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Abstract
This paper proposes a novel frame selection technique based

on embedding similarity to optimize video quality assessment
(VQA). By leveraging high-dimensional feature embeddings ex-
tracted from deep neural networks (ResNet-50, VGG-16, and
CLIP), we introduce a similarity-preserving approach that pri-
oritizes perceptually relevant frames while reducing redundancy.
The proposed method is evaluated on two datasets, CVD2014 and
KonViD-1k, demonstrating robust performance across synthetic
and real-world distortions. Results show that the proposed ap-
proach outperforms state-of-the-art methods, particularly in han-
dling diverse and in-the-wild video content, achieving robust per-
formances on KonViD-1k. This work highlights the importance of
embedding-driven frame selection in improving the accuracy and
efficiency of VQA methods.

Keyworkds: Video quality assessment, Frame selection, Em-
bedding similarity, Deep Neural Networks.

Introduction
The proliferation of video content across digital platforms,

from ultra-high-definition streaming and immersive augmented
reality/virtual reality experiences to real-time video conferenc-
ing and user-generated social media, has intensified the demand
for robust video quality assessment (VQA) methodologies. As
global internet video traffic is projected to dominate 82% of all
consumer internet traffic by 2025 [17], the imperative to deliver
visually coherent and perceptually satisfying content grows expo-
nentially. VQA serves as the cornerstone for this endeavor, aim-
ing to objectively evaluate perceptual quality by simulating hu-
man visual sensitivity to artifacts caused by compression, trans-
mission errors, or computational bottlenecks [21, 23]. Its applica-
tions are critical: streaming platforms leverage VQA to optimize
bitrate-ladder algorithms [5], telecom operators use it to moni-
tor network-induced impairments, and developers rely on it to re-
fine encoding pipelines, all while balancing bandwidth constraints
against the viewer’s quality-of-experience (QoE).

Conventional VQA approaches, such as PSNR, SSIM [20],
and VMAF [10], are often used at the frame level. However, they
depend on uniform or random frame sampling to reduce computa-
tional overhead. This strategy risks overlooking the temporal dy-
namics and spatial complexity inherent in video content. For in-
stance, a high-motion sports sequence with rapid scene transitions
or a slow-paced cinematic shot with nuanced textures may be in-
adequately represented by sparse, arbitrarily selected frames. Hu-
man observers, inherently attuned to motion saliency and spatial
detail, perceive quality degradation unevenly across such varied
content, yet, it is poorly captured by traditional sampling. Studies

indicate that inconsistent frame selection can skew vision tasks in
critical edge cases, leading to degraded performances [14]. This
gap underscores the need for a frame selection paradigm that pri-
oritizes perceptually critical frames, such as those encapsulating
salient motion, structural complexity, or scene transitions, to align
algorithmic assessments with human judgment.

The emergence of learning-based models addressed these
limitations through adaptive sampling. For instance, TLVQM [8]
employed a two-level approach, combining short-term frame-
level features, such as blur and noise, with long-term video-level
features, such as scene cuts, effectively balancing dense sam-
pling of low-level details with sparse high-level semantic anal-
ysis. VSFA [9] introduced saliency-guided temporal pooling,
weighting frames by visual importance using pre-trained saliency
maps, though it retained uniform sampling upfront. In con-
trast, GST-VQA [1] adopted a dual-branch spatiotemporal sam-
pler, extracting global motion patterns via 3D-CNNs on down-
sampled clips while preserving local textures through 2D-CNNs
on high-resolution patches, a hybrid approach to capture multi-
scale distortions. CoINVQ [19] leveraged contrastive snippet
sampling, selecting video segments with similar/dissimilar dis-
tortions for self-supervised pretraining, bypassing the need for
reference videos. Meanwhile, transformer-based models like
Full-resolution Swin-T [11] used windowed attention across non-
overlapping frame patches, enabling full-resolution processing
without downsampling but at high computational cost. Address-
ing efficiency, FAST-VQA [22] pioneered fragmented grid sam-
pling, splitting videos into short clips and spatially subsampling
mini-patches, such as 32×32 grids, to drastically reduce input
size while retaining global quality perception—achieving 100×
speed gains over conventional methods. These advancements
highlight a shift from naive uniform sampling to content-aware,
efficient spatiotemporal sampling, balancing perceptual accuracy
with computational feasibility, yet challenges remain in handling
ultra-long videos and preserving fine-grained details.

