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Abstract 

Evaluating spatial frequency response (SFR) in natural scenes is 

crucial for understanding camera system performance and its 

implications for image quality in various applications, including 

machine learning and automated recognition. Natural Scene 

derived Spatial Frequency Response (NS-SFR) represented a 

significant advancement by allowing for direct assessment of 

camera performance without the need for charts, which have been 

traditionally limited. However, the existing NS-SFR methods still 

face limitations related to restricted angular coverage and 

susceptibility to noise, undermining measurement accuracy. In this 

paper, we propose a novel methodology that can enhance the NS-

SFR by employing an adaptive oversampling rate (OSR) and phase 

shift (PS) to broaden angular coverage and by applying a newly 

developed adaptive window technique that effectively reduces the 

impact of noise, leading to more reliable results. Furthermore, by 

simulation and comparison with theoretical modulation transfer 

function (MTF) values, as well as in natural scenes, the proposed 

method demonstrated that our approach successfully addresses the 

challenges of the existing methods, offering a more accurate 

representation of camera performance in natural scenes. 

Introduction 
Evaluating a spatial frequency response (SFR) in images is 

crucial for understanding camera system performance by 

quantifying how well a camera depicts the details and its 

implications for image quality in various applications, including 

machine learning and automated recognition. 

Traditionally, objective measurements of SFR also have been 

conducted using the edge-based spatial frequency response (e-SFR) 

algorithm [1], a standardized method based on the ISO 12233 which 

has been constantly evolving up to ISO 12233:2024 [2] now, 

utilizing slanted edges input for evaluation. The e-SFR 

measurement involves identifying regions of interest near slanted 

edges, computing the edge spread function (ESF) by projecting 

pixels along specific direction such as the direction perpendicular to 

the edge, deriving the line spread function (LSF) through 

differentiation, and finally applying a Fourier transform to the LSF 

to obtain the SFR or the modulation transfer function (MTF) [1]. 

The previously mentioned assessments of e-SFR basically relied on 

chart-based method, literally requiring the use of predetermined 

slanted edge patterns for evaluation, thereby restricting its 

applicability to common scene images, which often involve slanted 

edges. 

Fortunately, the introduction of Natural Scene Spatial 

Frequency Response (NS-SFR) [3] has made it possible to evaluate 

the camera performance in natural environments without the need 

for specialized charts. With the emergence of this approach, it has 

become possible to move beyond fixed chart-based analysis and 

extend camera performance assessment to general natural scene. 

While it fundamentally relies on the previous ISO 12233 e-SFR, it 

introduced some additional preliminary steps before deriving e-SFR 

by focusing on detecting and extracting suitable step edges from 

natural scene images [3].  

Whereby the NS-SFR proposed by Van Zwanenberg [3] 

divided the process into five main stages, it also may be broadly 

categorized into the following three functional aspects. The first is 

edge extraction, the second is region of interest (ROI) isolation & 

validation, and the third is MTF calculation. The first stage includes 

the use of the Canny algorithm to detect edges from the entire image 

[3]. The second stage involves extracting candidate ROI regions 

centered around the edges, performing edge isolation techniques and 

image processing such as pixel stretching, and validating the edges 

based on criteria such as angle, contrast, ROI size, and linearity and 

whether they are step edges [3]. The final stage is based on the 

traditional slanted-edge algorithm, the line spread functions (LSFs) 

from the edge ROIs are averaged into a single LSF considering 

several factors (such as the radial distances and the rankings of the 

MTF), and then the its MTF, so called mean MTF, is calculated in 

the end to represent the overall image resolution [3]. 

Although many studies on the NS-SFR and its associated 

parameter [1, 3, 4] have been conducted, the existing NS-SFR have 

consistently showed limited performance in special conditions 

especially according to the angle and noise in the extracted ROIs. 

