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Abstract. In recent years, deep learning has achieved excellent
results in several applications across various fields. However, as the
scale of deep learning models increases, the training time of the
models also increases dramatically. Furthermore, hyperparameters
have a significant influence on model training results and selecting
the model’s hyperparameters efficiently is essential. In this study,
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the orthogonal array of the Taguchi method is used to find the
best experimental combination of hyperparameters. This research
uses three hyperparameters of the you only look once-version 3
(YOLOv3) detector and five hyperparameters of data augmentation
as the control factor of the Taguchi method in addition to the
traditional signal-to-noise ratio (S/N ratio) analysis method with
larger-the-better (LB) characteristics.

Experimental results show that the mean average precision
of the blood cell count and detection dataset is 84.67%, which is
better than the available results in literature. The method proposed
herein can provide a fast and effective search strategy for optimizing
hyperparameters in deep learning.
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1. INTRODUCTION
In recent years, deep learning (DL) has achieved excellent
results in various fields, such as radiofrequency (RF)
transceivers in signal processing [1]. In the medical field,
stacked autoencoders are used for diagnosing cervical
cancer [2] and in the arena of machine vision tasks, DL’s
usage extends from basic image classification [3] to object
detection [4].Moreover, significant breakthroughs have been
made in applications such as generative image modeling [5]
and vehicle automation technology [6].

InDLdevelopment,most convolutional neural networks
are developed based on the model structure. Three types
of mainstream development directions exist, i.e., width,
depth, and resolution. A representative work of the width
type development is GoogLeNet [7]. This model won the
first place in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2014 competition. Thewide structure of
GoogLeNet uses different mask sizes to increase the diversity
of feature maps. Conversely, 1× 1 convolutional masks are
used to ensure that the output dimensions of each path are
the same. Moreover, GoogLeNet introduced global average
pooling [8] to replace the final fully connected layer, which
can significantly improve the problem of overfitting.

A representative work of the depth type development
is deep residual network (ResNet) [9]. This model won
the first place in the ILSVRC 2015 competition. When the
residual blocks update their weights backward, they can
directly pass the loss value of this ‘‘addition node’’ layer to
the previous node. Therefore, the inherent shortcomings of
gradient disappearance due to the continuous deepening of
the network can bemitigated [10]. Another advantage of this
model is residual coding [11], which can eliminate common
parts and amplify small changes.

Resolution type development uses high-resolution im-
ages as an input in the network to allow the model to
capture detailed feature maps. The input image resolution
of early convolutional networks was mostly 224 × 224.
Examples include VGG16 [12], GoogLeNet, ResNet, and
DenseNet [13]. GPipe [14] is a representative work in recent
years, and the resolution has been increased to 480× 480 to
improve the model accuracy.

Regardless of using any of the above three types inmodel
development, the model needs to be trained. Every time the
hyperparameters are adjusted and themodel is retrained and
evaluated, the time required increases exponentially [15].
This is due to multiple factors: the size of the model is
increasing every year; the initial hyperparameter settings
have an important influence on the model training results;
and the typical hardware is gradually unable to handle
the latest network architecture. The present and significant
challenge is the selection method of hyperparameters, which

must reduce the time cost of the experiment effectively and
simultaneously use reduced experimental result information
to infer the best hyperparameter combination.

The current hyperparameter selection methods include
grid and random searches [16]. The former selects factors
and levels, lists all possible permutations and combinations at
the required level and trains them. The latter is an improved
method based on grid search, which is less time-consuming.
However, the search result is not necessarily the best solution
in the whole domain because it has poor stability.

Bayesian optimization (BO) [17] is a widely used
method for hyperparameter optimization, which attempts to
find the best combination in the entire domain with fewest
steps. However, the search results of BO are susceptible to the
parameters of the surrogatemodel and quality of the learning
model, so the use restrictions are stringent.