Emerging advancements in representation learning offer a
promising direction toward achieving an optimized frame selec-
tion for VQA, embedding similarity [18, 6]. By quantifying se-
mantic and structural relationships between frames in a high-
dimensional feature space, this approach enables the identifica-
tion of key frames that collectively represent a video’s percep-
tual essence. Unlike naive sampling, embedding-driven selection
adapts to content characteristics, ensuring that frames with high
informational entropy, such as dynamic movements and texture-
rich scenes, are prioritized. Such a method not only mirrors the
human visual system’s adaptive attention but also bridges the gap
between algorithmic efficiency and assessment accuracy. By do-
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ing so, a dual advantage critical for next-generation VQA sys-
tems operating at scale is achieved. This paper explores how opti-
mizing frame selection through embedding similarity can redefine
video quality evaluation, offering a pathway to assessments that
are both computationally efficient and perceptually faithful. To
this end, we introduce a frame selection through embedding sim-
ilarity analysis. This ensures that perceptually critical frames are
retained to derive quality evaluation. The key contributions are:

• We introduce an embedding similarity-based selection
method using the similarity-preserving technique to prior-
itize frames with high perceptual relevance.

• We conduct a comprehensive evaluation using embeddings
from ResNet-50 [3] (for texture and shape features), VGG-
16 [16] (for spatial details sensitivity), and CLIP [13] (for
semantic context awareness). This ensures capturing diverse
distortion characteristics and analyzing the resilience of the
proposed selection method to various embeddings.

• We validate on two datasets, CVD2014 (with synthetic dis-
tortion) and KonViD-1k (with authentic user-generated con-
tent distortions), to demonstrate the robustness across syn-
thetic and real-world scenarios.

In the following section, we present the proposed methodol-
ogy for improving VQA through efficient frame selection.

Methodology
In this section, we present the proposed framework for op-

timizing VQA through embedding similarity-based frame selec-
tion. The framework consists of three key stages. First, a pre-
processing and embedding generation step extracts feature repre-
sentations from video frames using a deep neural network-based
encoder. Second, an embedding similarity-based selection mech-
anism identifies the most representative frames by analyzing fea-
ture space similarities, thereby reducing redundancy while pre-
serving essential visual information. Finally, a quality estimation
stage evaluates video quality based on the selected frames and
their corresponding patches.

Preprocessing
The preprocessing stage consists of two fundamental steps:

patch extraction and feature encoding. This stage ensures that
video frames are effectively represented in a compact feature
space while retaining essential visual information for subsequent
processing.

Given an input video V = {t1, t2, . . . , tn}, where each frame
tk ∈RH×W×3 has spatial dimensions H×W and three color chan-
nels, patches are extracted using a uniform sampling strategy. Let
Pk = {pk,1, pk,2, . . . , pk,Np} denote the set of patches sampled from
frame tk, where each patch pk,i has a fixed resolution of 224×224
pixels. In this framework, Np = 5 patches per frame are selected
to ensure diverse spatial coverage while maintaining computa-
tional efficiency. The uniform sampling approach ensures that
patches are distributed evenly across each frame, capturing both
background and foreground details.