To ensure reliable results, some existing methodologies [1, 3, 5] 

impose restrictions on the angles of edges or recommend an 

acceptable range for it, by excluding ROIs with angles greater than 

specific degrees such as 35°  due to their negative impact on 

accuracy, limiting its potential for comprehensive analysis. Given 

the characteristics of natural scenes, additionally, it is common for 

noisy images to be inputted, resulting in significant errors in the NS-

SFR results which is vulnerable to noise, as noise can affect edge 

detection and the accuracy of MTF measurements. 

In order to overcome the previously mentioned limitations, this 

paper propose a method for broader angle coverage and enhanced 

noise robustness of NS-SFR. Regarding the limited angle range, an 

adaptive oversampling rate (OSR) [6] and phase shift (PS) [7] 

method (hereafter referred to as an adaptive binning) suggested by 

Wu et al. [8] has been developed for accurate assessment of slanted 

edges at angles beyond 35 degrees. By applying this edge method in 

existing NS-SFR [3], we improved the MTF assessment across a 

broader range of angles. Even with the adaptive OSR and PS method, 

however, it is still insufficient to resolve the error issues caused by 

noise. Thus, we further implemented the Adaptive Windowing 

technique to improve noise robustness in images.  

The overall structure of this paper is as follows. First, based on 

the background knowledge of the e-SFR and NS-SFR discussed 

earlier [1, 3] we provide detailed methods of the Adaptive Binning 

and Adaptive Windowing techniques to enhance reliability of the 

MTF measurement in NS-SFR. Next, to evaluate the effectiveness 
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of the proposed approach, simulations comparing individual MTF 

analysis results against theoretical values and also verification in 

real images is conducted. Finally, we conclude by discussing 

implications of our method and suggesting future work directions to 

further enhance NS-SFR area. 

Methods 
Based on the existing NS-SFR [3] framework mentioned 

previously, our proposed method introduces key modifications to 

enhance result reliability while minimizing dependence on angle 

and noise levels. In the following sections, we will discuss the 

specific details regarding angle and noise level aspects, as well as 

other additional methods to improve reliability of MTF 

measurement in natural scene. 

Extend Angle Coverage 
The edge profile, which is also referred to as ESF (Edge Spread 

Function) is reconstructed by projecting pixel values into 1D super-

sampled array [1]. During the construction of the edge profile, it is 

crucial to select appropriate values for the oversampling rate(OSR) 

and phase shift (PS) in the binning method. The optimal adaptive 

binning method proposed by Wu et al. [8] offers a solution to 

overcome the limited range of edge angles. By implementing this 

approach into the NS-SFR, we were able to extend the angle 

coverage and enhance the accuracy of the results. 

According to this study [8], standard edge method in ISO 

12233: 2017 [1], with an oversampling rate fixed at 4, offers the 

benefit of low computational cost while ensuring valid data within 

the Nyquist limit. However, it becomes unsuitable for extremely 

small or large edge angles. In this perspective, it applies an adaptive 

binning method when extracting edge spread function (ESF), 

dynamically adjusting the binning width and its number of PS 

according to each edge angle [8]. To enhance accuracy, multi-phase 

binning was also employed as an additional method [8]. 

The specific OSR, PS values are determined by the following 

Equation (1). 

(OSR, NPS) =

{
 
 
 
 

 
 
 
 (8, 8), if 𝜃 ∈ [0, arctan

1

18
)deg

(
1

2tan(𝜃)
, 6) , if 𝜃 ∈ [arctan

1

18
, arctan

1

9
)deg

(
1

tan(𝜃)
, 4) , if 𝜃 ∈ [arctan

1

9
, arctan

1

4
)deg

(max [
1

tan(𝜃)
, 2] , 6) , if 𝜃 ∈ [arctan

1

4
, arctan 1)deg

(1) 

By applying this adaptive value set in the process of NS-SFR, 

we were able to effectively gather sufficient sampling data while 

reducing computational cost, even for edges with extreme angle 

which are highly likely to exist in natural scene. 

In addition, in order to make the NS-SFR more suitable for 

real-world images, i.e., to prevent the distortion in the edges from 

being more significantly reflected as the size of the ROI increases, 

in this study we applied a reduction from the existing maximum ROI 

height of 128 to 64. The validity of this value will be discussed in 

detail in the results section. 