The hyperparameter optimization method used in this
study is the Taguchi method [18], an experimental design
method that reduces the time cost. It also analyzes the
contribution ratio of each control factor to the target value
with the tiniest practical information and can predict the
target value. Chen et al. [19] used the Taguchi method for
single shot detector (SSD) algorithm to count the number of
blood cells, and for parameter optimization of YOLOv7 [20],
though it was used for vehicle detection. This study applies
the Taguchi method for hyperparameter optimization of
YOLOv3 [4] and proposes a robust optimization method for
object detection.

Traditionally, blood cells are counted visually by us-
ing the hemocytometer along with additional chemical
compounds and other scientific equipments. Since blood
cells are huge in number, this task is time-consuming and
tedious but necessary for assessment of health conditions.
A computer-aided system of detecting and counting can
greatly facilitate the entire counting process. The method
designed in this study is applied to the blood cell count and
detection (BCCD) dataset and assess the performance of
hyperparameter search method proposed.

2. MATERIALS ANDMETHODS
2.1 Dataset
The dataset used in this study is the BCCD [21] dataset
made available by Massachusetts Institute of Technology
(MIT). The objective is to automatically detect and classify
three different blood cells: red blood cells (RBC), white
blood cells (WBC), and platelets, which have critical medical
applications.

Each image has many blood cells, and 364 images exist
in the entire dataset. In subsequent experiments, the BCCD
dataset is divided into 292 training (80%) and 72 test (20%)
data.

2.2 Data Augmentation
The image of the original data is in RGB color space. This
study first transforms the RGB toHSV color space, randomly
perturbs the hue, saturation, and value parameters, and then
converts it back to RGB format. Simultaneously, the image is
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randomly cropped and zoomed through 1 ± jitter (jitter is
the ratio of random cropping). Data enhancement methods
such as color perturbation, random cropping, and zooming
images are used to enhance the diversity of data, improve the
generalization ability of the model, and solve the problem
of overfitting. Ultimately, the size of augmentation dataset is
extended to 32 times the original dataset due to the hardware
limitation of RAM of GPU video card (6GB RAM in this
study).

2.3 Methods
2.3.1 Object Detection Methods
Weuse an image as the input of the algorithm and go through
grayscale, binarization, open operation, close operation, and
feature extraction steps. The process of determining the
algorithm category is called image classification. Unlike
image classification, in object detection, a picture usually
contains multiple categories, and the location information of
the object must be determined before further classification.

We first use the region proposal network (RPN) with
anchor boxes to generate the candidate boxes of interest.
Subsequently, we use the center point pixel of each candidate
frame as a feature representative and perform the two-class
classification training to determine whether it is an object.
Further, we use the bounding box generated using RPN
as the input data for training the classifier network. This
architecture with two neural networks is called the two-stage
object detection model. The network of classifiers can use
standard CNN models as the backbone, such as VGG16,
Resnet, DenseNet, and NSGA-Net [22]. A very popular
two-stage model is faster R-CNN [23, 24].

Moreover, as it was discovered in deep neural net-
work [25] that neural networks can perform not only
classification tasks but can also learn geometric information,
single shot detector (SSD) [26] was developed. This type of
model which discards RPN and only uses a single neural
network to complete object positioning and classification is
called one-stage object detection.

The evaluation index in the object detection field is the
mean average precision (mAP), which is the average value of
APs, and the area calculates AP under the curve drawn using
precision and recall [27]. In the test data set of The PASCAL
Visual Object Classes Challenge 2007 (VOC2007) [27], SSD
achieved 74.3% mAP, surpassing faster R-CNN’s 69.9%. In
addition to earning a higher mAP, SSD achieved a processing
speed of 59 frames per second (FPS) under the same Nvidia
Titan X GPU environment, which shows an overwhelming
advantage over faster R-CNN with only 7 FPS.

Since two-stage detection model is very slow [4],
and the two networks are processed separately, optimizing
one network connected to the second network directly is
challenging. In addition to SSD, the detection technology
YOLO proposed by Redmon et al. [4] treats the object
detection problem as a regression task. It directly obtains
the information frame through the pixel value of the
entire image, including the probability of belonging to each
category and positioning information [4]. This is the core

spirit of YOLO: you only need to look at it once to obtain the
object and its coordinate information contained in the image.