Each extracted patch pk,i is subsequently processed by a vi-
sual feature encoder E : R224×224×C →Rd , which maps the patch
into a d-dimensional feature embedding:

ek,i = E (pk,i), ek,i ∈ Rd . (1)

Here, ek,i represents the feature embedding corresponding to the
i-th patch from frame tk. The encoder E is implemented as a deep
neural network trained to extract discriminative features related
to texture, structure, and spatial coherence. In this study, we em-
ploy three widely used visual encoders, including ResNet-50 [3],
VGG-16 [16], and CLIP-B/32 [13], to generate robust and diverse
feature embeddings. These models have demonstrated strong per-
formance in various vision tasks, making them suitable for ex-
tracting meaningful representations from video content.

The final output of this stage is a set of embeddings repre-
senting all extracted patches across the entire video. Formally,
the complete embedding representation of the video V is given
by:

E(V ) =
m⋃

k=1

Np⋃
i=1

ek,i, ek,i = E (pk,i), (2)

where E(V ) denotes the set of all feature embeddings extracted
from the video, m is the total number of frames, and Np is the
number of patches per frame. These embeddings serve as the
foundation for the subsequent frame selection stage, where redun-
dant information is minimized while preserving the most relevant
visual features for quality assessment.

Embedding similarity-based selection
The objective of this stage is to identify the most relevant em-

beddings while discarding those that do not contribute meaningful
information for quality assessment. To achieve this, we leverage
similarity preservation, a widely used concept in feature selection
for high-dimensional data [24], and integrate it with residual anal-
ysis to refine patch selection.

Selecting an optimal subset of features using the similarity-
preserving approach involves learning a transformation matrix
W j that maps the original high-dimensional embedding space E j
into a lower-dimensional representation E jW j , while preserving
the similarity structure among the embeddings. This optimization
problem is formulated as:

min
W j

∥∥∥(E jW j)(E jW j)
⊤−S j

∥∥∥2

F
+α∥W j∥2,1, (3)

where:

• S j represents the similarity matrix computed in the original
embedding space E j, using the Euclidean distance as the
similarity measure.

• W j ∈ Rd j×h is the transformation matrix, where h (h ≪ d j)
denotes the dimensionality of the reduced space E jW j.

• The term α∥W j∥2,1 enforces sparsity in W j , promoting the
selection of only the most relevant features.

This formulation ensures that the transformed embeddings
retain the structural relationships present in the original feature
space while reducing redundancy.
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Figure 1: Workflow for extracting visual embeddings from video frames. Patches are uniformly sampled from the input video frames,
and each visual patch pi ∈ P is represented by an embedding ei.

To further refine the embeddings, we introduce residual anal-
ysis, based on the assumption that after projection into the re-
duced space, the similarity structure of relevant embeddings will
be preserved, while that of irrelevant embeddings will not. To
formalize this, we define a residual matrix Ri, which quanti-
fies the deviation of the transformed embeddings from the eigen-
decomposition of the similarity matrix:

Ri = (EiWi)
⊤−Z⊤

i −Θ, (4)

where:

• Zi ∈ Rm×h is the eigen-decomposition of the similarity ma-
trix, such that Si = ZiZ⊤

i .
• Θ is a random matrix assumed to follow a multivariate nor-

mal distribution [15].

Each column of Ri corresponds to a patch pi in the embed-
ding space E(V ). A large ℓ2-norm of Ri(:, i) indicates that the
patch pi is likely irrelevant, as its similarity structure is not well
preserved.

Using this residual-based filtering mechanism, we define the
final patch selection optimization problem as follows:

min
Wi,Ri

∥EiWi −Zi −R⊤
i ∥2

F +α∥Wi∥2,1 +β∥Ri∥2,1, (5)

where β is a regularization hyperparameter that controls the spar-
sity of Ri and, consequently, the number of patches retained. By
employing this embedding similarity-based selection approach,
we effectively reduce the number of patches required for accu-
rate quality prediction. This selective filtering allows us to retain
the most informative embeddings while discarding redundant or
irrelevant ones.

In the next stage, these selected embeddings serve as input
for a regression model, which learns a mapping between the re-
tained features and the mean opinion scores (MOS). The details
of this quality estimation process are discussed in the following
section.