Improve Noise Robustness 

Adaptive Windowing 

Although the adaptive binning method showed anti-noise 

ability, in the research by Wu et al. [8], the effect was not significant. 

The research also revealed that vulnerability to noise increases as 

the angle approaches 45° even at the same noise level. We diagnosed 

that this is due to the optimal ROI crop size varying with the angle, 

leading to a larger non-edge noise area as the angle gets closer to 

45°.  

To minimize the side effect, we applied an adaptive window 

(see Figure 1) based on Tukey with different widths depending on 

the edge width to tightly envelope the LSF by the use of Equation 

(2). 

𝑤𝑇𝑢𝑘𝑒𝑦(𝑥, ℎ) =

{
 

 
1,                                      if |𝑥| < 𝜏1

0.5 + 0.5 cos (
|𝑥| − 𝜏1 

|𝜏2 − 𝜏1|
) ,   if 𝜏1 ≤ |𝑥| < 𝜏2

0,                                       elsewhere

,    

where 
𝜏1 = edge width = 4s

𝜏2 = 2𝜏1
 (2) 

In particular, we extracted edge width information from ESF 

and applied an adaptive Tukey window instead of the fixed Tukey 

window which is applied to LSF when extracting SFR according to 

the flowchart depicted in Figure 1.  

 

 

Figure 1. Flowchart illustrating the process of applying an adaptive Tukey 
window during the extraction of the SFR from edge in ROI: the window equals 

for 1 for |𝑥| < 𝜏1 and tapers to 0 for  |𝑥| > 𝜏2 , factor 𝜏1 and 𝜏2 which are 

specifically described in Equation 2. 

Additionally, prior to calculating the edge width, noise was 

reduced by using Non-local means (NLM) denoising to the ROI, 

specifically to improve the accuracy of edge width measurement. 

Note that we inferred an approximate noise sigma, 𝜎𝑛, of each ROI 

using “estimate_sigma” function in skimage python library, and 

empirically determined the NLM strength to be set at 4n. 

The ESF from the denoised ROI was then fitted to an error 

function 𝑠 in Equation (3) using logistic regression. In Equation (3),  

𝑣(𝑥)  is ESF with an edge located at x = 0, and (𝑣𝑙𝑒𝑓𝑡 , 𝑣𝑟𝑖𝑔ℎ𝑡 ) 

represent the brightness levels on each left and right side of the edge 

in the ESF. Additionally, the optimized z-axis scale (s) is related to 

the edge width, with the relationship of the edge half-width, h ≈ 1/s. 

𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
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Figure 2. The ESF graph fitted with an error function s. The width of the ESF 
can be used to define a new z-axis scale (s) for resampling the ESF. 

Based on the edge width derived from this error function as 

shown in Figure 2, a window with a cosine tapered region, as 

previously mentioned, determined by a multiple of the measured 

edge width is finally applied.  

Additional Approaches 
In addition to the aforementioned methods, we also applied 

several supplementary approaches to improve noise robustness 

during the ROI selection. 

Specifically, a simple denoising step composed of medianBlur 

and bilateralFilter in OpenCV python library was added as a 

preprocessing before running the Canny detector, which is 

especially used to identify the edge locations from the natural scene. 

By applying this complementary step only used for detection, we 

aimed to extract necessary candidate edges, even in highly noisy 

conditions. 

Furthermore, after the conventional pixel stretching [3] which 

is conducted to exclusively isolate edge regions, we additionally 

added an additional brightness rescaling step. In brightness rescaling, 

we rescaled the pixels in a row to set both ends into specific fixed 

values which are same in all rows. These fixed values were set to 

the mean pixel values at both ends across all rows as depicted in 

Figure (3). 

  

Figure 3. Illustration of the effect of applying brightness rescaling: before and 
after. 

While the pixel stretching [3] removes nearby edges or artifacts 

by stretching the pixels horizontally, incorporating this method 

helped reduce distortion in the vertical direction, particularly being 

effective in reducing stripe patterns or the impact of unwanted high-

frequency signals that occurred after pixel stretching in the presence 

of significant noise or brightness gradients. 