The first version of YOLOv1 [4] successfully entered the
list of real-time detectors (FPS≥ 30), and its accuracy signif-
icantly surpassed the deformable part models (DPM) [28].
Fast YOLO [29] has a processing speed of up to 155 FPS, five
times that of 30 Hz DPM. Thus, even if a part of the accuracy
is lost due to a lightweight design, mAP is still doubled.

Furthermore, YOLO has a low error rate in the
foreground and background. Because fast R-CNN uses RPN
to predict the information frame, the classifier network
can only obtain a partial information of the entire image.
YOLO uses all the pixel values of the whole image during
the training process, so YOLO rarely predicts the incorrect
message in the background image. Moreover, YOLO can
learn the characteristics to a high degree of generalization,
which can be transferred to different datasets.

In YOLOdetection process, an image is first divided into
an S× S grid [30]. If the object’s center point falls on this
grid, it must be responsible for the detection of this object.
Each grid will predict B bounding boxes and the confidence
score of the object. If no central point of any object exists
in this grid, the confidence score is 0. Otherwise, it is the
intersection over union (IOU) between the predicted and
ground truth boxes.

The information frame of YOLO is encoded into
five data dimensions: the center point coordinates
(tx, ty) of the object, width tw of the object, height th of
the object, and confidence score. Moreover, every grid
containing at least one object predicts C conditional
class probability belonging to a specific category, i.e.,
Pr(Class|Object), so YOLO can be regarded as an application
of CNN in the coding system.

The output feature map of YOLOv1 [4] uses a grid
of S = 7. Each grid predicts B = 2 object frames and
finally uses nonmaximum suppression (NMS) to eliminate
duplicate object frames. The detection model of YOLOv1
is implemented based on GoogLeNet but does not use
the inception structure. Its input size is 448 × 448. There
are 24 convolutional layers and 2 fully connected layers.
Considering PASCAL VOC as an example with a total of
20 categories, C = 20, the final output code number is
7× 7× (2× 5+ 20)= 7× 7× 30. YOLOv1 only uses one
network to complete object detection, thereby significantly
improving the processing speed. However, there is no RPN
assistance and only the grid of S = 7 is used, so the
positioning of the object frame may not be very accurate,
which leads to the relatively weak detection accuracy of
YOLOv1.

YOLOv2 [31] uses a convolutional layer to replace the
fully connected layer of YOLOv1. The input size of the
model is changed to 416× 416, B= 5, S= 13. Furthermore,
because of the introduction of anchor boxes, the number
of predicted boxes improves from 7 × 7 × 2 = 98 to
13 × 13 × 5 = 845. The detector of YOLOv2 is based
on Darknet-19. It contains 19 convolutional layers and 5
extensive pooling layers. Considering the same PASCAL
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VOC 20 categories as an example, the output code number
of YOLOv2 in the PASCAL VOC detection model is
13 × 13 × (5 × (5 + 20)) = 13 × 13 × 125. The most
significant change in YOLOv2 is redefining the method of
coordinate prediction and changing it to predict the offset
of the anchor box. In the training process, the learning
goal of the detector is to predict the four offsets of tx, ty,
tw, th∈ [0, 1]. Among them, (tx, ty) is the center point
offset of the information frame, tw is the width offset of the
information frame, and th is the height offset.

The positioning method of YOLOv3 [32] is inherited
from YOLOv2 but with significant changes in the feature
extractor. The detector is based on Darknet-53 and is
combined with the feature pyramid network structure [33]
to become a multiple scale detection network. Consequently,
YOLOv3 has an excellent detection speed and accuracy.
For example, in the ImageNet image dataset for image
classification tasks, the obtained results are as accurate as
ResNet-152, but the floating point operations (FLOPS) is
improved by 110.81%.

