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Abstract
Accurate and precise classification/quantification of skin

pigmentation is critical to address health inequities such as for
example racial bias in pulse oximetry. Current skintone classifi-
cation methods rely on measuring or estimating the color. These
methods include a measurement device or subjective matching
with skintone color scales. Robust detection of skin type and
melanin index is challenging, as these methods require precise
calibration. And recently acquired sun exposure may affect the
measurements due to tanning or erythema.

The proposed system differentiates and quantifies skin type
and melanin index by exploiting the variance in skin structures
and skin pigmentation network across skin types. Our result with
a small study shows skin structure patterns are a robust, color in-
dependent method for skin tone classification. A real-time system
demo shows the practical viability of the method.

Introduction
Accurate and precise classification/quantification of skin

pigmentation is critical to address health inequities such as for
example racial bias in pulse oximetry [1]. FDA has also raised
considerations about the impact of skin pigmentation in the accu-
racy of medical devices [2]. The method described in our paper
proposes an objective method for skin pigmentation classification
for these concerns. The method can also be applied in a broader
context where skin tone measurement is required, such as photo-
therapeutic procedures (e.g. laser dermatological therapies, in-
tense pulse light for hair removal).

This paper describes a method for classifying skin pigmen-
tation using a deep neural network. The method exploits the vari-
ance in skin structures and skin pigmentation network across skin
types. As such, it is not dependent on skin color. The system
uses an optical setup consisting of an illuminator and a camera
with a cross-polarizer to capture skin images. These images are
then input to a deep neural network which outputs a melanin in-
dex or skin type. The network was trained using a dataset of skin
images from 27 subjects with varying skin tones. The results of
the study show that skin structure patterns provide a robust, color-
independent method for skin tone classification. A patent cover-
ing this method was recently applied for under [3].

Related Work
Melanometry approaches can be broadly categorized into

subjective and objective methods for assessing skin pigmentation
[4].

Subjective methods rely on visual assessment or self-
reporting:

• Fitzpatrick Skin Phototype (FSP): A six-category scale
based on an individual’s erythema sensitivity and tanning
ability. While widely used, it lacks a standardized color
palette and was originally designed as a questionnaire aim-
ing to classify response to UV exposure rather than skin
color.

• Race/Ethnicity Classification: Categorizing skin based on
self-identified race or subjective evaluation of ethnic origin.

• Von Luschan’s Chromatic Scale (VLS): Uses 36 opaque,
colored glass tiles as a visual reference for skin color classi-
fication.

• And Munsell, Massey, Perla, LÓreal, Pantone SkinTone
scale, and various other subjective skin tone scales: A color
space used to classify skin tones.

These subjective methods have limitations, including inter-
operator variability and potential inaccuracies due to mixed eth-
nicities or variations within ethnic groups [5].

Objective methods use optical devices to quantitatively mea-
sure skin pigmentation:

• Spectrophotometers: Measure light reflectance across the
visible spectrum (350nm-750nm).

• Narrowband Reflectance Devices: Use specific wave-
lengths, often in the visible and near-infrared regions, to as-
sess skin pigmentation.

• Tristimulus Colorimeters: Measure color values based on
the CIE Lab* color space.

Objective methods for melanometry provide quantitative and
objective measurements of skin pigmentation, allowing for con-
tinuous variable analysis rather than discrete categories. The cur-
rent recommended objective standard is Individual Topology An-
gle (ITA) using these Colorimeters [5].

Our proposed objective method differs from these existing
objective methods in several ways. Our method is not impacted
ambient light, calibration for color space, light interactions on
skin superficial disturbances and no clear sensitivity to tanning.
Our method only exploits the presence of skin structure patterns
to classify skin pigmentation.

Methodology
Our proposed objective method uses classification of skin

structure patterns. The skin structure patterns are captured by an
optical setup. A deep neural network is then used to classify the
captured images of the skin structure patterns.
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Skin structure pattern
In Figure 1 we show a schematic of a typical pigment net-

work. This pigment network is captured by the optical setup.
This pigment network consists of a grid of intersecting pigmented

Figure 1. Schematic of normal pigment network (to be updated)

“lines” forming a pattern. The anatomic basis[6] of the pigment
network is melanin in keratinocytes or in melanocytes along the
dermal epidermal junction, representing the way the rete ridge
pattern of the epidermis appears when viewed in the horizontal
plane. The less-pigmented “holes” of the network correspond to
tips of the dermal papillae and the overlying suprapapillary plates
of the epidermis. A wide diameter of dermal papillae would corre-
spond dermoscopically to wider network “holes,” whereas narrow
dermal papillae would result in a denser sieve of the grid. The pig-
ment network may be less visible if the rete ridge pattern contains
less melanin pigment.

Optical setup
The optical setup consists of an illuminator and a camera

with a cross-polarizer. In Figure 2 shows the spectrum of the illu-
minator to observe skin structures. The camera is a standard RGB
camera which images an area of approximately 5 by 5 millime-
ters.

Figure 2. Illumination spectrum to observe skin structure pattern

In our experiments, we used a consumer skin camera
(EH900U) to capture skin images.