Moreover, since the edge is analyzed with the height 

differences of an edge, we considered the noise level criteria 

redefined with Contrast-to-Noise Ratio (CNR) in Equation (4), 

where  𝑆𝐿𝑒𝑓𝑡 ,  𝑆𝑅𝑖𝑔ℎ𝑡 are signal intensity for each side of edge and 

𝜎𝑁𝑜𝑖𝑠𝑒 being standard deviation of image noise rather than SNR to 

be more suitable. In practice, we used this CNR when validating 

edge in perspective of noise.  

𝐶𝑁𝑅 =  
|𝑆𝐿𝑒𝑓𝑡   − 𝑆𝑅𝑖𝑔ℎ𝑡|

𝜎𝑁𝑜𝑖𝑠𝑒
 (4) 

Additional Improvements 

Continuous Weighting Factor 
Before extracting the average MTF which represents the whole 

image resolution, LSFs from the validated edge ROIs are averaged 

into a single LSF with corresponding weight factor. To ensure that 

the weight factor of each ROI accurately reflects its feature and the 

average MTF value correctly represents the actual image 

information, we decomposed the weight factor into more detailed 

components, focusing on three factors in this paper. 

The first factor is determined by field distance. In the previous 

method [3, 9], weight value according to field distance of each ROI 

was applied such that the weight decreases with increasing distance 

from the center in a discrete manner, whereas in our approach, we 

applied weight factor continuously. The second factor is determined 

by edge width, using the z-score of the distribution induced by edge 

width to assign a greater weight as it narrows. And the third factor 

is determined by z-scores of the distribution induced by deviation 

between each ESF and the pseudo-average ESF, primarily 

calculated by using the first and second factors computed earlier. 

Finally, the three aforementioned factors are multiplied together and 

applied to each ROI to derive final average LSF.  

The methods used in conventional and proposed are 

summarized in the following Table 1 and Table 2, respectively: 

Table 1. Comparison of Conventional and Proposed methods 
for ROI Extraction before MTF Calculation 

 Conventional Proposed 

ROI Max Height 128 64 

Noise Level SNR 5 CNR 5 

Angle [2.5, 35] [2, 44] 

Brightness  
Rescaling 

OFF ON 

Table 2. Comparison of Conventional and Proposed methods 
for MTF Calculation  

 Conventional Proposed 
Over Sampling Rate 
(OSR) 
in Projection 

Fixed OSR(4) Adaptive 
OSR(2~8) 

Phase  
in Projection 1 Phase 6~8 Phase 
Window Tukey Window Adaptive Window 

Averaging 
Only certain 
percent(%) of 
narrowest LSFs 
counted 

Every  LSFs 
counted  
with Proposed 
Weighting method 

 

Edge width, 2h 

Edge half width, h 

In
co

n
sisten

t 
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Measurement of Accuracy 

Simulation 
To evaluate the measurement accuracy of the MTF, we 

primarily assumed that an ideal step edge could be represented as 

the Heaviside step function. Subsequently, as it passes through the 

blurring system such as camera imaging system, we anticipated that 

the ideal MTF approximates an LSF with a 1D Gaussian profile as 

Equation (5). 

𝑀𝑇𝐹𝑖𝑑𝑒𝑎𝑙(𝑓) =  𝑒−2𝜋
2𝜎𝑏

2𝑓2 , 𝜎𝑏 :  𝑏𝑙𝑢𝑟 𝑠𝑖𝑔𝑚𝑎 (5) 

We conducted simulations under various conditions by 

controlling edge angle, contrast, blur, and noise parameters. 

