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Abstract. Obtaining a large number of unqualified product samples
in industrial production is an arduous task. It is challenging to
learn the features of few-shot object images. Despite the limited
number of original images, we developed a transfer learning method
called LDFISB (Large-scale Dataset to Few-Shot Image with Similar
Background) that provides a feasible solution. LDFISB is trained
on a large-scale dataset such as CIFAR100, and then the model is
fine-tuned based on the original model and parameters to achieve
classification tasks on a new APSD (auto part surface dataset).
Batch normalization, padding, and Weighted Cross Entropy Loss
are employed in the training processes. Hyper-parameters are
configured according to Hyper-table to enhance the accuracy of
the prediction. The CIFAR10, CIFAR100, and ImageNet were
considered as pre-training datasets, and the LDFISB method
is capable of accurately predicting the flaw area of the product
image. The LDFISB method achieves the highest accuracy on
the CIFAR100 pre-training dataset. c© 2024 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2024.68.3.030401]

1. INTRODUCTION
Deep learning is a method that automatically learns features
from data. It typically requires a large amount of data
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to train the model to complete the task. However, in a
specific environment, it is difficult to obtain a large number
of training data, such as focus images of special medical
cases and special original pictures in industrial production.
Directly using the model to train will produce unsatisfactory
results. It is a challenge to apply deep learning to detect the
classification of product surface images [1]. For example,
there are some sections of defective auto part as shown in
Figure 1, which requires a large number of defective images
for training a deep learning model before detection. It is
difficult to obtain a large number of unqualified product
samples in industrial production. To solve this problem,
transfer learning [2] provides us with a feasible solution.
Although the training dataset is small, classification tasks
of the deep learning model can be achieved by fine-tuning.
Accomplishing this task is essentially a large model and a
large dataset. First, a classification model is trained on a
large-scale dataset such as CIFAR100, and then the model
is fine-tuned based on the original model and parameters to
achieve new image classification.

One notable study in the field of transfer learning
is ‘‘Deep Residual Learning for Image Recognition’’ [3],
published in 2016. The authors introduced the ResNet
architecture [4], which improved upon existing deep neural
networks by introducing residual connections between

J. Imaging Sci. Technol. 1 May-June 2024

mailto:fengyong@cqu.edu.cn
mailto:qiuag@casm.ac.cn


Zhang et al.: Research on transfer learning from large-scale dataset to few-shot image with similar background

Figure 1. Different types of defects, products would produce such as lump and hollow. The sample size is small. There are a number flaw types on the
surface of products, which affect product quality.

layers. By doing so, deep convolutional neural networks
(CNN) could be trained on very deep networks (up to
152 layers) without falling into the vanishing gradient
problem. The researchers also utilized transfer learning
by pre-training the initial layers of the network on the
large CIFAR100 dataset, allowing for faster convergence
on smaller datasets. A pre-trained language model called
BERT [5] (Bidirectional Encoder Representations from
Transformers) was introduced, which uses a novel training
objective to pre-train deep transformer networks on large
textual datasets. The pre-trained BERT model can then be
fine-tuned on smaller datasets for various NLP [6] (Natural
Language Processing) tasks such as question answering and
sentiment analysis. Transfer learning has been applied to a
wide range of applications in recent research. A reinforce-
ment learning-based approach [7] for learning transferable
exploration strategies across graph-structured environments
was proposed. By pre-training on diverse graph-structured
datasets, the approach demonstrated improved performance
on a wide range of unseen graph environments.

The data in the target domain [8] may have a different
distribution or feature space than the data in the source
domain. For example, the target categories in images are quite
different from the source images. The images of defective

auto parts encountered in engineering applications are
shown in Fig. 1. The CIFAR100 dataset is used in the ResNet
model. This can lead to a decrease in model performance, as
the knowledge transferred from the pre-trained model may
not be relevant to the target domain. To solve this problem,
we propose an LDFISB (Large-scale Dataset to Few-Shot
Image with Similar Background) algorithm. According to
the characteristics of the defective image of auto parts, the
proposed algorithm first removes the unnecessary part of
the image, then increases the robustness of the image, and
constructs new input images through rotation, affine, and
other transformations. Finally, the transfer model achieves
precision by fine-tuning, as shown in Figure 2.