YOLOv4 [34] made improvements on the Darknet-53
of YOLOv3, drawing on the cross-stage partial network to
solve other large CNN frameworks in gradient duplication
problem for optimization. The gradient change integrates
the feature map, reducing the amount of FLOPS values,
ensuring the speed and accuracy of inference, and reducing
the size of the model. YOLOv4 has greatly improved in speed
and accuracy, compared with YOLOv3, in mAP and FPS
performance improved by 10% and 12%.

YOLOv5 [35] came out a month later than YOLOv4,
and advertised that it can reach 140 FPS, but no related
official publication and is less innovative than YOLOv4. Few
scholars opine that it has not evolved enough to be called
YOLOv5. It is a little controversial.

The same process of optimizing hyperparameters can
be applied to later versions of YOLOv4 or extended
to other similar high-quality object detection algorithms.
This study uses YOLOv3 to perform blood cell type
identification experiments and demonstrates the use of
the Taguchi method described hereinafter to optimize the
hyperparameters of YOLOv3 robustly.

2.3.2 Taguchi Method
Dr. Genichi Taguchi first proposed the Taguchi method in
1951. Its orthogonal arrays are widely used by Japanese
industries and received enthusiastic responses. By 1970,
Japanese industries had popularized the Taguchi method for
parameter calibration. The orthogonal nature of the orthogo-
nal table can significantly reduce the cost of experiments and
greatly simplify data analysis.

The target value of the Taguchi method is divided
into three static characteristics: smaller-the-better, nominal-
the-best, and larger-the-better. The larger-the-better (LB)
characteristic was adopted in this study. The target value
of this study is that the commonly used evaluation index
in object detection is the mAP [27], so the factor effects
are analyzed using the magnificent feature. Selecting control

factors is a difficult task, and it usually depends on the user’s
rules of thumb for screening. The number of segments where
the control factor changes up or down is called the levels of
control factors.

The orthogonal table is expressed as Lp(qm), where p
represents the number of the experiments of the orthogonal
table; q represents the level of change; and m represents the
number of control factors. For example, with three control
factors and two variable levels, the experimental orthogonal
table of L4(23) can be selected. Orthogonality implies that
between two rows, all level combinations appear the same
number of times. Moreover, under the same number of
factors and levels, the number of grid search experiments
is eight times. However, the Taguchi method only requires
four experiments, which is half of the grid search method,
significantly reducing the number of experiments.

After the orthogonal experiment table is constructed,
the number of experiments, N, for each combination can be
determined according to the cost of each experiment. In the
Taguchi method, the target value analysis is converted into
the signal-to-noise ratio (S/N ratio) form of processing. The
larger the S/N ratio, the more the antinoise and the better
the communication ability. The S/N ratio of LB characteristic
(S/N LB) used herein is shown in Eq. (1):

S/NLB=−10 log

∑N
z=1

1
y2
z

N
, (1)

where yz represents the zth experiment result of each group.
Factor effects refer to changes in control factors on

the S/N ratio or the target value. The response table can
be further analyzed using the experimental results of the
orthogonal table. We can predict the best combination of
control factors from the response data and then perform
confirmation experiments. If the result of the experiment
is better than any combination in the orthogonal table, it
implies that the predictive ability of the Taguchi method is
effective.

2.3.3 Orthogonal Table
There is one factor of Level 2 and seven factors of Level
3, as shown in Table I. Among them, flip (A) is whether
the image is flipped or not; max_box (B) is the upper limit
of the sampling information frame of each category in the
training process of YOLOv3; jitter (C) is the ratio of random
cropping; hue (D) is the randomperturbation amount of hue;
saturation (E) is the randomperturbation of saturation; value
(F) is the random perturbation of brightness; and IOUtrain
(G) is the lowest object threshold setting during the search
and training process of YOLOv3. The last is the slope (H)
of the activation function Leaky ReLU. After selecting the
control factors, this study uses the L18(21

× 37) orthogonal
table experimental layout, as shown in Table II.

3. EXPERIMENTAL RESULTS
Each set of experiments in Table II is repeated three
times; the input width and height are 320 (pixels); the
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Table I. Control factor level table.