Specifically, the sharpness was adjusted using Gaussian blurring 

with the blurring sigma, 𝜎𝑏. Based on the assumption of the ideal 

MTF, we quantified the MTF accuracy by calculating the root mean 

square error (RMSE) between the simulated MTFs calculated by 

applying the conventional or proposed methods and the ideal MTFs 

as in Equation (6) where k refers to spatial frequency, and N 

indiciating the number of all components along the spatial frequency 

of MTF.  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑀𝑇𝐹𝑠𝑖𝑚𝑢𝑙(𝑘) −𝑀𝑇𝐹𝑖𝑑𝑒𝑎𝑙(𝑘) )

2

𝑁

𝑘=1

 (6) 

Real scene images  
We also evaluated the performance in real scene, to verify the 

MTF reliability at various noise levels that can realistically occur in 

natural enivornments by varying effective integrated time (EIT), 

which details will be discussed later in the result section. In 

particular, in images with strong sharpening, the SFR profile can be 

significantly affected by undershooting and overshooting, and in 

such cases, the masking width of our adaptive window is applied 

sub-optimally, we used input images without any additional ISP 

processing other than simple demosaicing from raw data. 

Results 

Simulation: Edge Angle  
First, we analyzed the results of simulation in terms of edge 

angles. We assessed the RMSE between the ideal MTFs of the 

conventional and proposed methods across various sharpness and 

angle (Figure 4). For angles between 2° and 44°, the average RMSE 

values decreased by more than half, with values from 0.0201 to 

0.0078 in noise free condition (Figure 4a) and with values from 

0.0627 to 0.0275 even in the presence of a certain level of noise with 

CNR below 50 (Figure 4b), respectively, indicating that the 

proposed method yielded accurate results for overall angles, except 

for the vertical and horizontal orientations. Upon closer examination 

of the MTF from a specific condition as shown in the last column of 

Figure 4, the graph from the proposed method closely resembles the 

ideal one. In this case, the size of ROI was 25 × 25 pixels and 

brightness on either side, divided by edge, were 150 and 100, 

respectively, based on an 8-bit image. 

Simulation: Noise in ROI  
Also we conducted a simulation in terms of noise in ROI. As 

mentioned earlier, as the angle approaches 45 degrees, with the 

conventional Windowing, the edge becomes less tightly cropped, 

making the edge profile calculation more vulnerable to noise. So to 

begin with, we examined the LSF and MTF calculation of an image 

closer to 45 degrees in greater detail under two conditions: applying 

the conventional fixed Tukey Window and applying our adaptive 

window to same ROI with noise (Figure 5). 

In this Figure 5, the conventional method failed to extract a 

valid MTF graph due to the presence of noise on both sides of the 

edge signal in the LSF graph. In contrast, the proposed method 

effectively removes the noise in the LSF, enabling the generation of 

a valid MTF graph from close to 45-degree edge image. 

Moreover, by varying the CNR value which is noise level in 

the simulation, it was found that the proposed method (orange graph, 

Figure 6a) is less vulnerable to noise than the conventional method 

(blue graph,  Figure 6a). As shown in Figure 6b, the error RMSEs 

in the proposed method was reduced by approximately one-third to 

one-half compared to the conventional approach, across various 

range of noise level, indicating enhanced noise robustness of NS-

SFR. 

 

Figure 6. (a) ROIs and their corresponding MTF graphs measured by the 
conventional and proposed method according to CNR. (b) Comparison of the 
RMSEs between the measured and ideal MTF (AVG±STD, n=10) according to 
CNR. MTF, modulation transfer function; and RMSE, root mean square error. 

In addition, by examining the results of various ROI size, 

especially the height, we were able to confirm that in Figure 7 the 

RMSE values did not decrease significantly even when we reduced 

the height to 64, which is more suitable for natural scene derived 

edges. Since the masking width of the adaptive window is 

automatically determined by edge angle and ROI height, no separate 

consideration for width was conducted in our paper. In cases with a 

certain level of noise (CNR = 25 and 5; Figure 7), the proposed 

method demonstrated significantly lower RMSE across the entire 

ROI height range (20-130) compared to the conventional method. 

