limitations. Therefore, establishing
new effective vessel segmentation methods is crucial to
accurately evaluating ophthalmic diseases. In this work, we
propose the MATR-Net method for fully automatic vessel
segmentation and fully demonstrate that the segmentation
performance of the proposed model is superior to the
state-of-the-art methods on the DRIVE and STARE datasets.
From Tables III and IV, it can be seen that MATR-Net
has improved the results of automatic vessel segmentation,
with DSC and Precision being 84.57%, 80.78%, 84.18%, and
80.99%, respectively.

During the experimental process, this study found that
the small contrast difference between the vessel region and
background noise in fundus images, as well as the complex
curvature of vessels, can pose bottlenecks to the training
of DL models. Although the single encoder structure based
on the CNN has been widely used in medical image seg-
mentation, this structure cannot capture both local features
and global contextual information features simultaneously.
The use of a CNN-based single encoder structure to
simultaneously extract local features and global long-range
dependencies is limited in addressing the irregular changes
in vessel shape and low contrast between vessels and
background noise in complex fundus images. Currently,
existing methods still cannot accurately distinguish the
differences between targets and backgrounds. In view of this,
we have designed a dual encoder input branch that combines
Transformer and the CNN to simultaneously capture local
features and global contextual information. At the same
time, replacing the convolutional layers in the CNN with
Residual ensures the avoidance of overfitting during model
training. As shown in Tables V and VI, this paper uses
four evaluation metrics to verify the impact of Transformer
encoding branches onMATR-Net on the DRIVE and STARE
datasets. In the case of removing the Transformer encoder
branch, theDSC index ofMATR-Net decreased by 1.33% and
2.15%, respectively, indicating that adding the Transformer
encoder branch to MATR-Net can accurately identify the
feature information of vessels in low contrast situations. In
order to further obtain more vessel feature information, we
added an Attention module before feature concatenation in
each layer of the encoder and decoder to better improve the
sensitivity of the model to foreground pixels and suppress
background noise. As shown in Tables V andVI, we validated
its impact on MATR-Net through four evaluation metrics,
and the results showed that introducing the feature attention
module enhanced the segmentation performance. Due to
the complexity of vessel curvature, especially for very small
vessels, a large amount of vessel detail information is lost,
resulting in discontinuous vessel segmentation. Therefore,
we propose an MSAF module to compensate for the
loss of detailed information of vessels during the pooling
process. Thismodule captures different details and structural
information of fundus images by fusing features extracted

by different convolution kernels and combines attention
mechanisms to explore deeper feature information and
compensate for lost detail pixels. As shown in Fig. 9, after
adding the MSAF module, the model significantly improves
the continuity of vessel segmentation and can completely
segment very small vessel regions.

Although the MATR-Net architecture can achieve good
results in vessel segmentation, it has also certain limitations.
Although MATR-Net has successfully segmented finer
vessels, there are still cases of vessel rupture in the face of
extremely low contrast. Therefore, we will continue to opti-
mize the segmentationmodel to effectively solve the problem
of vessel rupture in future work. In addition, we will attempt
to validate the segmentation performance of the MATR-Net
method in other retinal vessel fundus image segmentation
tasks to further confirm its effectiveness and generalization.

6. CONCLUSIONS
In this paper, we propose a MATR-Net segmentation
architecture for segmenting retinal vessels in fundus images.
Unlike the segmentation model based on the CNN single
encoder, we use a dual encoder branch combining Residual
and Transformer for image segmentation, which enables
our method to capture both local and global contextual
information simultaneously. In addition, we also adopted
a more effective MSAF module to solve the problem of
complex vessel curvature, enabling the segmentation of
complete and continuous large and small vessels. To evaluate
our proposed retinal vessel segmentation method, this study
conducted experiments on DRIVE and STARE datasets.
Compared with state-of-the-art segmentation models, the
effectiveness of MATR-Net has been demonstrated.
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