Paper Organization: in Section 1, we introduce the
problems encountered in transfer learning. In Section 2,
we present the dataset and the proposed method. We
demonstrate the novelty and the details of the LDFISB
algorithm. In Section 3, we present related work and theory
of normalization, boundary filling, etc. In Section 4, we
show the details of the experiments and fine-tuning of
LDFISB. In Section 5, we compare different models and
the pre-training dataset and discuss the trends of loss and
challenges. Following conclusion, we show the limitations
and future perspectives of our method.
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Figure 2. A framework for transfer learning of training parameters from CIFAR100 dataset to APSD (auto part surface dataset).

Table I. Introduction of APSD’s categories.

Label Introduction of categories

Defect/1 Multiple and single flaw objects exist on the product surface of input
images, such as bumping, bulge, hollow, foam, and scar flaws.

Flawless/0 There are no defective area on the product surface of input images.

2. DATASET ANDMETHODS
2.1 Dataset
Due to the lack of the existing dataset to train in special
surface detection, we processed and transformed the cap-
tured images to construct a flaw and flawless binary clas-
sification dataset, called APSD (auto part surface dataset).
To expand the number of input images, a handful of the
original images are transformed to generate a large number
of generated images. Meanwhile, normalization [9] and
boundary-filling [10] enhance the robustness of the model.
APSD includes two categories of flaw and flawless products,
as shown in Table I and consists of 5000 flawed images
and 5000 flawless images. The ratio of the training dataset,
validation dataset, and test dataset is 7:2.5:0.5.

2.2 Method
Transfer learning has become an important research area
in the field of deep learning. With the ability to leverage
pre-trained models on large datasets, transfer learning has
the potential to improve generalization, reduce training
times, and achieve state-of-the-art performance on a wide
range of applications. Our approach (1) lends insights into
features of these flaws (reasonable process and transforma-
tion), (2) outperforms previous methods without transfer
learning, and (3) is robust to resizing, flipping, affine,

rotation, and brightness. Transfer learning performs the
neural network model from the large-scale dataset to
few-shot [11] original images with similar background. The
fine-tuned model achieves identifying flaw areas to predict
the image classification. Our LDFISB algorithm is shown
below.
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3. RELATEDWORK
3.1 Normalization
Normalization [12] of data is the scaling of data so that
processed data falls into a small, specific range by Eq. (1). The
weight of the neural unitwill not change toomuch,whichwill
not affect the performance of the model

‖X‖p = ((|x1|)
p
+ (|x2|)

p
+ · · ·+ (|x3|)

p)
1
p . (1)

Normalization can speed up convergence on models
based on gradient descent or stochastic gradient descent.
If the range of each feature dimension is different, the
isocontour of the objective function is likely to be a group
of ellipses. The greater the difference of each feature, the
longer the ellipse contour will be. Since the direction of the
gradient is perpendicular to the direction of the contour
line. The route of the optimization will be more tortuous,
so the iteration will be slow. In contrast, if the range of each
feature dimension is similar, the objective function is likely
to be close to a group of positive circles. The route of the
optimization will be more direct and the iteration will be
fast. In addition, normalization keeps the change of image
eigenvalue unchanged, as shown in Figure 3.

It is indicated that the values on the y-axis have changed
from [0–800] to [0–1]. The x-axis scale remains unchanged,
and the feature curve of the image remains unaffected. Except
for the value of the gradient changes, the image features do
not change.

Batch Normalization is the normalization of the process
on the batch, which is not effective for the small size of the
batch. The data xi is calculated by means and variances, and
then normalized, as shown in Eq. (2).

xi− 1
n
∑n

i=1xi√
1
n
∑n

i=1

(
xi− 1

n
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i=1xi
)2
+ ε

. (2)

LN (Layer Normalization) operates on the output of
neurons in the specified layer. The mean and variance of
the output of all neurons in this layer is calculated and then
the output of this layer is normalized. LN is not effective on
CNNs, but it is effective on RNNs.

To accelerate the convergence of the optimization
process, WN is a normalization of the weights of the model
by Eq. (3).

ω=
g
‖v‖

V. (3)

V is a k-dimensional vector, g is a scalar, and ‖v‖ is
the Euclidean norm of V. The Euclidean norm of the weight
vector ω is fixed to g by Eq. (3), so that the activation of the
neuron is approximately independent of V.