Level Flip (A) Max_box (B) Jitter (C) Hue (D) Saturation (E) Value (F) IOUtrain (G) Leaky (H)

Level 1 True 20 0.3 0.1 0.5 0.5 0.5 0.05
Level 2 False 40 0.55 0.4 1.5 1.5 0.3 0.10
Level 3 N/A 60 0.8 0.7 2.5 2.5 0.7 0.20

Table II. L18(21 × 37) orthogonal table experimental configuration.

Experiment order A B C D E F G H

1 True 20 0.3 0.1 0.5 0.5 0.3 0.05
2 True 20 0.55 0.4 1.5 1.5 0.5 0.1
3 True 20 0.8 0.7 2.5 2.5 0.7 0.2
4 True 40 0.3 0.1 1.5 1.5 0.7 0.2
5 True 40 0.55 0.4 2.5 2.5 0.3 0.05
6 True 40 0.8 0.7 0.5 0.5 0.5 0.1
7 True 60 0.3 0.4 0.5 2.5 0.5 0.2
8 True 60 0.55 0.7 1.5 0.5 0.7 0.05
9 True 60 0.8 0.1 2.5 1.5 0.3 0.1
10 False 20 0.3 0.7 2.5 1.5 0.5 0.05
11 False 20 0.55 0.1 0.5 2.5 0.7 0.1
12 False 20 0.8 0.4 1.5 0.5 0.3 0.2
13 False 40 0.3 0.4 2.5 0.5 0.7 0.1
14 False 40 0.55 0.7 0.5 1.5 0.3 0.2
15 False 40 0.8 0.1 1.5 2.5 0.5 0.05
16 False 60 0.3 0.7 1.5 2.5 0.3 0.1
17 False 60 0.55 0.1 2.5 0.5 0.5 0.2
18 False 60 0.8 0.4 0.5 1.5 0.7 0.05

optimizer uses Adam [36]; and the batch size is four.
Moreover, to save computing time, the number of iterations
is set to 25. First, we determine the best hyperparameter
combination based on the analysis of results and adjust the
settings. Subsequently, we retrain the model for conducting
a confirmation experiment to verify whether the target value
mAP of the best hyperparameter combination is better than
any set in the orthogonal table.

Table III shows the experimental results of the BCCD
dataset.We use the experimental data of the Taguchi method
L18(21

× 37) orthogonal table in the YOLOv3 architecture
and repeat each set of experimental configurations three
times. In Table III, S/N LB can be obtained by Eq. (I).

Table IV uses the response table of S/N LB analysis
factors, and the best combination (BestLB) that can be
predicted is as follows: flip = true, max_box = 40, jitter =
0.55, hue= 0.1, saturation= 1.5, value= 0.5, IOUtrain = 0.3,
and leaky= 0.10.

After retraining the model according to the BestLB, the
mAP is 49.27%, which is higher than the maximum value
of 43.51% in the orthogonal experiment listed in Table III.

Therefore, the predictive ability of the Taguchi method is
practical.

The confirmed experimental data of the BCCD dataset
is shown in Table V. To verify the effectiveness of the
proposed method, the number of iterations is set to 100.
Consequently, the BestLB analysis method can obtain the
highest mAP value of 84.67%. Furthermore, the results of
this experiment also exceeds 74.37% of those using Resnet50
as the YOLO feature extractor [37] and 81.76% by Chou’s
optimization approach [38]. These results show that the rapid
optimization method proposed in this study using S/N LB
leads to better mAP experimental results. Therefore, this
method is expected to provide stable detection results in
practical tasks.

Furthermore, Figures 1–3 show the AP of RBC, WBC,
and platelets, respectively. Figures 4 and 5 show the loss
function curves of training dataset and test dataset for
the confirmation experimental, respectively. In addition,
Figures 6 and 7 show that even if the WBC and platelets
are blue, the model can still distinguish them. The green
information box in each image represents the ground truth;
the blue information box is the positioning information of
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Table III. Taguchi method experimental results of the BCCD dataset.