Quality estimation
In this stage, the goal is to predict the perceptual qual-

ity of the video content by mapping the selected visual embed-
dings to quality scores. The selected embeddings, denoted as

E(V )sel ⊂ E(V ), encapsulate the most informative features for
quality prediction after the embedding selection process.

We formulate the quality assessment task as a regression
problem. Let ei ∈ Rh represent the i-th selected embedding and
yi ∈R denote the corresponding Mean Opinion Score (MOS) that
reflects the subjective quality of the video. The regression model
f : Rh → R is designed to learn the mapping between the feature
space and the MOS. In its simplest linear form, the model can be
expressed as:

f (ei) = w⊤ei +b, (6)

where w ∈ Rh is the weight vector and b ∈ R is the bias term.
To capture potential non-linear relationships between the embed-
dings and the quality scores, more complex models such as a
multi-layer perceptron (MLP) may be employed. In that case,
the model is formulated as:

f (ei) = g(ei;Θ), (7)

where g represents the non-linear function parameterized by T het
(comprising weights and biases across multiple layers).

To train the regression model, we minimize a loss func-
tion that measures the discrepancy between the predicted quality
scores and the ground truth MOS. To this end, we use the mean
squared error (MSE) loss, given by:

L =
1
N

N

∑
i=1

(yi − f (ei))
2 , (8)

where N is the number of training samples. Once the model is
trained, it predicts the quality score for any new input embedding
ei. For a given video, quality assessment can be performed by ag-
gregating the predictions across the selected patches. The overall
video quality score Q is then computed as an aggregation function
using an average pooling:

Q = Avg
(
{ f (ei)}Nsel

i=1

)
, (9)

where Nsel is the total number of selected embeddings.
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Results and discussion
Experimental details

Implementation: the proposed study is implemented using
PyTorch. All experiments are conducted on a server equipped
with an Intel Xeon Silver 4208 2.1GHz CPU, 192GB of RAM,
and an Nvidia Tesla V100S GPU with 32GB of memory. We
train the regression model for 200k iterations with a batch size of
128. We employ the Adam optimizer [7] to update the parameters
of the model, with an initial learning rate 1e−4.

Datasets: We used two benchmark dataset, the
CVD2014 [12] and KonViD-1k [4]. The CVD2014 dataset
comprises 234 videos with synthetic distortions, including
compression artifacts, Gaussian noise, and blurring, derived from
12 reference videos. It is annotated with MOS and is widely used
for evaluating VQA algorithms under controlled conditions. In
contrast, the KonViD-1k dataset contains 1,2k authentic, user-
generated videos with naturally occurring distortions, such as
compression artifacts, camera noise, and motion blur. Annotated
with MOS through large-scale subjective testing, KonViD-1k
is designed for no-reference VQA in real-world scenarios.
Together, these datasets provide a comprehensive framework for
evaluating VQA methods, with CVD2014 focusing on specific
synthetic distortions and KonViD-1k addressing the challenges
of diverse, in-the-wild video content.

Evaluation criteria: we evaluate the performance using two
metrics: Pearson linear correlation coefficient (PLCC) and Spear-
man rank correlation coefficient (SRCC). To account for scale
discrepancies between predicted quality scores and subjective rat-
ings, a non-linear mapping is applied to the predicted scores using
a five-parameter logistic function [2] prior to calculating the per-
formance metrics.

In addition to PLCC and SRCC, we compute the relative
contrast to mesure how much the performance obtained using the
selection algorithm deviates from the baseline as the selection rate
varies. It helps in understanding the trade-offs between reatined
embeddings rate and model performance. The relative contrast is
a metric used to quantify the difference between a model’s per-
formance at a given selection rate and its baseline performance.
It is expressed as a percentage and calculated using the following
formula:

Relative contrast =
Perfrate−Perfbase

Perfbase
×100 (10)

where Perfrate is the performance metric (PLCC or SRCC) at a
specific selection rate and Perfbase is the baseline performance
metric (PLCC or SRCC) achieved with the full training set with-
out selection.