3.2 Padding
Convolution is the core operation of a CNN. The convolution
methods of ‘‘edge pixels’’ of the image include ‘‘boundary
padding before convolution’’ or ‘‘boundary padding after
convolution’’ [13]. The boundary padding methods include
constant padding, zero padding, mirror padding, and

repeated padding and are described below. Zero padding:
The Torch package adopts the ZeroPad2d function, and
fills the Tensor using zero. A Tensor of the four directions
is also filled by the padding parameter, such as a vector
(1, 2, 3, 4). Constant padding: The torch package uses the
ConstantPad2d function, which specifies the constant value
as the padding. Zero padding is a special case of constant
padding. Mirror padding uses the ReflectionPad2d function
in the torch package. Compared with constant padding, the
mirror padding method is likely to obtain better convolution
results. The filled edge of the image is doubled in size.
Repeated padding uses the ReplicationPad2d function in the
torch package, which repeats the edge pixel value of the
image, or extends the new boundary pixel value with the edge
pixel value. The boundary pixel value after filling is a copy
of the original pixel. The choice of padding method is more
important for a small image but has little influence for a larger
image.

3.3 Cross Entropy Loss
Cross entropy [14] can measure the different degrees
between two different probability distributions in the same
random variable. In the classification model, it is expressed
as the difference between the true probability distribution
and the predicted probability distribution. The smaller the
cross-entropy value, the better the prediction of the model.
The cross-entropy loss in binary classification is expressed as
L, as shown in Eq. (4).

L= [y log ŷ + (1− y) log(1− ŷ)]. (4)

The ŷ is the prediction distribution. The y is the real
label.

There are several variations of cross-entropy loss [15],
such as Cross Entropy Loss with Squared Loss, Sample
Pairing Cross Entropy Loss, Boundary Cross Entropy Loss,
Structured Cross Entropy Loss, andWeighted Cross Entropy
Loss [16], and others. Boundary Cross Entropy Loss is
used to solve the problem of extremely unbalanced data
distribution. By setting the boundary of each category, the
positive and negative samples are separated to reduce the
misclassification of negative samples. Sample Pairing Cross
Entropy Loss is often used in recommendation systems.
By pairing positive and negative samples, the model can
learn the features of both positive and negative samples
in the training process. Structured Cross Entropy Loss is
used to deal with sequential data or multi-label classification
problems, which can consider the correlation between labels.

Weighted Cross Entropy Loss is commonly employed to
address imbalances in categories, where certain categories
appear more frequently than others in the dataset. By
assigning different weights to different categories, the model
can pay more attention to those categories that occur less
frequently in the training process. The Weighted Cross
Entropy Loss is capable of addressing the problem of class
imbalance more effectively.

The defect areas of the samples are extremely different,
even though they are relatively small. If Cross Entropy Loss is
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Figure 3. The changes in the feature gradient after normalization.

used, it is difficult to focus on the characteristics of the defect
samples in the training. However, Weighted Cross Entropy
Loss can solve this problem well and make the model pay
more attention to the characteristics of defect samples. The
Weighted Cross Entropy Loss function is shown in Eq. (5).

Lw= [y ∗w1 ∗ log ŷ + (1− y) ∗w2 ∗ log(1− ŷ)]. (5)

4. EXPERIMENTS
4.1 Hyper-parameters
Batch normalization, convolution kernel, sliding window,
pooling, padding, Weighted Cross Entropy Loss, and other
techniques are employed by the LDFISB in the training
processes. Hyper-parameters are configured according to
Table II to enhance the accuracy of the prediction by LDFISB.
The initial LR (learning rate) is 0.003 and the momentum
is 0.9. It determines how much the model’s weights will
change at each iteration and how the model can ‘‘remember’’

the direction of the gradient and continue moving in that
direction even if the gradient changes slightly. A handful
of the original images are transformed to generate a large
number of generated images. Transformations of images
include clipping, rotation, affine, brighten, and others. Three
input images have been transformed from the original
images, as shown in Figure 4. The APSD includes two
categories of flaw and flawless products, which consist of
5000 flaw images and 5000 flawless images. The ratio of
the training dataset, validation dataset, and test dataset is
7:2.5:0.5. The LDFISB model is trained for 800 steps, with a
focus on observing the changes in the learning rate’s decay at
100, 200, 300, 400, 500, and 600 epochs.