 

CNR = 25.00 CNR = 12.50 CNR = 8.33 CNR = 6.25 

Noise  Level (a) 

(b) 

CNR = 25.00 CNR = 12.50 CNR = 8.33 CNR = 6.25 

Noise  Level 
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Figure 4. Comparison of the MTFs measured by conventional and proposed methods at noise-free ROIs (a) and noisy ROIs (b). The first and second columns 
represent RMSEs between the measured and ideal MTF in ROIs with various edge sharpness (blur sigma from 0.5 to 1.2) and angles (from 1° to 45°). The last 
column representing conventional, proposed, and reference MTF graphs. RMSE, root mean square error; and MTF, modulation transfer function. 

  

Figure 5. Comparison of LSFs and MTFs with the conventional fixed Tukey window and the proposed adaptive Tukey window.  

 

Figure 7. Comparison of the RMSEs between the measured and ideal MTF 
(AVG±STD, n=10) according to ROI size. MTF, modulation transfer function; 
and RMSE, root mean square error. 

Actual Test on Real Scene  
Finally, we also evaluated performance in real natural-scene 

data. To examine the impact of noise, we swept the EIT from 4 

milliseconds to 256 milliseconds. According to the result, including 

techniques for handling a broader angle range and enhancing 

robustness to noise, the proposed method detected a greater number 

of ROIs (marked as blue points; Figure 8) across all exposure times 

modified ROI size, as well as an expansion of the max angle range 

from 35° to 44°. Furthermore, we observed that the proposed 

method exhibits a reduced discrepancy between mean MTF and 

individual MTFs compared to the conventional method, and that 

mean MTF more effectively reflects overall trends of individual 

MTFs as shown in Figure 6. In fact, the MTF50/10 values also 

showed significantly smaller standard deviations in the proposed 

method compared to the conventional one as analyzed in Table 3. It 

Conventional Proposed Ref. vs Conv. Vs Prop. (27°, 𝜎=0.6) 

Spatial frequency [cy/px] 

Spatial frequency [cy/px] 

Conventional Proposed Ref. vs Conv. Vs Prop. (27°, 𝜎=0.6) 

Avg. RMSE (2°~44°) = 0.0201 Avg. RMSE (2°~44°) = 0.0078 

Avg. RMSE (2°~44°) = 0.0627 Avg. RMSE (2°~44°) = 0.0275 

Conv. RMSE=0.0662 
Prop. RMSE= 0.0156 

Conv. RMSE=0.0726 
Prop. RMSE= 0.0161 

(a) CNR = inf (noise free)  

(b) CNR = 50 dB 
Spatial frequency [cy/px] 

ROI of a slanted edge LSF w/ fixed Tukey (Conventional, wide window) LSF w/ adaptive Tukey (Proposed, tight window) 
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indicates that the proposed method represents higher consistency in 

sharpness with regardless of noise level.  

 

Figure 8. Comparison of edges detected (upper row) by the existing (a) and proposed (b) NS-SFR methods and their corresponding MTFs (lower row) in images 

taken with various EITs (=16, 64, and 256ms). The noise level of CNR ≥ 5 to emphasize the impact of the adaptive OSR/PS and window. 

Table3. Comparison of mean and standard deviation for the 
conventional and proposed methods with different EITs (n=4) 

 

Conventional Proposed 

Mean 
Standard 
Deviation 

Mean 
Standard 
Deviation 

MTF50 764.0 76.1 788.5 5.0 

MTF10 1233.8 28.1 1246.5 13.2 

Conclusion 
The NS-SFR enabled the evaluation of camera performance 

and image resolution and sharpness from general natural scenes, 

based on the existing e-SFR measurement method. However, the 

existing method had some limitations due to its limited edge angle 

range and vulnerability to noise. Therefore, our research aimed to 

overcome the limitations of the existing NS-SFR [3] by increasing 

the usable angle range and reducing the impact of noise in the 

process of NS-SFR. We demostrated that the proposed method 

enhanced its accuracy across a wider range of conditions while 

maintaining MTF consistency. Furthermore, by verifying the 

performance of our method in simulation and natural scene images, 

we verified that our method overcome the limitations of the 

conventional NS-SFR. These advancements further amplifies the 

potential of the NS-SFR, enabling multidimensional image quality 

measurement in the future. 
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