Deep neural architecture for skin pigmentation
classification

Input to the deep neural network are the images from the skin
camera. In Figure 3 we show a sample of 4 different Fitzpatrick
Skin Phototypes (FSP) [4].

The input images were normalized for color. Because of this
normalization step, the trained network is then biased towards not

Figure 3. Skin images for 4 different Fitzpatrick Skin Phototypes with skin

structure patterns - 640x480 resolution of 0.5 cm diagonal of skin region

learning about color differences in the skin images, but focus-
ing on skin structures. In Figure 4 we show a sample of color-
normalized images for 4 different Fitzpatrick Skin Phototypes
(FSP) [4].

Figure 4. Color normalized skin images for 4 different Fitzpatrick Skin Pho-

totypes with skin structure patterns - 224x224 cropped patch from captured

images

A deep neural network was developed to take input images
skin and output a melanin index or skin type (FSP). The input im-
age patch size is of 224 by 224 pixels. The architecture of the
deep neural network was VGG16 [7]. It was trained as a regres-
sion problem with a mean squared error loss function.

Experiments
To train and validate our proposed objective method, we de-

signed a study protocol. With this study protocol, we created a
skin image dataset. The dataset was used for training and evalua-
tion of the deep neural network.

Study Collection
We collected data on 27 healthy subjects 1 aged 18–65 years

with varying skin tones.

Dataset
A dataset of 27 subjects was collected across 6 Fitzpatrick

skin types to train and test the deep neural network. The dataset
consists of answers to a short questionnaire and measurements
from two devices.

The questionnaire classifies each subject for the Fitzpatrick
Skin Phototype (FSP). The first device is the Mexameter MX18[8]
that gives a melanin index as ground truth. The second device
is the skin camera (EH900U) which captures skin image videos
at a frame rate of 30fps. The videos were close-ups of the skin
on the inner arm, outer arm, lower leg, and face cheek per sub-
ject. We captured images by recording with the close-up camera
while moving slowly over the area on each body location per sub-
ject with a recording length of 30 seconds. For each video, for
each body location, the camera was moved and held for around
30 spots. Each subject was recorded in two sessions, namely the
pre-summer session and the post-summer session. This was to
capture two different skin tanning levels. The total number of skin

1The study was approved by Philips Research’ Internal Committee
Biomedical Experiments, and all participants signed an informed consent
form to agree to use their data for research and development purposes
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images in this dataset is approximately 233,100 frames. Multiple
skin patch regions of 224 by 224 pixels are taken from these skin
images for training and inferencing. Figure 3 and Figure 4 shows
an examples of this dataset.

Results
In the first experiment, data were split on different body lo-

cations for each subject. First set was used to train the neural
network (train set). Second set was used to test the network (test
set). The test set contains images from an unseen body location
during training. The Figure 5 shows result of inferencing with the
test set with this trained neural network. The horizontal axis is the
expected skin type and vertical axis is the inferred skin type.

Figure 5. Inferencing result for different skin types

In the second experiment, to prove generalization of skin
structure for melanin index (and skin type) classification across
subjects, the dataset was split into folds for a cross-fold validation
experiment. Each fold consists of a training set (of 24 subjects
from 27 subjects) and a validation set (of 3 subjects from 27 sub-
jects). These training and validation sets are mutually exclusive.
The test set contains images from unseen subjects during training.

Figure 6, Figure 7 and Figure 8 show the results of the folds
mentioned before. The horizontal axis is the expected melanin in-
dex and vertical axis is the inferred melanin index. As shown with
each point in the figure, the trained network was able to differen-
tiate and infer the melanin index with a minimal error spread.

System Demo
To show the practical viability of our proposed method, we

have built a real-time system demo. In Figure 9 and Figure 10
show real-time inference of skin type 2 with melanin index of
107, and skin type 4 with melanin index of 296 respectively.

The real-time demo consists of 4 components: (1) EH900U
camera (2) Raspberry Pi 2 Model B, (3) Intel Neural Compute
Stick 2[9] and (4) display. EH900U camera streams live skin im-
ages to Raspberry Pi 2. Raspberry Pi 2 acts as a control processor
and uses the Intel Neural Compute Stick. The described deep neu-
ral network has been deployed in the Intel Neural Compute Stick
using Intel OpenVino [10] for real-time inference. Finally, the
display shows the captured skin image together with inferencing
skin type and inferencing melanin index.

Figure 6. Inferencing result for a training fold A

Figure 7. Inferencing result for a training fold B

Conclusions
This paper discusses a method that uses a deep neu-

ral network to classify skin pigmentation by exploiting color-
independent skin structures. The network takes images from a
skin camera as input and outputs a melanin index or skin type.
The images are normalized for color, which biases the network to-
wards learning about skin structures rather than color differences.
The network was trained using a dataset of 27 subjects across 6
Fitzpatrick skin types. The dataset was split into training and val-
idation sets for cross-fold validation. The results showed that the
network was able to differentiate and infer the melanin index with
minimal error. A real-time system demo was also built to show
the practical viability of the method.
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