For the classification task of the flaw and flawless
products, the LDFISB uses the SGD optimizer with an initial
learning rate of 0.003, a momentum of 0.9, and an initial
batch size of 16. The input image’s tensor has a shape
of (299, 299, 3). We adopt a simple heuristic fine-tuning
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Figure 4. The original images generate the input images through transformation by clipping, rotation, affine, and brightness.

Table II. Hyper-parameters of the LDFISB.

Hyper-parameter LR Momentum Batch HSB Total steps

Value [3e-3, 3e-4, 3e-5, 3e-6, 3e-7] [0.9, 0.09, 0.009, 0.0009] [16, 32, 64, 128] [100, 200, 300, 400, 500, 600] [400, 500, 800, 1600]

strategy [17]. The configuration of HSB (hyper-parameter
schedule boundaries) is [100, 200, 300, 400, 500, 600]. The
LDFISB model can achieve perfect loss curves on the APSD
dataset by achieving perfect loss curves through fine-tuning
milestones.

4.2 Training
It is difficult to achieve perfect accuracy during training a
few-shot object dataset by a CNN. CNN models are suitable
for training a large-scale dataset to learn the features of
images, but it does not generalize to few new examples of
data. For example, when a handful of original images are
directly trained on the ResNet-50× 1 network, overfitting
occurs, as shown in Figure 5.

Although the loss in training and validation sets show a
downward trend in the whole epoch, it fluctuates too much
at the beginning of the epoch. It shows that the data has
a relatively large difference, and the change of features is

relatively large when extracting the features of the image. The
accuracy of training remained at [0.99, 1], and the accuracy
of the test changed greatly at the beginning. Overfitting
happens when the model starts using irrelevant features for
prediction.

Our primary concern should be overfitting since we
only have a few-shot object original image [18]. As the
background of the images is very similar, it is difficult to
obtain the features of the defect areas. The characteristics of
the image affect the accuracy of the CNNmodel. The transfer
learning for an image classification task is an appropriate
attempt to train on our dataset. Our proposed LDFISB
algorithm is a transfer learningmethod that uses the training
parameters of the ResNet-50× 1 network on the CIFAR100
dataset, and then fine-tuning the network to achieve the
classification task. The result of training the APSD dataset
is shown in Figure 6.
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Figure 5. The ResNet-50×1 network directly trained the original dataset. The result shows that the change of loss is large, and the change of the accuracy
is inconsistent.

Figure 6. Training the APSD dataset on the ResNet-50×1 network by transfer learning.

Fig. 6 suggests that the training process is not ideal,
although the accuracy of training and test sets are consistent.
Data augmentation is an approach to combat overfitting, but
it is not suitable because our augmented samples are still
highly correlated.

The focus for overcoming overfitting should be the
entropic capacity of the model, which is how much
information is stored in the model. Using more features
can improve the accuracy of a model that can store a

lot of information, but storing irrelevant features is also
a drawback. If the model is limited to storing only a few
features, it must prioritize the most significant data that is
more likely correlated, and have a better generalization.

The LDFISB method adopts different ways to modulate
entropic capacity, i.e. batch normalization, regularization,
boundary padding, and dropping. Regularization, such as L1
or L2 regularization [19], consists of forcingmodel weights to
take smaller values. The LDFISB model uses few layers and
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Figure 7. Training the APSD dataset on the ResNet-50×1 network by the proposed LDFISB algorithm.

Figure 8. The LDFISB model predicts the different types of flawed product samples. (Group a with different types of flaws and 1860×729 sizes, Group
b with the patch of the product surface, and Group c with several transformations).

few filters in the head layer, and data augmentation for input
images. Dropout also helps reduce overfitting, by deleting
the parameters to disrupt random correlations occurring in
the training. According to the table of hyper-parameters, the
optimal LDFISB model is obtained after several trainings.
The loss and accuracy of the model are shown in Figure 7.

4.3 Prediction
We selected 3 groups of images, i.e. different types of flaws,
a part image of the product surface, and a transformed
image, for prediction by the LDFISB model and the results
are shown in Figure 8. The original images of Group a
with different types of flaws and 1860× 729 sizes, Group
b with the patch of the product surface, and Group c with
several transformations tested the accuracy of the LDFISB
model. The different original images can fully verify the
robustness of the model. The results of the test show that the
LDFISB model is perfect for distinguishing between flawed
and flawless products.