Experiment order mAP1 (%) mAP2 (%) mAP3 (%) Average mAP (%) S/N LB

1 32.62 42.38 43.30 39.43 31.70
2 24.25 28.08 25.50 25.94 28.23
3 18.86 20.48 20.53 19.96 25.98
4 33.67 32.00 35.27 33.65 30.52
5 29.07 27.45 28.13 28.22 29.00
6 27.69 35.24 32.79 31.91 29.94
7 21.69 15.92 20.95 19.52 25.55
8 35.16 41.11 41.72 39.33 31.82
9 32.03 32.88 33.97 32.96 30.35
10 27.10 24.80 28.03 26.64 28.48
11 36.65 37.78 35.85 36.76 31.30
12 24.59 25.93 22.88 24.47 27.74
13 24.19 28.04 26.63 26.29 28.35
14 37.10 39.33 33.62 36.68 31.23
15 33.81 31.53 35.53 33.62 30.50
16 25.58 29.51 23.89 26.33 28.31
17 36.34 43.51 40.85 40.23 32.02
18 14.81 17.74 15.63 16.06 24.04

Table IV. Factor response table.

Level Flip Max_box Jitter Hue Saturation Value IOUtrain Leaky

1 29.23 28.90 28.82 31.06 28.96 30.26 29.72 29.26
2 29.11 29.92 30.60 27.15 29.52 28.81 29.12 29.41
3 N/A 28.68 28.09 29.29 29.03 28.44 28.67 28.84

Table V. Confirmation experimental results and comparisons with the related studies.

Approach mAP1
(%)

mAP2
(%)

mAP3
(%)

Average
mAP (%)

Standard
deviation

The proposed method (BestLB) 84.59 84.67 81.57 83.61 1.767
Alam and Islam [37] 74.37

Chou [38] 81.76

the model; and the upper left of the information box is the
label name.

4. CONCLUSIONS
This study used the Taguchi method to optimize the
hyperparameters of the object detection deep learning
algorithm. Using YOLOv3 for demonstration in the BCCD
dataset, the confirmation experimental result yielded an
mAP of 84.67%, which is considerably higher than that
obtained by Alam and Islam (74.7%) [37] and Chou
(81.76%) [38], indicating the superiority of our proposed
method. It is conceivable that the performance of cell
detection from image is equivalent to the performance of cell

Figure 1. AP of red blood cells.

Figure 2. AP of white blood cells.

Figure 3. AP of platelets.

counting. Therefore, the proposed method can provide an
effective strategy for blood cell counting.

Evidently, themain contributions of this study are as fol-
lows: (1) Using the predictive ability of the Taguchi method
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Figure 4. The loss curve of training data set.

Figure 5. The loss curve of test data set.

Figure 6. Test result 1.

S/N LB, we determined the best mix of hyperparameter
factors of the model to achieve the highest mAP. (2) The
study had a total of 4374 permutations and combinations
of selectable factor levels in YOLOv3. Thus, considerable
time would have been required if the traditional grid search
method was used; the proposed method saved significant

Figure 7. Test result 2.

time and cost (the number of experiments is only 18).
The experimental results confirm that the proposed fast
optimization method can be used as a general method for
hyperparameter optimization problem of deep learning.

ABBREVIATIONS
YOLOv3: You only look once - version 3 S/N ratio: Signal-to-
noise ratio LB: Larger the better RF: radiofrequency ILSVRC:
ImageNet Large Scale Visual Recognition Challenge ResNet:
Residual network BO: Bayesian optimization BCCD: Blood
cell count and detection RPN: Region proposal network
SSD: Single shot detector mAP: Mean average precision FPS:
Frames per second DPM: Deformable part models IOU:
Intersection over union FLOPS: Floating point operations
RBC: Red blood cells WBC: White blood cells.
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current study are available in the BCCD dataset repository,
https://www.kaggle.com/surajiiitm/bccd-dataset.
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