Performance analysis
With the intent to assess the effictiveness of the proposed se-

lection algorithm, we first analyze the performance without selec-
tion considered as the baseline to compare with. The baseline per-
formances are summerized in Table 1. Based on the obtained per-
formances on the CVD2014 and KonViD-1k datasets, we can see
that CLIP-B/32 consistently achieves the highest correlation with
human subjective scores, outperforming ResNet-50 and VGG-
16 in both PLCC and SRCC. On CVD2014, CLIP-B/32 attains
a PLCC of 0.841 (±0.020) and an SRCC of 0.830 (±0.015),

while on KonViD-1k, it achieves a PLCC of 0.830 (±0.015) and
an SRCC of 0.822 (±0.018). This superior performance is at-
tributed to CLIP’s ability to encode semantic context and cross-
modal relationships, which are critical for capturing perceptual
quality across diverse video content. In contrast, ResNet-50 and
VGG-16, while competitive, exhibit slightly lower performance,
likely due to their reliance on spatial and textural features without
the semantic depth of CLIP. These findings highlight the impor-
tance of semantically rich embeddings for VQA and establish a
robust baseline for evaluating the effectiveness of frame selection
strategies in improving video quality.

Table 1: Baseline performances without selection on CVD2014
and KonViD-1k datasets. The best results in each column are
highlighted in bold red.

Encoder PLCC (± Std) SRCC (± Std)

CVD2014

ResNet-50 0.832 (± 0.027) 0.820 (± 0.018)
VGG-16 0.825 (± 0.025) 0.818 (± 0.017)
CLIP-B/32 0.841 (± 0.020) 0.830 (± 0.015)

KonViD-1k

ResNet-50 0.820 (± 0.020) 0.815 (± 0.020)
VGG-16 0.815 (± 0.020) 0.805 (± 0.020)
CLIP-B/32 0.830 (± 0.015) 0.822 (± 0.018)

To thoroughly evaluate the impact of the proposed selection
method on VQA performance, we analyze results across selection
rates ranging from 10% to 90%. These results are compared to
the baseline scenario, where no selection is applied (i.e., using
100% of the sampled patches). The performance trends in terms
of PLCC and SRCC are illustrated in Fig.2 for CVD2014 and
Fig.3 for KonViD-1k.

The curves depict the variations in PLCC and SRCC as a
function of the selection rate, along with the relative contrast. As
observed, the performance trends across both datasets highlight
the effectiveness of the proposed embedding-based frame selec-
tion in enhancing VQA accuracy compared to the baseline. No-
tably, both PLCC and SRCC values increase until they reach the
baseline performance at selection rates of 40–50% for CVD2014
and 60–70% for KonViD-1k, as indicated by the relative contrast
curves. This demonstrates that reducing noisy frames and retain-
ing more informative ones improve alignment with human subjec-
tive scores. The performance continues to improve with increas-
ing selection rates, eventually surpassing the baseline, confirming
the benefits of the proposed selection approach.

A performance plateau is observed for both datasets, but it
occurs earlier on CVD2014 and later on KonViD-1k. This dis-
crepancy can be attributed to the differences in content diversity
and quality variations between the datasets. CVD2014 contains
professionally captured content with relatively consistent distor-
tions, allowing the model to reach optimal performance with a
lower selection rate. In contrast, KonViD-1k consists of in-the-
wild user-generated videos, which exhibit higher variability in
content and distortions. As a result, a higher selection rate is re-
quired to capture the broader range of quality-related information,
leading to a delayed performance plateau.
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Figure 2: Impact of the selection rate on the performances and rel-
ative contrast to baseline versions on the CVD2014 dataset. (Left)
Performance of PLCC and SRCC. (Right) Relative contrast com-
pared to baseline performance, expressed as a percentage change.