5. COMPARISON ANDDISCUSSION
5.1 Comparison
The LDFISB is tested to generalize across three pre-training
datasets, i.e. CIFAR100, CIFAR10, and ImageNet. The
transfer model employs three different Backbone networks,
i.e. ResNet-50 × 1, ResNet-101 × 1, and ResNet-101 × 3.
According to the APSD dataset, the model is devised
with more efficient application-specific hyper-parameters.
For instance, we tested the LDFISB model using an RTX
GPU machine on the CIFAR10, CIFAR100, and ImageNet
datasets [20], while increasing batch size from 16 to 128
and LR from 0.003 to 0.001. Three ResNet models are
used to compare the different datasets. The default Hyper-
parameters were developed in the training process to
achieve the optimal model. To exploit the desired accuracy,
it is necessary to adjust the LR and schedule (steps).
Meanwhile, the code applies a batch-splitting technique
(‘‘micro-batching’’) to reduce memory requirements. The
results of comparison obtained by different models on
different datasets are shown in Table III, which shows that
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Table III. The LDFISB model is tested to generalize across three pre-training datasets
by the transfer model.

Transfer model Pre-training Accuracy

ResNet-50× 1 ImageNet 85.49%
ResNet-101× 1 ImageNet 85.87%
ResNet-101× 3 ImageNet 86.26%

ResNet-50× 1 CIFAR10 84.52%
ResNet-101× 1 CIFAR10 84.12%
ResNet-101× 3 CIFAR10 83.87%

ResNet-50× 1 CIFAR100 86.70%
ResNet-101× 1 CIFAR100 85.65%
ResNet-101× 3 CIFAR100 85.27%

the model of transfer learning on the CIFAR100 pre-training
dataset achieves the highest accuracy.

5.2 Discussion
Transfer learning involves transferring knowledge learned
from a pre-trained model on one task to a different but
related task.While transfer learning has shown great promise
in improving the accuracy and efficiency of neural network
models, there are limitations and challenges. One major
problem with transfer learning is domain shift. Domain
shift occurs when there is a difference between the data
distribution of the source domain, where the pre-trained
model was trained, and the target domain, where the model
is being applied. The data in the target domain have a
different distribution or feature space than the data in
the source domain. This can lead to an overfitting in
model performance, as the knowledge transferred from the
pre-trained model may not be relevant to the target domain.
For example, if the original image is directly trained on the
ResNet model, overfitting will occur. Another challenge in
transfer learning is task transferability. While some tasks
may be highly related and transferable, others may not. For
example, a pre-trainedmodel on common object image tasks
may not be as transferable to uncommon object images with
similar background. Therefore, finding the right pre-trained
model for a given task can be a challenging task in itself.

Transfer learning can also suffer from negative transfer.
Negative transfer [21] occurswhen the pre-trainedmodel has
learned features or patterns that are not relevant to the target
task and harms the model’s performance. This is often due to
differences in the data distribution or feature space between
the source and target domains.

Furthermore, there is the issue of ethical concerns in
transfer learning. Pre-trained models may have been trained
on biased or unethical data, and transferring this knowledge
to a new taskmay perpetuate biases or ethical concerns in the
new domain. Therefore, it is important to carefully consider
the ethical implications of transfer learning and apply it
responsibly.

6. CONCLUSIONS
Deep learning usually requires large amount of data to
train a model to complete the task. Learning the feature
of few-shot object images is a challenge. Although original
images are few, our proposed LDFISB method provides a
feasible solution. This model is trained on a large-scale
dataset such as CIFAR100, and then the model is fine-tuned
based on the original model and parameters to achieve
classification tasks on a new APSD dataset. The proposed
model of transfer learning can enhance the accuracy of the
prediction, which accurately predicts the flaw area of the
product image. Moreover, it achieves the highest accuracy on
the CIFAR100 pre-training dataset. While transfer learning
has shown great potential in improving the performance of
machine learning models, it is not without its limitations
and challenges. Domain shift, task transferability, negative
transfer, and ethical concerns are just a few of the issues
that need to be carefully considered when applying transfer
learning techniques.
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