Performance comparaison
Table 2: Performance comparison with state-of-the-art methods
on CVD2014 and KonViD-1k datasets. The best and second-best
performances are respectively highlighted in bold red and bold
blue.

Method CVD2014 KonViD-1k

PLCC SRCC PLCC SRCC

TLVQM [TIP, 2019] 0.850 0.830 0.724 0.732
VSFA [MM, 2019] 0.870 0.868 0.794 0.784
GST-VQA [TCSVT, 2022] 0.845 0.831 0.825 0.814
CoINVQ [CVPR, 2021] 0.844 0.830 0.764 0.767
Fr-Swin-T [ECCV, 2022] 0.871 0.868 0.838 0.841
FAST-VQA [ECCV, 2022] 0.892 0.877 0.850 0.854

Proposed (ResNet-50) 0.860 0.851 0.855 0.849
Proposed (VGG-16) 0.842 0.830 0.840 0.840
Proposed (CLIP-B/32) 0.869 0.866 0.857 0.856

To validate the proposed method against state-of-the-art ap-
proaches, we compared its performance using different visual en-
coders (ResNet-50, VGG-16, and CLIP-B/32) with several estab-
lished methods, including TLVQM [8], VSFA [9], GST-VQA [1],
CoINVQ [19], Fr-Swin-T [11], and FAST-VQA [22]. The results,
summarized in Table 2, demonstrate that FAST-VQA achieves the
highest performance on the CVD2014 dataset, with a PLCC of
0.892 and an SRCC of 0.877, indicating its strong alignment with
subjective quality scores. However, on the KonViD-1k dataset,
the proposed method with CLIP-B/32 embeddings outperforms
all existing approaches, achieving the highest PLCC (0.857) and
SRCC (0.856). This underscores the effectiveness of the em-
bedding similarity-based frame selection in enhancing quality as-
sessment, particularly for diverse and in-the-wild video content.
Additionally, the proposed method with ResNet-50 embeddings
achieves the second-best PLCC (0.855) on KonViD-1k, further
validating its reliability. While Fr-Swin-T performs competitively
on both datasets, it does not surpass the proposed method on
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Figure 3: Impact of the selection rate on the performances and
relative contrast to baseline versions on the KonViD-1k dataset.
(Left) Performance of PLCC and SRCC. (Right) Relative con-
trast compared to baseline performance, expressed as a percent-
age change.

KonViD-1k, suggesting that the proposed selection mechanism
refines feature representations more effectively for real-world
videos. Consistent performance is also observed with VGG-16
embeddings, highlighting the adaptability of the proposed frame-
work across varying video content. These results emphasize the
critical role of frame selection in improving video quality pre-
diction, particularly in scenarios with diverse content, where tra-
ditional and advanced learning-based VQA methods often face
challenges.

Conclusion
In this paper, we presented a novel approach to optimizing

video quality assessment (VQA) through embedding similarity-
based frame selection. By leveraging deep neural network em-
beddings (ResNet-50, VGG-16, and CLIP), we introduced a
similarity-preserving technique that effectively identifies and re-
tains perceptually relevant frames while discarding redundant or
noisy ones. This approach addresses the limitations of traditional
uniform or random sampling methods, which often fail to capture
the temporal and spatial nuances critical to human perception.

Our experiments on the CVD2014 and KonViD-1k datasets
demonstrated the robustness and effectiveness of the proposed
method. The results showed that the embedding similarity-based
selection significantly improves VQA performance, particularly
in handling diverse and real-world video content. On KonViD-
1k, the proposed method achieved state-of-the-art performance,
outperforming existing approaches in terms of both PLCC and
SRCC. Furthermore, the method demonstrated consistent perfor-
mance across different encoders, with CLIP-B/32 embeddings
yielding the best results due to their semantic richness and cross-
modal capabilities.
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